Double-Stranded Helix of Xanthan in Dilute Solution: Evidence from Light Scattering

Abstract

A sample of xanthan, a bacterial β-1,4-D-glucan with ionic side chains, and its sonicated fragments in 0.1 M aqueous NaCl and cadoxen at 25°C were studied by light scattering. Radii of gyration ‹S21/2 as a function of weight-average molecular weight Mw in these two solvents, combined with the values of about 2 for the ratio Mw (in 0.1 M NaCl)/Mw (in cadoxen), showed that xanthan dissolves as rodlike dimers in 0.1 M aqueous NaCl and as single flexible chains in cadoxen. The contour length per main chain glucose residue of the xanthan dimer was found to be 0.47±0.01 nm, which agreed with the pitch (per glucose residue) of the 51 double-stranded helix proposed for the crystalline structure of xanthan. Thus, it was concluded that the xanthan dimer in 0.1 M aqueous NaCl has the 51 double-stranded helical structure.

References

  1. 1

    P. E. Jansson, L. Kenne, and B. Lindberg, Carbohydr. Res., 45, 275 (1975).

  2. 2

    L. D. Melton, L. Mindt, D. A. Rees, and G. R. Sandersson, Carbohydr. Res., 46, 245 (1976).

  3. 3

    E. R. Morris, D. A. Rees, G. Young, M. D. Walkinshaw, and A. Darke, J. Mol. Biol., 110, 1 (1977).

  4. 4

    D. A. Rees, Pure Appl. Chem., 53, 1 (1981).

  5. 5

    D. A. Brant, Ed., “Solution Properties of Polysaccharides,” ACS Symp. Ser., No. 150, Am. Chem. Soc., Washington, D.C., 1981.

    Google Scholar 

  6. 6

    G. Holzwarth, Biochemistry, 15, 4333 (1976).

  7. 7

    I. C. M. Dea, E. R. Morris, D. A. Rees, E. J. Welsh, H. A. Barnes, and J. Price, Carbohydr. Res., 57, 249 (1977).

  8. 8

    C. S. H. Chen and E. W. Sheppard, J. Macromol. Sci., Chem., A13, 239 (1979).

  9. 9

    C. S. H. Chen and E. W. Sheppard, Polym. Eng. Sci., 20, 512 (1980).

  10. 10

    M. Milas and M. Rinaudo, Carbohydr. Res., 76, 189 (1979); in ref. 5, p 25.

  11. 11

    I. T. Norton, D. M. Goodall, E. R. Morris, and D. A. Rees, J. Chem. Soc., Chem. Commun., 545 (1980).

  12. 12

    S. A. Frangou, E. R. Morris, D. A. Rees, R. K. Richardson, and S. B. Ross-Murphy, J. Polym. Sci., Polym. Lett. Ed., 20, 531 (1982).

  13. 13

    M. Rinaudo and M. Milas, Biopolymers, 17, 2663 (1978).

  14. 14

    G. Holzwarth and E. B. Prestridge, Science, 197, 757 (1977).

  15. 15

    G. Holzwarth, Carbohydr. Res., 66, 173 (1978).

  16. 16

    G. Paradossi and D. A. Brant, Macromolecules, 15, 874 (1982).

  17. 17

    L. Mandelkern and P. J. Flory, J. Chem. Phys., 20, 212 (1952).

  18. 18

    L. Mandelkern, W. R. Krigbaum, H. A. Scheraga, and P. J. Flory, J. Chem. Phys., 20, 1392 (1952).

  19. 19

    D. Henley, Arkiv. Kemi., 18, 327 (1961).

  20. 20

    Gj. Dezelic and J. Vavra, Croat. Chem. Acta, 38, 35 (1966).

  21. 21

    D. N. Rubingh and H. Yu, Macromolecules, 9, 681 (1976).

  22. 22

    Y. Kashiwagi, T. Norisuye, and H. Fujita, Macromolecules, 14, 1220 (1981).

  23. 23

    K. Nagai, Polym. J., 3, 67 (1972).

  24. 24

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, 1971, Chapter V.

    Google Scholar 

  25. 25

    P. Horn, Ann. Phys., 10, 386 (1955).

  26. 26

    G. Weil, C. Hornick, and S. Stoylov, J. Chim. Phys., 64, 12 (1968).

  27. 27

    T. Sato, T. Norisuye, and H. Fujita, Macromolecules, 16, 185 (1983).

  28. 28

    W. Brown, D. Henley, and J. Öhman, Makromol. Chem., 62, 164 (1963).

  29. 29

    R. Moorhouse, M. D. Walkinshaw, and S. Arnott, in “Extracellular Microbial Polysaccharides,” P. A. Sandford and A. I. Laskin Ed., ACS Symp. Ser., No. 45, Am. Chem. Soc., Washington, D.C., 1977, p 90.

    Google Scholar 

  30. 30

    K. Okuyama, S. Arnott, R. Moorhouse, M. D. Walkinshaw, E. D. T. Atkins, and Ch. Wolf-Ullish, in “Fiber Diffraction Methods,” A. D. French and K. H. Gardner Ed., ACS Symp. Ser. No. 141, Am. Chem. Soc., Washington, D.C., 1980, p 411.

    Google Scholar 

  31. 31

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  32. 32

    J. E. Godfrey and H. Eisenberg, Biophys. Chem., 5, 301 (1976).

  33. 33

    T. Yanaki, T. Norisuye, and H. Fujita, Macromolecules, 13, 1462 (1980).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sato, T., Norisuye, T. & Fujita, H. Double-Stranded Helix of Xanthan in Dilute Solution: Evidence from Light Scattering. Polym J 16, 341–350 (1984). https://doi.org/10.1295/polymj.16.341

Download citation

Keywords

  • Polysaccharide
  • β-1,4-Glucan
  • Xanthan
  • Double Helix
  • Light Scattering
  • Radius of Gyration

Further reading

Search