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It is well known that thermotropic liquid 
crystal copolyesters exhibit high Young's 
modulus and low linear expansion coeffi­
cients.1·2 These superior properties result 
from shear- and/or deformation-induced mo­
lecular orientations. 2 - 4 Injection-molding1 

of the polymer is the main cause of shear­
induced molecular orientation in the direc­
tion of the polymer melt flow, since the mod­
ulus in the direction of the flow increases 
with decreasing sample thickness. Melt-spin­
ning2 of the polymer is primarily responsible 
for deformation-induced molecular orienta­
tion, in that the axial modulus increases 
with increasing spinning rate. The relation­
ship between molecular orientation and 
material properties, however, has been clari­
fied only qualitatively. 

This paper discusses the shear-induced 
orientation of a liquid crystal copolyester dur­
ing extrusion through a capillary viscometer. 
The molecular orientation of extrudates as 
determined by X-ray diffraction is quanti­
tatively related to both Young's modulus and 
the thermal linear expansion coefficient. 

The material used was a well-known ne­
matic copolyester1 consisting of 60 mol% p­
oxybenzoate (POB) and 40 mol% poly­
(ethylene telephthalate) (PET) segment. The 
inherent viscosity was 0. 39 dl g - 1. Rod sam­
ples were extruded with a capillary viscom-

eter at various shear rates and 240°C where 
there was no draw down of the extruded rods. 
That is, molecular orientation resulted from 
shear induced by the capillary wall. The capil­
lary diameter was 0.5 mm. 

Figure 1 shows X-ray diffraction patterns 
taken with the beam perpendicular to the rod 
axes at room temperature for a series of ex­
truded rods. The very strong reflection splits 
into two crescents on the equator with increas­
ing shear rate. Reflection patterns of high 
shear rates are typical of an oriented nematic 
mesophase and the equatorial peak is mainly 
due to intermolecular scattering.5 The reflec­
tion pattern observed by the equatorial scan 
was broad with an acute top, although it 
differs from the crystalline reflection4 •6 with a 
clearly separated amorphous background. The 
Bragg reflection angle (28=ca. 20.0°) of the 
equatorial peak is very close to the (220) 
reflection angle (28= 19.9°) of pure POB 
crystal. 7 

Figure 2 shows the shear rate dependence 
of the orientation function <P2) = 
(3<cos2o:) -1)/2, determined by the azimuthal 
distribution of the equatorial peak, where a is 
the angle between the molecular axis and 
direction of the extrusion. The value of <P2) 
gradually increases from ca. 0.6 to ca. 0.8 with 
increasing shear rate, indicating that the strong 
orientation of the POB chain segment is in-
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Figure 1. X-Ray diffraction patterns for a series of oriented materials. Shear rates (s- 1): (a) I x 102 ; (b) 
2 x 102 ; (c) 3 x 102 ; (d) 5 x 102 ; (e) I x 103 ; (f) 2 x 103 ; (g) 3 x 103 ; (h) 5 x 103 ; (i) 1 x 104 . Ni-filtered Cu-K. 
radiation; specimen-to-film distance 5 em; extrusion direction vertical. 

duced by shear stress at 240°C. A relatively 
intense orientation (ca. 0.6) was achieved at 
low shear rates. 

Figure 3 shows Young's modulus of the 
extrudates plotted against the shear rate. The 
modulus increases monotonically from ca. 6 
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GPa to ca. 18 GPa with shear rate. This in­
crease in modulus corresponds to the orien­
tation of POB chain segments, as shown in 
Figure 2. 

The linear expansion coefficient also de­
creased with increasing shear rate, leveling off 
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Figure 2. The orientation function <P2 ) vs. shear rate. 
Azimuthal scan was made at 28=20.0°. 
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Figure 3. Young's modulus vs. shear rate. 

1 x 10-6 oC- 1) at a shear rate of ca. 103 s- 1 

(Figure 4). From Figures 2--4, the linear 
expansion coefficient is shown to be remain­
ing unchanged in the shear rate range of 103-

104 s -l, despite the increase in (P 2 > and the 
modulus. The changes in Young's modulus 
and linear expansion coefficient for shear rate 
are now not explicable, while similar changes 
have been observed for a highly drawn crystal­
line polymer,8 these changes can be explained 
in terms of differences in crystalline and amor­
phous orientation behavior for the draw ratio. 

The order of molecular orientation of the 
thermotropic liquid crystal copolyester was 
found to increase with increasing shear rate. 
X-ray analysis showed that the increase in 
molecular orientation to be due probably to 
the p-oxybenzoate segment alignment. With 
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Figure 4. Thermal linear expansion coefficient vs. 
shear rate. 

increasing molecular orientation, Young's 
modulus increased, whereas thermal linear 
expansion coefficient decreased and leveled 
off at a value nearly equal to zero. The ther­
motropic liquid crystal copolyester with a 
low thermal linear expansion coefficient val­
ue has been investigated as a coating mate­
rial9 for optical fibers. By using low thermal 
linear expansion polymers for coating mate­
rials, fiber micro-bending loss due to contrac­
tion of the coating material at low tempera­
tures can be greatly diminished. 
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