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ABSTRACT: An attempt was made to improve the method (MKN method) for evaluating the 
fine structure of the amorphous region in a semi-crystalline polymer solid from the dynamic Joss 
tangent (tan .5) vs. temperature (1) curve, originally proposed by the authors, taking into account 
the contribution of crystalline region acting in series against an external force. The volume fraction 
of the segments contributing to the cxa dispersion, and the apparent activation energy for cxa 
dispersion in addition to the tan c5 vs. T curve are prerequisite to the new method (MK method). 
This method affords some structural parameters Jc and rjJ defined in Takayanagi's model with which 
the amorphous region works in parallel and in series against an external force, and the distribution 
function of a packing density of polymer molecules in an amorphous region. 
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Many physical properties of a polymer 
solid, including tensile modulus, ultimate 
strength and elongation, are influenced by its 
moulding or forming conditions. This strongly 
suggests that a super molecular rather than the 
molecular structure remarkably influences the 
physical properties of the polymer solid. First, 
we define the second-order structure, a kind of 
super molecular structure, as follow: This 
structure is characterized by the aggregation 
state of a polymer chain in a hypothetical 
cubic body with one side about 10 nm in 
length. An accurate determination of the 
length of this body depends on the molecular 
structure (i.e., the first-order structure) of the 
polymers. The structural parameters charac­
terizing the second-order structure are, for ex­
ample, crystal lattice constant, crystal size, 
orientation of the crystals and degree of crys­
tallinity in the crystalline phase and packing 
density and regularity in aggregation of the 

polymer chain in non-crystalline phase. 
Up to now, the first- and the second-order 

structural parameters have been extensively 
studied, but the following experimental facts 
indicate the necessity for identifying higher 
order structures than those of a second order 
for the semi-crystalline polymer solid: (1) The 
degree of crystallinity of the semi-crystalline 
polymer samples varies greatly, depending on 
the methods adopted for determination. (2) 
The dyability, hygroscopicity and chemical 
reactivity of the semi-crystalline polymer solid 
cannot be correlated quantitatively with first 
and second order structures. 

Since the second order structures in a sam­
ple are not all the same with respect to the 
aggregation state of polymer chains, a kind of 
distribution of the second order structure 
should be taken into consideration. The half­
width values of the experimental dynamic loss 
tangent (tan b)-temperature (1) curves in the 

375 



S. MANABE and K. KAMIDE 

primary dispersion (eta dispersion) region of 
the semi-crystalline polymers are more than 
twice the theoretical values calculated by the 
theory derived by Manabe-Kamide­
Nakayama (simple MKN theory1) based on 
the Rouse, Tobolsky and Aklonis (RTA) 
theory. 2 •3 In this theory, the homogeneous 
packing state of a polymer chain in the second 
order structure is assumed. Manabe, Kamide, 
and Nakayama1 gave a theoretical back­
ground for analyzing tan b-T curve in the 
temperature range of the rxa dispersion. This is 
a generalized simple MKN theory taking into 
account the distribution of the packing density 
of the polymer chain in an amorphous region 
so as to represent the variety of second order 
structures in the sample (referred to as MKN 
theory). They successfully evaluated the aver­
age and distribution of the molecular packing 
density, applying the MKN theory to the 
experimental tan 6-T curve. 

The main reasons for using the tan 6-T 
curve rather than that of the loss modulus E"­
Tare as follows: (1) Measurement of tan b can 
be made with greater precision than that of E" 
and tan b is independent of the dimensions of 
the sample to be measured; (2) the theoretical 
tan 6-T curve for the homogeneous amor­
phous region idealized can be approximated 
by an equilateral triangular shape,3 and (3) the 
numerical calculations for tan b-T curve show 
that additivity in tan b holds approximately 
when using the elastic modulus fraction of the 
component to that of the whole system when 
all components constituting the system act in 
parallel for the external force. 4 From a practi­
cal standpoint of view, the merits of article (1) 
are very valuable since change in the dimen­
sions of the sample during isochronal measure­
ment is unavoidable, especially in the case of a 
sample consisting of a bundle of fibers, some 
fixed loosely and some tightly. 

It should be noted that the MKN theory 
does not consider a higher order structure than 
that of a second order. Takayanagi4 was the 
first to point out that the dynamic viscoelasti-
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cities of a semi-crystalline polymer solid are 
sensitively influenced by the mixing state of 
crystalline and non-crystalline regions. He 
proposed a "Takayanagi's model" as a dy­
namic equivalent model, in which the hetero­
geneous aggregation of polymer chains in an 
amorphous region can be ignored. This model 
may be regarded as a third order structural 
model representing the texture of crystalline 
polymers with crystalline and non-crystalline 
regions. 

This article presents an improved MKN 
theory for application to a system with hetero­
geneity in mixed crystalline and non­
crystalline regions. We also examine to what 
extent the MKN theory can be applied to 
semi-crystalline polymers. 

THEORETICAL BACKGROUND 

Figure 1 shows schematic representations of 
fine polymer solid structures and the dynami­
cally equivalent model (Takayanagi's model). 

The polymer solid was divided into numerous 
cubic bodies about lOnm on a side (i.e., the 
2nd-order structural unit) and was assumed to 
be an aggregate of 2nd-order elements (Figure 
1 b). 

Within a given 2nd-order element, the ag­
gregation of polymer chains can be regarded as 
uniform from the standpoint of segmental 
microbrownian movement giving rise to the rxa 
dispersion. The packing density was primarily 
correlated to the free volume fraction of the 
element and thus reflects the glass transition 
temperature of the 2nd-order element on the 
basis of the iso-free volume condition of the 
glass transition. The packing density was char­
acterized by the peak temperature T max of 
tan 6-T curve related to the rxa dispersion; i.e., 
an element whose polymer chains are loosely 
packed, has a lower Tmax than one with closely 
packed chains. This can be seen from Figure 
1c. 

The 2nd-order structural elements for a 
given polymer solid sample are separated from 
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Figure 1. Schematic representation of the fine struc­
ture of an amorphous region and the dynamically 
equivalent model of this structure (Takayanagi's model), 
and the tan b-T curve in the temperature region of ex a 

absorption: (a), a fine structure and its dynamically 
equivalent model (Takayanagi's model). The line in­
dicates a polymer chain; (b), spring and bead model 
representing the viscoelasticity of a 2nd order element in 
an amorphous region. The relaxation time distribution 
H,(r) is given by the RTA theory; (c) tanb-T curves 
of the elements I, i, and p and an experimental tan b-T 
curve. 

each other and arranged in the order of in­
creasing packing density, numbering from i= 1 
to p for all elements. In this case, even the 
elements, which show no peak in the a; disper­
sion region (i.e., the elements corresponding to 
the crystalline and non-crystalline/non­
amorphous regions) are included for com­
parison as an extreme case. Here, the amor­
phous region is defined as the region in which 
segments show significant peaks at their aa 
dispersions, and the crystalline region as the 
region confirmed as crystalline by the X-ray 
diffraction method. There remains the region 
that is neither crystalline nor amorphous. In 
general, the elements with different i values are 
different in their packing densities. In Figure 
2a, the packing density of the i-th element is 
the same as those of i+1, i+2, · · ·, i+j-th 
elements, as a special case. The model in 
Figure 2a can be expressed as a parallel model 
of amorphous, non-amorphousjnon-crys-
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Figure 2. Schematic representation of the fine struc­
ture in a crystalline polymer solid of parallel portion (B 
region) constructed with amorphous, non-crystalline/ 
non-amorphous, and crystalline regions: Region A, 
amorphous region; region C, crystalline and non­
crystalline/non-amorphous regions; region B, region 
combining the C and A regions in a parallel manner. 

talline, and crystalline regions. The portion 
whose dynamically equivalent model is ex­
pressed by a parallel combination of the C 
and A (amorphous) regions as shown in Figure 
2a, was termed the B region. The MKN theory 
can be applied to this region since both A and 
C act in parallel for the external force. Figure 3 
illustrates the improved MKN theory (referred 
to as MK theory), compared with 
Takayanagi's model and the MKN theory. 
The non-crystalline region in Takayanagi's 
model is divided into many elements of A1 to 
AP, as in the MK theory (Figure 3a). The 
apparent activation energies for the aa disper­
sion of the elements A1 , A2 , · · ·, and AP dif­
fer from each other. The viscoelastic proper­
ties of the structural model in Figure 3a can be 
represented by the two mechanical models 
shown in Figure 3b. These two models are 
equivalent with respect to viscoelasticity. 5 

Model I can be translated into the model II 
by eq 1 and 2, (see Appendix I). 
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(1) 

and 

(2) 

where suffixes I and II refer to models I and II, 
respectively, and A. is the parameter expressing 
the fraction of the amorphous region acting in 
parallel to an external force as shown in Figure 
3. Model I was modified by introducing A; 
which represents the distribution of the pack­
ing density of a polymer chain in the amor­
phous region in the A as shown in 
Figure 3b. The MKN theory can be applied 
only to the B region. The viscoelastic proper­
ties of this region are shown by the dynami­
cally equivalent model of Figure 3c. 1 

Derivation of the Analysis Method of Tan (jb­

T Curve; MKN Method 1 

The mechanical behavior of a 2nd-order 
structural element (A; in Figure 3b) can be 
expressed by a generalized Maxwell model 
(Figure 3c). In Figure 3c, the j-th polymer 
segment in the i-th element behaves as a 
Maxwell model with relaxation time, 'ii· N is 
the total number of polymer segments in the 
element and is expected to vary with the 
packing density of the polymer segment. N 
also corresponds to the number of relaxation 
times of a 2nd-order element. Tan (j for the i-th 
2nd-order structural element, tan f>;, is ex­
pressed by 

N 
WTji 

L. 1 2 2 
i=l +w 'ii 

tan f>.= (3) 
' N 2 2 

w 'ii -1 
L. 2 2 +a 

i=11 +w 'ii 

where 'ii is the relaxation time of the j-th 
Maxwell model of i-th element, w, the mea­
sured angular frequency (rad s -l ), and a, the 
modulus ratio of E/ E0 • E is the modulus of 
the Maxwell model and E0 , that following 
the a. dispersion of the element. These moduli 
are common to all the elements in Figure 3. 
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Figure 3. Illustration of the MK theory compared to 
Takayanagi's model: (a), Takayanagi's model and that 
adopted in the MK theory; (b), dynamically equivalent 
models of models I and II in the MK theory; (c), detailed 
discription of the dynamically equivalent model of the B 
region by the dashed orthogonal region in Figure 
3b. 

'ii is given by Rouse, Tobolsky, and Aklonis 
(RTA) theory, assuming an isolated chain 
molecule in the homogeneous environment of 
the intermolecular interaction as follows: 

(4) 

where, a0 is the root mean square end-to-end 
distance of a segment the friction coef­
ficient of the segment of the i-th 2nd order 
structural element and k is the Holtzman 
constant. 

In general, the viscoelastic behavior of the 
element is very insensitive5 to N if N> 103 . 

When N>p 1, eq 3 is approximated by eq 5 with 
high accuracy for all cases: 

ltu; WT 

1 2 2 H(T);dT 
tli + w 7; 

(5) 
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with 

(6) 

where, H(r)i is the distribution function of 
relaxation time of i-th 2nd-order element, i.e., 
the number of the segments whose relaxation 
times are between r and r+dr, given by 
H(r)idr, rui and rli are the maximum and 
minimum relaxation times of i-th 2nd-order 
element, respectively. H(r)i is derived from the 
RTA theory assuming the continuous distri­
bution of rii to be as follow: 

H(r)i=d(N -j)/drii 

= ( 1/2)(a0N/n )( - 312 (7) 

By putting eq 6 and 7 into eq 5 we obtain 

tan t\=[ln {[1 +(2wN2rli)112 +wN2rli] 

x [1-(2wrliY12 +wrli] 

x [1-(2wN2rli)112 +wN2rli] 

x [1 +(2wrli)112 +wr1i]} 

+ 2{ tan - 1 [1 + (2wN2 r li)1i2] 

-tan-1 [1 +(2wrli)1i2] 

+tan - 1 [(2wN2rli)1i2 -1] 

-tan-1 [(2wrli)1i2-1]}] 

x [1n {[1-(2wN2rli)112 +wN2rli] 

x [1 + (2wrli)112 + wrli] 

x [1 + (2wN2rli)112 + wN2rli] 

x [1-(2wrli)112 +wru]} 

+ 2{ tan - 1 [1 + (2wN2r li)1i2] 

-tan - 1 [1 + (2wrli)1i2] 

+tan - 1 [(2wN2r1Jli2 -1] 

-tan - 1 [(2wr li)1i2- 1]} 

+ k1)112]] (8) 

with 

(9) 
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The overall curve of tan 6 vs. T of the B 
region of a semi-crystalline polymer, tan bb, 
can be approximated by6 

p 

tanbb= L tan6i·Gi 
i= 1 

(10) 

where p is the number of 2nd-order elements 
constituting the A region (see Figure 2), and Gi 
is the elastic modulus fraction of the i-th 2nd­
order element given by 

Gi=mi/t1 mi (11) 

Here, mi is the relaxation intensity of the aa 

dispersion for the i-th 2nd-order element. 
A parameter representing the packing den­

sity of segments (or simply, the packing 
density) n for the 2nd-order element whose 
peak temperature of tan b is r:nax• is defined by 

where T max is the peak temperature of the 
experimental tan 6-T curve of the sample (in 
question) in the aa dispersion region, and 
(AT112)R, the half-value width of the tan 6-T 
curve of the 2nd-order element. This value 
corresponds to the half value width of tan 6-T 
curve for the sample constituted by the poly­
mer chains in homogeneous packing. The n 
value of the i-th 2nd-order element, ni, is 
calculated by eq 13 

ni=(T:naxi- Tmax)/(AT1;2)R (13) 

where, T :nax i is the peak temperature of tan 6 
of the i-th 2nd-order element. The aggregation 
state of n = 0 indicates the mean aggregation 
state of the sample, and n > 0 indicates a more 
densely aggregated state polymer segments 
than the mean state. When the value of n of the 
2nd-order element is one, the free volume 
fraction of this element is less than the mean 
free volume fraction by about 1%.7 When ni 

distributes continuously over a wide range, the 
modulus fraction Gi is transformed to a con­
tinuous function of n, F(n) as 
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F(n)dn= (14) 
i,n < ni < n + dn 

Here, Li,n<n,<n+dn indicates the summation of 
the G; of the i-th 2nd-order element whose n; 
distributes between n and n + dn. The function 
of F(n) has the physical meaning of the distri­
bution function of the packing density of 
polymer segment in an amorphous region. On 
substituting eq 14 into eq I 0, 

tan bb= J:oo tan b(n)F(n)dn (15) 

where tan b(n) indicates the tan b; of the i-th 
2nd-order element whose n; equals n. When 
tan bb is known in advance, F(n) can be ob­
tained by solving the integral equation of eq 
15. In practice, it is difficult to solve eq 15 
accurately. 

The numerical calculation of tan b(n) shows 
that the tan b(n) vs. T curve can be approxi­
mated as an equilateral triangle shape.1 When 
this shape approximation of tan b(n) is em­
ployed, eq 15 into eq 161 

F(n) =(T2 /Tmax)[1/(tan bb)max, R]{tan bb/T 

+TIT (tan bb/T3)d T 
T, 

x J:h (tan bb/T3)d T} (16) 

(tan bb)max,R = [- 9 + (81 + 240B2)112]/20 (17) 

Bz =(Tmax/LlT1/2(s)) J:h {tan bb/T 

+ TIT (tan bb/T3)d T 
T, 

+ [T(ln T1 -In T)/(ln I;, -In T1)] 

(19) 

where, Th and T1 are the upper and lower 
temperatures, respectively, when tan b be­
comes zero in the r:xa dispersion range. (LlT112)R 
in eq 12 is given by the approximation equa­
tions obtained by the numerical calculation of 
eq 8 as follow 

(LlT112)R = LlT112(s)[5(tan b)max,R/3 + 1.5] (20) 

The value of (tan b)max,R corresponds to the 
peak value of the imaginary tan <5-T curve 
calculated using the R T A theory, assuming the 
fine structure of the amorphous region that is 
the aggregation of the segments to be homo­
geneous. LlT112 <sJ is the half value width of 
tan <5-T curve of the system with a single 
relaxation time. 7 The ratio of the total value of 
the elastic modulus (i.e., relaxation intensity) 
relating to the r:xa dispersion to the modulus 
before the r:xa dispersion for the B region, feb• is 
given as a function of (tan bb)max,R 

feb= 74.4(tan bb)max,R 

-:- {[9.07 /(tan bb)max,R + 0.244) 

- 7.37] + 74.4(tan bb)max,R} (21) 

I I 
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Figure 4. Dynamically equivalent model (model I) and 
(18) temperature dependences ofln(Eb'/EJ and tanc5. 
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By substituting experimental values of !:J.Ha 
and T max into eq 19, !:J. T112<sl can be calculated. 
When we place the values of tan 6b in the 
temperature range between T1 and Th into eq 
18, we obtain B2 and then (tan 6b)max.R· After 
numerical calculation of eq 16 using 
(tan 6b)max,R thus obtained and tan 6b, we get 
F(n). The heterogeneity index nr is defined as 
(tan 6)max,RI(tan 6)max and represents the heter­
ogeneity of segment packing in an amorphous 
region. 1 Here, (tan 6)max is the peak value of 
tan 6 for the entire system (see Figure 4). 

Calculation of Tan 6b from the Tan 6 of the 
Whole System 
The viscoelastic properties of an actual 

semi-crystalline polymer solid, with the fine 
structure shown in Figure la, can be better 
represented by Takayanagi's model (Figure 
1 b). Tan 6 of model I in Figure 3b for the 
whole polymer solid in the aa dispersion region 
can be theoretically expressed in terms of 
tan 6b and the dynamic moduli of the B and C 
regions, Eb 1 and Ec I as 

tan 6 = [(xaf AI) tan 6b]l[(l- xal AI) 

x (Eb 1 I E/)(1- tan2 6b) + Xal A1] (22) 

If the ratio Eb I I Eo', Xa' and AI are known in 
advance, we can calculate tan 6b from tan 6, 
using eq 22. For this purpose, we assume that 

(l) tan 6 = 0 

(23) 

(2) Eo'= Ec at T < Th (Ec is the elastic mod­
ulus of C region at T = T1) 

(3) Eb 11E/=(Re-1)A1+1 at T<T1 (24) 

with Re = E.f Ec (E. is the elastic modulus of A 
region at T= T1) 

ln (EbiiE/) =ln [ReA1 +(1- A1)] 

-(T- T1)1(Th- T1) 

X ln [ReAl +(1- AI)JI(l- AI) 
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(25) 

(26) 

Re has the physical meaning of the ratio be­
tween the elastic modulus of an amorphous 
region showing no aa dispersion and one of a 
crystalline region. 

Figure 4 represents schematically the above 
assumptions. Appendix II gives the derivation 
of eq 25. EbiiE/ at T1 ;;;; T;;;; Th can be calcu­
lated from A1 and Re. Consequently, we can 
calculate tan 6b from tan 6 when A1 and Re are 
determined by the method given below. If we 
can evaluate all structural parameters such as 
the orientation function of crystal axis and the 
molecular chain axis in an amorphous region 
as well as all tensor values for the elastic 
constants of crystalline and amorphous re­
gions, Re may be represented theoretically 
using theory of solid elasticity in principle. 
Since the calculation of Re is too complicated 
practically, it is useless to establish a complete 
theoretical equation for Re when analyzing 
tan 6-T curve. Thus, Re should be determined 
by trial and error, with the aid of a computer. 

Figure 5 shows a block diagram for de­
termining Re and A1 using the experimental 
tan 6-T curve. The ratio between the relaxa­
tion intensity of the aa dispersion and mod­
ulus before the aa dispersion is given by fe· fe 
also has the meaning of the elastic modulus 
fraction of segments contributing to the aa 
dispersion. fe is evaluated by application of the 
MKN method to the tan 6-T curve of the 
whole system. But fe of model I shown in 
Figure 3b, fei' is given by 

Figure 5. Block diagram for determination of Re and 
A1 using the experimental tan b-T curve. 
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f. for the whole system should be independent 
of dynamically equivalent models adopted for 
numerical calculation. Consequently, the 
equation, fe1 =f. holds. Assuming R. to be R.1 , 

A.1 can be calculated by substituting R.1 into eq 
27. The li1 thus obtained is denoted as liu. 
On substituting both values of R.1 and liu 
into eq 25 and both values of Eb 1 I Ec 1 given 
by eq 25 and liu into eq 22, we can calculate 
tan(\ from tan b. We calculate feb by apply­
ing the MKN method to tan c5b thus obtained. 
The definition of feb, i.e., fe for the B re­
gion, leads to the following equation 

feb= R.A.I/[ R.A.I + (1- Iii)] (28) 

Putting the values of feb and Au into eq 28, 
we obtain the value for R •. We denote this R. 
value as R.2 . If R.1 is set in an appropriate 
range, the difference between R.1 and R.2 

becomes negligible. But if we set R.1 so as to 
make the difference between R.1 and R.2 neg­
ligibly small, we may conclude R.1 to be 
reasonable. Reasonable values of ll.1 and tan (jb 
are calculated by this R.1 using the same 
procedure for determining liu and tan c5b as 
mentioned above. 

Method for Analyzing Tanb-T curve: MK 
Method 
The analysis procedure of tan c5-T curve is 

summarized in Figure 6. The theoretical back­
ground of this procedure has already been 
presented. The double tetragonal frame in­
dicates the observed value and the tetragonal 
frame surrounded by the broken line, the 
analysis procedure of the MKN method. The 
practical analyzing procedure is given as 
follows: 

(1) The observed values needed are tanc5, 
11H., and Xa· 

(2) The value of f. is calculated by apply­
ing the MKN method to the tan c5-T curve. 

(3) The R. value is set to an appropriate 
value of R.1. 

( 4) On putting the value of fe (fe = /e1) 

obtained in the procedure (2), Xa, and R.1 into 
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Figure 6. Flow chart for analysis of tan {J vs. the 
temperature curve (MK method). 

eq 27, liu is calculated. 
(5) Tanc5b-T curve is calculated using eq 

22, 25, and also the values of tan c5, R.1 , Xa' and 
Au. 

(6) By applying the MKN method to 
tan c5b-T curve, we obtain feb· 

(7) The R. value (denoted by R.2) is calcu­
lated by putting feb and liu into eq 28. 

(8) We reset R. (R.1) until the following 
relation is satisfied 

I Rel- R.zl /R.1 > r (29) 

where, r is the relative error which we can set 
arbitrarily. 

(9) The R.1 satisfying eq 29 can be re­
garded as a reasonable value for R •. A.1 and 
tan c5-T curve are then calculated by following 
steps (3) to (5). 

(10) F(n) is evaluated by applying the 
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MKN method to the tanc\-T curye. F'(n), a 
normalized distribution function of the pack­
ing density of the whole sample, is calculated 
by the following equation 

F'(n) = feF(n) (30) 

EXPERIMENTAL 

Sample Preparation 
Nylon 66 chips (viscosity-average molecular 

weight determined using the molecular weight­
intrinsic viscosity number relation7; 1.8 x 104 , 

amino end group content; 52 meg kg - 1 , car­
boxyl end group content; 70 meg kg - 1) manuf­
actured by Asahi Chemical Ind. Co. Ltd. were 
employed for preparing the undrawn fiber. 
Spinning was carried out by using an extruder 
with a 15 mm diameter; the ratio of the length 
to diameter was 25 : 1. The extruder was equip­
ped with three 1 00-mesh screen nets and the 
die had a hole 1 mm in diameter. The length­
diameter ratio was 8 : 1 and the entrance angle, 
90°. The temperature of the die during spin­
ning was 265°C and the linear velocity of the 
polymer melt at the outlet of the die was 
1.52--4.76 mmin- 1 . The take up speed was 
47-59 mmin- 1 . The birefringence of the un­
drawn fiber at 25oC under green light (wave 
length; 546nm) ranged from 3.56x 10- 3 to 
6.67 X 10- 3. The oriented fibers were prepared 
by cold drawing the above undrawn fibers at 
25°C at a drawing speed of 300%/min. The 
commercially obtained Nylon 66 fibers (re­
ferred to as NAF), manufactured by Asahi 
Chemical Ind. Co., Ltd. were also used. 

Measurement 
The isochronal and isothermal dynamic 

viscoelasticities were measured using a 
Rheovibron DDV-IIc manufactured by Toyo­
Boldwin Co., Ltd. (Japan). The measuring 
frequency in the isochronal measurement was 
110Hz and the heating rate, 2°C min - 1 in dry 
air. When making the isothermal measure­
ment, the temperature was controlled at a 
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given temperature to within 0.2°C in dry air. 
The temperature range of the isothermal 
measurement was from 25 to 160°C, and the 
frequency range, from 0.01 to 110Hz. 

RESULTS AND DISCUSSION 

Validity of Approximation Equation 25 
The dynamic modulus E' of the model I 

( = E/), is given by 

E/ =(Eb' /E/)[xaf.AI +(1- xaf .A1)Eb' /E/] (31) 

If eq 25 represents Eb'/E/ precisely, the ob­
served dynamic modulus should coincide 
with E/ in eq 31 over the temperature range, 
T1 to Th. 

Figure 7 compares E1' (broken line) and the 
observed E' (open mark) for the Nylon 66 
fibers. The coincidence between both E' is 
fairly good and thus, the reliability of eq 25 
and model I is ensured. 

Comparison of MK and MKN Methods 
The accuracy of Re determined by the MK 

method should be checked in advance for 
setting the relative error r in eq 29. The 
theoretical values of Ec reported are distrib-

01 
0 

50 100 150 200 
Temperature /'C 

Figure 7. LogE' vs. T curves for various Nylon 66 
fibers: Numbers indicate draw ratios, NAF stands for 
the commercially obtained Nylon 66 fibers, broken lines, 
calculated values using eq 24, 25, and 26, open marks, 
observed values. 

383 



S. MANABE and K. KAMIDE 
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0 50 100 150 200 250 
Temperature /" C 

Figure 8. Tan c5 vs. T curve for NAF in the temperature region of the a. absorption: Broken line, curves 
utilized in the actual analysis; Open marks, observed values. 

-1 0 
tog Re 

Figure 9. R. dependence of /.1 of NAF for various Xa 
values: The numbers indicate x. values, hatched region; 
the region of/.1 of0.724±0.007. 

uted between 1 and 100 GPa. 8 Ea at T < T1 is 
about 1 GPa, as estimated from the van der 
Waals interaction force. The theoretical Re is 
thus in the range from 0.01 to 1.0. 

Figure 8 shows the observed tan <5-T curve 
for NAF in the temperature range of the aa 
dispersion. We can read T1 of 273 K, Th of 
543 K, the peak value of tan b, (tan b)max• of 
0.075, and the peak temperature oftanb, Tmax• 
of 404 K. The apparent activation energy 11Ha 
of 55 kcal mol- 1 was determined experi­
mentally. 

Figure 9 shows the Re dependence of lei for 
NAF calculated by eq 27 using the given 
values of Xa in this figure. fe obtained by the 
MKN method for the whole sample was 
0. 724 ± 0.007 (hatched region in Figure 9). The 
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dependence of fei on log Re (represented by 
ofeJio log Re) increased with a decrease in Xa 
and with an increase in Re. The Xa dependence 
of lei (represented by olei!oxa) increased with 
increasing Re. When the relative error of lei 
was 1 %, Re determined by the MK method 
distributed between 0.043 and 0.015 for Xa= 
0.25, between 0.090 and 0.020 for Xa = 0.5, and 
between 0.32 and 0.056 for Xa=0.75 even ifr in 
eq 29 was less than 0.01. 

Assuming Xa to be (1- Xc), we get an Xa value 
of 0.6 for NAF. Re from Figure 9 distributes 
from 0.16 to 0.032 when r=O.Ol, and is within 
the theoretical Re value. In a practical case, 
since there are some uncertainties in Xa 
when evaluating it, the Re obtained will also 
contain these uncertainties. 

Figure 10 shows the changes in tan bb-T 
curves when Re goes from 0.01 to 1.0 at Xa = 
0.25 (Figure lOa), 0.5 (Figure lOb), and 0.75 
(Figure 1 Oc ). The deviation in tan bb from tan <5 
accompanied with change in Re becomes ap­
preciable with small Xa· When R. increases at 
constant Xa• this deviation becomes large. The 
difference between tan bb and tan b causes the 
differences in the results of the MK and MKN 
methods, and thus, the difference in F(n) be­
tween these methods cannot be ignored with 
large R. and small Xa· When Xa is less than 50% 
at Re > 0.1, the MK method should be used in 
preference. Fb'(n), defined as the distribution 
function of the packing density of polymer 
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Temperature!" C 
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Figure 10. Tan bh vs. T curve for various values of R,: 
(a), Xa=0.25; (b), Xa=0.50; (c), Xa=0.75; broken line, 
observed tan b vs. T curve for NAF. 

segment normalized in the B region, is given by 
the following equation: 

(32) 

The Fb'(n)-n curves thus obtained at various 
Re are shown in Figure 11. This figure also 
shows the results obtained by applying the 
MKN method to the tan 6-T curve, Fm'(n) 
(broken line). When Xa is small, the Fb'(n)-n 
curves change markedly with change in Re. 
When Re increases, the peak value of Fb'(n) 
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Jea = 0.75 
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n 

Figure 11. F b(n) vs. n curve for various values of R,: 
(a), Xa=0.25; (b), Xa=0.50; (c), Xa=0.75; broken line, 
Fm'(n) obtained by using the MKN method. 

becomes large and the shape of the Fb'(n)-n 
curve sharpens and the peak position of Fb'(n) 
shifts to a smaller n value. The mean value of 
n, fi (defined by Jif' nFb'(n)dn/Jif' Fb'(n)dn) also 
becomes small. When Xa is 0.25 andRe 0.1, the 
heterogeneity index n, obtained by the MKN 
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Figure 12. R. dependences of feb' A1 and 1>1 for various 
values of x.: (a),.feb; (b), A1 and 4>1; the figures indicate the 
values of Xa· 

method1 is overestimated by about 4%, and ii 
shifts to a larger value of about 0.1, compared 
to that of the MK method. 

Figure 12 shows the Re dependences of feb, 
A1, and (PI. In the range Re < 0.1, J.b and A1 

increase slightly and n1b and A1 decrease slightly 
with an increase in Re. But when Re is larger 
than 0.1, feb' A1, and ¢1 show marked de­
pendence on Xa and Re. Consequently, the 
accuracy of Re may determine the reliability of 
the values for F'(n), and J.b obtained by the 
MK method when Re > 0.1. 

The results of the numerical calculations 
mentioned above indicate that only when 
(1- Xa)Re <0.02 is the MKN method useful, 
provided the relative error of F'(n) is less than 
10%. 

Application of the MK Method to Nylon 66 
Fibers 
In the case of Nylon 66 fibers, Xa is 0.4 and 

Re 0.1. Thus, (1- Xa)Re is larger than 0.02. 
Thus, the MK method should be used. Figure 
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"' 0 

50 1.00 150 20 
T....-atur•J"C 

Figure 13. Temperature dependences of E' and tan .5 
for the Nylon 66 fibers: The figures indicate draw ratios. 

13 shows the temperature dependence of E' 
and tan f> observed. By applying the MK meth­
od to the data in Figure 13 at Re = 0.1 and 
r=0.01, we obtain the parameters of A1 and 
An representing the dispersion state of crys­
talline and amorphous regions, the elastic 
modulus fractions feb and !em (the suffix of 
m indicates the results obtained by the MKN 
method), having the same value of f. in eq 
30. The standard deviations of F'(n) and 
Fm'(n), a and am. An are calculated by eq 1 
from A1 and Xa· The data thus obtained ap­
pear in Figure 14. Both methods show simi­
lar draw ratio dependences for all characteris­
tic values in Figure 14. Both A1 and feb are 
maximum at a draw ratio between 1 and 3. 
Thus, at the initial stage of drawing, the series 
type connection of crystalline and amorphous 
regions along the draw direction devel­
opes and beyond this point, the parallel type 
connection increases in its relative fraction 
of various connection types. The maxima of 
n1 not shown and a near a draw ratio of 3 
indicates that the heterogeneity of the packing 
state of polymer molecules in the amorphous 
region increases at the initial stage of drawing, 
and then decreases with an increase in the 
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Figure 14. Draw ratio dependences of A1, An, fern• feb• 
urn, and u for the Nylon 66 fibers: (a), A1 (closed mark) 
and An (open mark); (b),.f.m (open mark) and feb (closed 
mark); (c), urn (open mark) and u (closed mark). 

draw ratio until the tensile fractures. 
The curves of Fb'(n) (and also F'(n)) vs. n 

and Fm'(n) vs. n for the Nylon 66 fibers with 
various draw ratios are shown in Figure 15. 
With an increase in the draw ratio, the Fb'(n) 
component at small n decreases drastically. 
These changes in Fb'(n) with draw ratio cause 
the peak location of Fb'(n) to shift to large n. 
Then value where Fb'(n) equals zero increases 
slightly with the draw ratio. That is, the pack­
ing state of polymer molecules ·in the amor­
phous region takes on a more dense state. 
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Figure 15. F'(n) vs. n curves for the Nylon 66 fibers 
with different draw ratios: (a), Fb'(n) (full line); (b), 
Fm'(n); the figures indicate draw ratios. 

CONCLUSION 

By the MK method, the following can be 
obtained from the experimental tan C5 vs. T 
curve, 11Ha and Xc ( = 1-Xa): (I) A1 and ¢1 

representing the amorphous components act­
ing in parallel and in series for an external 
force, (2) a quantitative representation of the 
fine structure of the amorphous region no 
longer influenced by the heterogeneity of the 
mixing state of the crystal and non-crystal 
regions, and (3) the elastic modulus ratio Re. 
None of this information can be obtained by 
the MKN method. 
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The differences in various quantities such as 
the heterogeneity index determined by these 
methods, are within 10% of their relative 
values provided (1- Xa)Re is less than 0.02. 
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APPENDIX I 

Derivation of Eq 1 
The complex moduli of model I and model 

II (E1* and respectively) can be expressed 
using the moduli of the amorphous and crys­
talline regions (Ea * and Ec *) as follows: 

E,* = {¢,1[Ea * A,+Ec *(1-A,)] 

+(1-</J,)IEc*}-1 (A-1.1) 

(A-1.2) 

The physical meanings of A and ¢ give the 
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relations of eq A-1.3 and A-I.4, 

A,¢,=Xa 

An</Jn= Xa 

(A-1.3) 

(A-I.4) 

Since the complex moduli of model I and II are 
the same, 

(A-1.5) 

Putting ¢ 1 of eq A-1.3 into eq A-1.1 and ¢n of 
eq A-1.4 into eq A-1.2, we obtain £ 1 *and as 
functions of A1 and An, respectively. The com­
bination of £ 1* and and eq A-1.5 leads to 

{ (1- An)+ Aui[(Ec *I Ea *)(xal Au) 

+ (1- xal An)]} {xaf[(Ea *I Ec *)A, 

(A-1.6) 

By solving eq A-1.6 for A1, we get eq 1 as 

A,= [(1 + Xa)Au- x/]1 AnXa (1) 

Equation 1 is equivalent to that derived by 
Kaplan and Tschoegl9 for the dynamic moduli 
of model I and model II (eq A-8 in ref 9). 

APPENDIX II 

Derivation of Eq 25 
Williams and Ferry11 derived the equation 

correlating the relaxation spectrum H(ln r) 
with the dynamic modulus E' when m 
(=dIn H(ln r)/d ln r) is less than 1. A semi­
crystalline polymer solid satisfies this con­
dition and thus the eq A-II.l derived by them 
can be applied to this polymer. 

H(ln r)=AE'[dlnE'Idln r I wr=ll (A-II.l) 

where A= sin (mnl2)1(mnl2) and w is the 
measuring frequency. Smith12 derived the re­
lation between H(ln r) and the loss modulus 
E" as follows 

E'' =(ni2)H(ln r) sec (mnl2) I wr=l (A-II.2) 

By putting eq A-II.2 into eq A-II.l, we obtain 

dInE' ld ln r = (21n)E" I[AE' sec (mnl2)] 

=mtanb (A-II.3) 
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When isochronal measurement of viscoelas­
ticity is carried out, it is more convenient to 
transform eq A-II.3 into eq A-11.4 going on the 
assumption that the reduced variable method 
for measuring frequency and temperature 
holds. 

dlnE'/dlnw0 aT=mtanc5 (A-11.4) 

w0 is the isochronal measuring frequency and 
an the shift factor from a reference tempera­
ture T0 to a measuring temperature T. 
Integration of eq A-11.4 gives 

llncoo+lnaT 

lnE' =In E0 ' +m tan c5d In w0aT 

nwo 

(A-11.5) 
where E0 ' is E' at T= T0 . 

When eq A-II.5 is applicable to B region, eq 
A-11.6 holds 

(A-11.6) 

where E' b,o is Eb' at T= T0 . We employ T1 as 
T0 . Since Eo' is independent of temperature 
(i.e., E/ =EJ and =ReA1+(1-A1), 

then 

(A-Il. 7) 
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When tan c)b can be approximated as a con­
stant value (tan c5m) in the temperature range of 
T1 and T, eq A-11.7 is transformed as 

In Eb' / Ec =In [ReAl+ (1- A1)] +kIn aT (A-11.8) 

where k is m ·tan c5m/ Ec. k should be satisfied 
by a boundary condition such that when 
T=Th then Eb'/Ec=l-A1. As for the !Y.a ab­
sorption, aT can be approximated by the 
following WLF type equation 

(A-11.9) 

where, cl and c2 are constants independent of 
temperature. When T1 is Tg, then eq A-11.9 
coincides with WLF equation. 

Substituting eq A-11.9 into eq A-II.8 and 
applying the boundary condition mentioned 
above, eq A-11.10 is derived as 

k=[(T- T1)/(Th- T1)] 

x [( C 1 + Th- T1)/( C1 +T-Tl)] 

X In {[ReA1+(1-A1)]/(1-A1)]} (A-11.10) 

In the WLF equation (i.e., when T1 = Tg) C1 

can be approximated to 51.6 and 
( C 1 + Th- T1)/( C 1 + T- T1) may thus be re­
garded as unity. Therefore, eq A-11.10 reduces 
to eq 25 

In (Eb' /EJ =In [ReAl +(1- A1)] 

- [(T- T1)/(Th- T1)] 

X In {[ReA1+(1-A1)]/(1-A1)} (25) 
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