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ABSTRACT: Osmotic pressures for branched polymers in a good solvent were measured over a 
wide range of concentrations. Two types of branched polymers, star-shaped poly(oc-methylstyrene) s 
having three branches and comb-shaped polystyrenes having 15-16 branches, were studied. The 
data were analyzed using the scaling law. The difference in the reduced osmotic pressure between 
star-shaped polymers having three branches and the corresponding linear polymers results from the 
difference in radii of gyration. In branched polymers having many branches, there is a region from 
which the segments of other molecules are excluded as a result of high segment density. 
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The osmotic pressure of linear polymers in good 
solvents shows different concentration dependence 
in three different regions, i.e., dilute (C<C*), semi­
dilute ( C > C*), and concentrated solutions. 1 - 3 

Here C* is the critical concentration at which 
polymer coils begin to overlap with each other and 
is defined by 

3M 
C* 

4n(s2)3i2NA (1) 

where (s2 ) is the mean square radius of gyration of 
the polymer, M, the molecular weight, and NM 
Avogadro's number. 

In dilute solutions, the osmotic pressure is repre­
sented by the virial expansion form 

where A2 and A3 are the second and third virial 
coefficients and are expressed by 

and 

4n3!2 N A 'l'(s 2)3/2 
A2 =------=---­

M2 
(3) 

(4) 

It has been shown4 •5 that the interpenetration 
function 'I' is almost constant and the polymer 
coil behaves as a hard sphere when the molecular 

weight is high and the solvent is good. Moreover, 
y may be constant if the hard sphere model is 
also valid for A3 .1 •6 By substituting eq 1, 3, and 
4 into eq 2, we obtain 

JIM/CRT= 1 + 3n112 lJI(C/C*) 

+9n'l'2y(C/C*)2+ · · · (5) 

In semidilute solutions of linear polymers, the 
concentration dependence of the reduced osmotic 
pressure IIM/CRT obeys the scaling theory of de 
Cloizeaux,6 •7 yielding 

IIM/CRT=Kn(C/C*)1 1< 3v-l) (6) 

where Kn is a numerical constant and v, the ex­
cluded volume exponent in the radius of gyration vs. 
the molecular weight relationship 

(7) 

The apparent second virial coefficient S defined by 
the following equation is often used for a more 
detailed discussion of semidilute solutions1 •8 

RTS=[Il/C-(RT/M")]/C 

From eq 3, 5, and 6, we have 

S/ A2 = 1 + 3n112 'l'y( C/ C*) 

+ · · · for (C<C*) 

(8) 

(9) 
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make the distribution even narrower.U 
S/A2 =K, p-1( C/C*)<2 -3vJI<3v-1J 

for (C>C*) 
Linear polystyrenes of narrow molecular weight 

(10) distribution of Pressure Chemical Co. were used for 

where K, is also a numerical constant. 
Therefore, the reduced osmotic pressure II M/ 

CRT or the reduced apparent second virial coef­
ficient S/A2 is a function of C/C* in both dilute and 
semidilute solutions. In concentrated solutions, 
however, the osmotic pressure may be explained 
by the theory of Flory and Huggins;9 the reduced 
osmotic pressure cannot be expressed as a func­
tion of C/C*.3 

In this work, measurement of the osmotic pres­
sure of branched polymers in a good solvent 
(toluene) was carried out over a wide range of 
polymer concentration. Since the segment density in 
branched polymer coils is higher than in the cor­
responding linear polymers of the same molecular 
weight, the concentration dependences of the os­
motic pressure of branched and linear polymers 
may differ. The conformation of star-shaped poly­
mers in semidilute solutions was discussed by 
Daoud and Cotton,l0 taking into account two 
characreristic lengths and x; is similar to the 

screening length for semidilute solutions of linear 
polymers and x is the radius which is not penetrated 
1zy the branches of other molecules. The osmotic 
pressure of branched polymers in semidilute so­
lutions can be well explained by the concepts pre­
sented by these authors. 

EXPERIMENTAL 

Materials 
The samples used here were two star-shaped poly­

(1)(-methylstyrene)s having three branches (S-22, S-
26) and two comb-shaped polystyrenes (KIII-F89, 
KI-F3) with 15-16 branches. These samples were 
prepared by Fujimoto eta!. in a previous work. 11 •12 

The molecular characteristics of these samples are 
listed in Table I. These two comb-shaped polymers 
may be considered as stars rather than as combs. 
There is no practical difference between the branch­
ing indices calculated for these combs and for stars 
with the same number of branches.U The molecular 
weight distriburion of branches in each sample was 
narrow. Each comb-shaped polymer had a distri­
bution corresponding to the degree of branching; 
the samples, however, were carefully fractionated to 
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comparison. The weight average molecular weights 
in Table I are from a previous paper, 14 and the radii 
of gyration were estimated using the (s2) vs. M 
relationship (s2)= 1.38 x 10- 18 M1.19 determined 
by the least-squares method from literature 
data.14-18 

Toluene, a good solvent, was purified by the same 
procedure described previously.4 

Osmotic Pressure Measurements 
Osmotic pressures were measured at 25°C using a 

high speed membrane osmometer of Hewlett­
Packard Co., Ltd. When the pressure was high, a 
mercury or water manometer was employed to 
balance the pressure. The membrane used was No. 
0-8 of Scheicher & Schull Co., Ltd., for non­
aqueous solutions. 

Light Scattering Measurements 
Light scattering measurements for estimating 

molecular weight and radius of . gyration were 
carried out at 25°C using a FICA-50 automatic 
light scattering photometer. The same experi­
mental procedure reported previously4 was used. 

Light scattering data were analyzed by the 
square-root plot, which utilizes the following 
relations: 

(KC/R8)JCo =(1/Mw)112(1 + A2MwC + · · ·) (11-a) 

(KCfRo)g;o =(1/MY12 

x( 1 2 4n 2 ) 1 +3 (s ) T sin (8/2)+ ... 

(11-b) 

where K is the optical constant for light scattering, 
R8, the Rayleigh ratio at a scattering angle of 8, M w• 

the weight average molecular weight, ..t, the wave 
length in the solution and C, the polymer con­
centration. The subscript 8=0 and C=O indicate 
the limits of the zero scattering angle and zero 
concentration, respectively. 

RESULTS 

The weight average molecular weight Mw, 
radius of gyration (s2) 112 and the second virial co-
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Table I. Sample characteristics 

M. Mw (s2)/cm-2 C*/g- 1cm3 A2(LS) A2(0S) t/Jc 
Sample code fb g' 

X 105 X 105 X 10-11 X 10-2 X 10-4 X 10-4 LS OS 

S-22 9.0 3 1.47 0.633 2.05 2.09 0.25 0.26 0.90 
S-26 36.0 3 6.37 0.281 1.65 0.26 0.77 

KI-F3" 9.6 16 0.85 1.54 2.04 2.27 0.56 0.63 0.39 
KIII-F89" 26.5 15 2.35 0.922 1.35 1.54 0.53 0.65 0.47 

PS-I 0.51 0.055 4.93 6.36 0.30 
PS-2 1.57 0.211 2.04 4.66 0.28 
PS-3 9.01 1.6s 0.517 2.91 0.26 
PS-4 19.3 4.17 0.284 (2.55) (0.26) 

• The number average molecular weights of a backbone (M.0 ) and branch (M.b) are 9.8 x I 04 and 17.6 x I W for Kill-
F89, and 5.7 x 104 and 5.5 x 104 for KI-F3, respectively. 

b J=(Mw-Mno)/Mnb· 
' LS and OS denote the t/1 values calculated from A2(LS) and A2(0S), respectively. 

-1.0 -0.5 20 0.5 
sin(S/2)-2000C 

1.0 

Figure I. A Zimm plot for star-shaped poly(a-methylstyrene) S-26 in toluene at 25°C. 

efficient A2 (LS) for the samples studied are listed 
in Table I. The square-root plot is illustrated in 
Figure 1. The critical concentration C* in Table I 
was calculated from eq 1 using the data of (s2 ) 

and M. or Mw- The values of A2 (OS) were also 
evaluated from the square-root plots of osmotic 
pressure. To facilitate the determination of A2 

(OS) by square-root plots for certain samples 
(S-22, KIII-F89, KI-F3 and PS-3) the number aver­
age molecular weights were assumed to be equal 
to the weight average molecular weights deter­
mined by light scattering. The value of A2 (OS) for 
PS-4 was extrapolated from the experimental 
relationship between A 2 (OS) and M. The A2 (OS) 
values thus estimated and listed in Table I were used 

Polymer J., Vol. 15, No.5, 1983 

to analyze osmotic pressure data. The interpene­
tration function 'I' in Table I was calculated by 
inserting the experimental values of A2 , M and (s2 ) 

into eq 3. 'I' is almost independent of molecular 
weight in each type of sample. 

All osmotic pressure data are summarized in 
Table II. Figure 2 shows double logarithmic plots of 
II/C vs. C for star-shaped poly(o:-methylstyrene)s. 
The data for the corresponding linear polymers1 

with high molecular weights are shown by a broken 
line for comparison. Figure 3 shows double loga­
rithmic plots of Il/C vs. C for comb-shaped poly­
styrenes, along with the data for linear polysty­
renes. From Figures 2 and 3, it can be seen that 
osmotic pressures for branched polymers are inde-
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Table II. Osmotic pressure data for star-shaped 
poly(IX-methylstyrene)s, linear and 

comb-shaped polystyrenes in 

0.0984 
0.1986 
0.2073 
0.2602 
0.3903 
0.490, 

0.5175 

0.6506 
0.7400 
0.8514 
0.9840 

0.5184 
0.8022 
0.9013 
1.0070 
1.1523 
1.312g 
1.5450 

0.2688 
0.2906 
0.4190 
0.4273 
0.5297 
0.6328 
0.6328 
0.683 
0.8025 
0.9797 
1.021, 
1.021, 
1.0610 
1.0852 
1.2416 

0.048 
0,078 
0.068 
0.100 
0.193 
0.295 

0.18, 
0.362 
0.448 
0.603 
0.86g 

0.178 
0.504 
0.694 
0.864 
1.5lo 
1.694 
2.132 

0.129 
0.139 
0.2\ 
0.23g 
0.350 
0.538 
0.568 
0.594 
0.794 
0.980 
1.04g 
1.10, 
1.337 
1.338 
1.515 

toluene at 25°C 

-S-22-
0.591 8 
0.7325 
0.7577 
0.998, 
1.0183 
1.3200 

0.446 
0.723 
0.64, 
1.288 
l.lOo 
2.455 

-S-26-
1.2039 1.437 
1.409, 2.057 
1.6064 2. 797 
1.8033 3.672 
2.010, 4.836 

-KIII-F89-
1.781, 
2.2007 
2.5070 
2.7067 
2.9110 
3.381 
4.568 

2.853 
5.810 
7.895 

9.87g 
11.877 
16.516 
37.26 

-KI-F3-
1.3450 
1.4354 
1.4700 
1.6888 
1.8883 
2.0895 
2.1850 
2.3847 
2.614 
2.933 
3.102 
3.562 
3.809 
4.575 
4.787 

1.910 
2.182 
2.734 
3.293 
4.324 
5.537 
4.70g 
7.662 

11.27 
13.35 
15.14 
25.15 
22.92 
35.51 
60.03 

1.484g 
1.8358 
2.8696 
5.434, 

2.1323 
2.3846 
2.587g 
2.9284 

5.575 
6.559 
7.407 
8.361 
9.666 

11.013 
11.983 

5.183 
5.979 
6.427 
6.884 
7.354 
8.626 
8.769 

10.015 
10.447 
10.881 
12.112 
13.103 
13.188 
14.504 

2.392 
4.154 

10.11 
52.13 

5.37, 
6.825 

8.048 
11.14 

56.14 
84.56 

118.5g 
152.34 
215.17 
296.8 
368.40 

51.16 
74.13 

130.2, 
104.64 
123.03 
221.95 
184.14 
257.9g 
309.75 
330.02 
426.5g 
522.42 
516.84 
658.lg 

pendent of molecular weight and agree with those 
for the corresponding linear polymers at high 
polymer concentrations. 

The apparent second virial coefficients S of two 
types of branched polymers and linear polystyrenes 
are plotted against polymer concentration in 
Figures 4 and 5. 
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0.0826 
0.2135 
0.338g 
0.5893 
0.843, 

0.1718 
0.2578 
0.3130 
0.409, 
0.4825 

0.579g 
0.6693 

0.2377 
0.3233 
0.436, 
0.5132 
0.6338 
0.739g 

0.2505 
0.358g 
0.4207 
0.5744 
0.7640 

Table II. (continued) 
poly(IX-methylstyrene)s, linear and 

comb-shaped polystyrenes in 
toluene at 25oC 

0.432 
1.138 
1.878 
3.530 
5.446 

0.25g 
0.44, 
0.635 
0.814 
1.047 
1.293 
1.633 

0.087 
0.177 
0.277 
0.424 
0.640 
0.843 

0.095 
0.207 
0.268 
0.454 
0.810 

-PS-1-
1.1515 8.14, 
1.3284 9.870 
2.3656 22.82 
3.3233 39.14 
4.1380 60.29 

-PS-2-
0.8032 
0.9667 
1.2327 
1.5337 
1.9703 
2.6688 
3.0582 

2.096 
2.794 
2.885 
6.012 
9.33g 

16.57 
21.83 

-PS-3-
0.8724 1.178 
1.1330 1.926 
1.244 2.40, 
1.612 4.223 
2.250 8.708 
2.575 11.84 

-PS-4-
0.951 5 

1.296g 
1.7273 
2.259 
2.993 

1.18g 
2.45, 
4.62g 
8.720 

16.19 

DISCUSSION 

5.6796 
8.819g 

10.981 5 

12.8897 

4.6712 
6.1667 
7.9145 

10.8954 
13.7513 

4.442 
6.065 
7.596 
8.584 

11.158 
13.878 

3.800 
3.975 
4.766 
7.643 

105.8 
246.4 
400.8 
585.0 

51.75 
95.15 

167.7 
345.6 
630.4 

40.33 
84.60 

146.6 
198.8 
368.2 
690.1 

27.20 
30.29 
48.99 

147.8 

As evident from Table I, the interpenetration 
function tp depends on the degree of branching but 
appears to be independent of the chain length of 
branches provided the molecular weight is high. 
Thus, it may be expected that the reduced osmotic 
pressure IIM/CRT of each group of branched 
polymer m dilute solutions can be expressed 
as a function of C/C*. 

In semidilute solutions (C> C*), linear polymer 
coils in a good solvent overlap with each other to 
form a uniform network structure. Inside this net­
work, the blobs behave as independent polymer 
coils of size which depends only on polymer 
concentration according to2 
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Figure 2. Osmotic pressure data of star-shaped poly(IX­
methylstyrene)s in toluene at 25°C. The symbols 0- and 
-0 denote the data for S-22 and S-26, respectively. The 
broken line shows the data for linear poly(1X­
methylstyrene)s.1 

u 

'lb ..... 
X 

1.01-

OJ 

-

1.0 2 -1 10.0 
x1Q C/g-ml 

Figure 3. Osmotic pressure data of comb-shaped 
polystyrenes in toluene at 25°C. The symbols 9 and 
6 denote the data for KIII-F89 and KI-F3, respec­
tively. The symbols e, ._, ,.., and e denote the data 
of linear polystyrenes, PS-1, PS-2, PS-3, and PS-4, re­
spectively. 

cc c- v/(3v -1) {12) 

Since osmotic pressure is proportional to 
IIM/CRToflinear polymers in semidilute solutions 
are proportional to (C/C*)1i<3v-lJ, as expressed by 
eq 6. 

If v in eq 7 for branched polymers is the same as 
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I I 

4 2 6 8 
x10 C/g.mr' 

Figure 4. Apparent second virial coefficients of star­
shaped poly(IX-methylstyrene)s in toluene at 25°C. The 
symbols are the same as in Figure 2. The symbols of 
intercepts at C = 0 denote the second virial coefficients 
determined by light scattering A2 (LS). 

that for linear polymers and for branched poly­
mers has the same concentration dependence as 
eq 12 for linear polymers, IIMjCRT for branched 
polymers is expressed by 

IIM/CRT=Kng'-312<3v-ll( C/C*)l/(3v-lJ (13) 

where Kn is the proportionality constant in eq 6 for 
linear polymers, g', the mean square radius of 
gyration of a branched polymer <s2)b relative to 
that of the linear polymer having the same molec­
ular weight <s2 ) 1 , i.e., g' = <s2)bf<s2\, and C* is 
given by eq 1 with <s2 )b for <s2 ). Equation 13 may 
apply not only to star-shaped polymers but also to 
comb-shaped polymers at high degrees of coil over­
lapping, since osmotic pressures for branched po­
lymers agree with those of the corresponding linear 
polymers at least at high concentrations, irrespec­
tive of molecular weight and degree of branching 
(see Figures 2 and 3), and also since g' depends on 
the degree of branching but appears almost inde­
pendent of molecular weight, as shown in Table I. 

If the degree of coil overlapping is not too high in 
semidilute solutions of highly branched polymers, 
the network structure cannot be as uniform as in 
linear polymer solutions. In the vicinity of a branch 
point, there may be a region of radius rc, from 
which the segments of other molecules are excluded 
due to the high segment density of branched poly­
mers, as was assumed by Daoud and Cotton.10 

Assuming that the osmotic pressure of a branched 
polymer in a semidilute solution is proportional to 
the number of contact points outside rc, we obtain 
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3.0 

__ _. __ 

x10 C/g.ml 

Figure 5. Apparent second virial coefficients of comb-shaped polystyrenes in toluene at 25°C. The 
symbols are the same as in Figure 3. The symbols of the intercepts at C=O denote the second virial 
coefficients determined by light scattering A2 (LS). 

(14) 

where F is the fraction of polymer segments outside 
rc. By taking into account the factor F eq 13 gives 

llM/CRT=Kng'-3/2(3v-l>(C/C*)li<3v-l>p (15) 

and, similarly, 

S/Az =K, p-lg'-3/2(3v-1) (C/C*)<z -3v>J<3v-l>p 

(16) 

Thus, the effect of branches becomes apparent 
through the g' and F factors. 

To calculate F, we consider a star-shaped poly­
mer with f branches each having n segments. In a 
8-solvent, the probability of finding the n-th seg­
ment at a distance r from a branch point is given by 

P.(r)=(3/2n(r2))312 exp ( -3r2/2(r 2 )) (17) 

where (r 2 )=a2n and a is the segment length. We 
assume that the expansion factor rx of a star-shaped 
polymer of fbranches having n segments is given by 
the theory of Candau, Rempp and Benoit,l9 when 
neglected the triple contact term and derived 

(18) 

where g is the unperturbed radius of gyration of the 
branched polymer relative to that of the corre­
sponding linear polymer (g = (s2)b0/(s2) 10). We 
further assume that the expansion factor for (r2 ) 

in a good solvent is also given by eq 18. We then 
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obtain 

(rz) =aznrxz oca2n(nf)lf5g -3/5 (19) 

Subsitution of eq 19 into eq 17 gives an approximate 
distribution of the n-th segment in a branch in a 
good solvent. If we integrate the distribution func­
tion for n over all segments, assuming r 2 <{a2 Nand 
multiply the result by f, we obtain the segment 
density C(r) as a function of the distance r from the 
branch point 

C(r)ocgl/2 p;6a-513,-4/3 (20) 

If the sements of other molecules cannot enter the 
region of radius rc, C(r) is equal to the average 
concentration C of segments in the solution at r = r c· 

Thus, we have 

(21) 

If the number of segments inside r c in a branch is 
denoted by nc, the fraction of segments outside rc, F, 
is 

F=J-ncfN (22) 

Since the ratio ncf N is proportional to 
(rcf(R2) 1i2)1i0·6 where (R2) is the mean square 
end-to-end distance of a branch, F is given by 

F= 1- (rc/(r2)112)1/0.6 = 1-K'(C/C*)-1.25 (23) 

where K' is a numerical constant. Here, it should be 
noted that we can derive the same equation as eq 23 
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Figure 6. Double logarithmic plot of reduced osmotic 
pressure IIM/CRT vs. C/C* for star-shaped polymers. 
The symbols are the same as in Figure 2. The chain line 
denotes the data for linear polymers.' The solid line 
denotes eq 15, assuming v=0.585,' g' =0.85, K' =0, and 
K, = 1.5.1 The dotted curve denotes eq 5 assuming 
t/1=0.26 and y=0.25. 

from the theory of Daoud and Cotton10 for a star­
shaped polymer with long branches, although their 
equation for C(r) is different from eq20. If, more 
generally, v is used in place of 0.6 in eq 23, F is 
written as 

F= 1-K'(C/C*)- 11<3v-!J (24) 

Since F is a function of C/C*, JIM/CRT and S/A2 

for branched polymers should be functions of 
C/C*. As the polymer concentration increases, F 
should approach unity. 

Figures 6 and 7 show the double logarithmic plots 
of IIM/CRT vs. C/C* for star-shaped and comb­
shaped polymers, respectively. It appears that the 
reduced osmotic pressure IIM/CRT for both star­
shaped and comb-shaped polymers can be ex­
pressed as a function of C/C*. The data for the 
corresponding linear polymers1 are also shown for 
comparison. In these figures, the dotted lines show 
the values calculated from eq 5. The calculated 
values on the basis of eq 15 are shown by solid lines, 
with K' in eq. 24 taken as an adjustable parameter. 
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Figure 7. Double logarithmic plots of reduced osmotic 
pressures IIM/CRT vs. C/C* for linear and comb­
shaped polystyrenes. The symbols are the same as in 
Figure 3. The solid line for linear polymers denotes eq 6, 
assuming K,=2.2 and v=0.595 • The solid curve for 
comb-shaped polystyrenes denotes eq 15 assuming 
K,=2.2, v=0.595 , K'=0.95, and g'=0.42. The broken 
line denotes eq 15, assuming that K' = 0 and the other 
parameters are the same as for the solid curve. The 
dotted curves denote eq 5 assuming t/1 = 0.63 and y = 0.25 
for the comb-shaped polymers, and t/J = 0.26 for the 
linear polymers. 

The values of the other parameters used for calcu­
lation are given in the figure captions. The values of 
K, were obtained from the corresponding linear 
polymers, and the values of g' determined 
experimentally. 

In Figures 8 and 9, the experimental values of 
S/A2 for star-shaped and comb-shaped polymers, 
respectively, are plotted against C/C*. The values of 
the parameters v, g', IJ' and K' used for calculation 
are the same as those in Figures 6 and 7. The values 
of K, were taken from the corresponding linear 
polymers. 

Figures 6 and 8 show that the experimental data 
for star-shaped polymers are in good agreement 
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Figure 8. Plots of S/A2 against C/C*. The symbols are 
the same as in Figure 2. The solid curve denotes eq 16 
assuming K,=0.26, obtained for the corresponding 
linear polymers.1 The chain line denotes the data for 
linear polymers. 1 The dotted line denotes eq 9. The 
parameter values used are the same as in Figure 6. 

with the lines calculated with K' = 0, i.e., F= I. This 
indicates that, in solutions of star-shaped polymers 
having three branches, there is no region from 
which the segments of other molecules are excluded. 
The difference in reduced osmotic pressures of the 
star-shaped and corresponding linear polymers 

only from the g' factor, that is, the differ­
ence in the radii of gyration. 

On the other hand, the experimental data for 
comb-shaped polymers agree with the values calcu­
lated with K' = 0.95. In both Figures 7 and 9, the 
values computed from eq 15 with F= 1 agree with 
experimental data only at large values of C/C* 
( > 8). This implies that a polymer with many 
branches has a region into which the other mole­
cules cannot penetrate and that this region dis­
appears as coils increasingly overalp. The reason 
why K' =0 is valid for star-shaped polymers with 
f= 3 but K' = 0.95 for highly branched polymers 
is not clear at present. The assumption that the 
segment distribution in branched polymers is simi­
lar to that in linear polymers should be applied 
with considerable reservation to highly branch­
ed polymers. In the vicinity of a branch point 
in a highly branched polymer, the segment den­
sity may be higher than predicted by eq 20. 
Therefore, it may be expected that parameter K' 
varies with the degree of branching. 

As can be seen from Table I, the values of P for 
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Figure 9. Plots of S/A 2 against C/C* for comb-shaped 
and linear polystyrenes. The symbols are the same as in 
Figure 3. The solid curves for comb-shaped polymers 
and for linear polystyrenes denote the calculated values 
ofeq 16 and 10, respectively. The value of K, is assumed 
to be 0.37 for both solid lines. The values of the other 
parameters used are the same as in Figure 6. The broken 
curve denotes eq 16, assuming K' = 0. The values of the 
other parameters are the same as in Figure 7. The dotted 
line denotes eq 9. The parameter values used are the 
same as in Figure 7. 

star-shaped polymers are slightly larger than 0.21 

for linear poly(Q(·methylstyrene)s,4 •5 but the values 
of P for comb-shaped polymers are considerably 
larger than those for linear polystyrenes.18•20 •21 This 
fact indicates that branched polymers probably 
behave more like hard spheres than linear polymers. 
This effect may persist even in semidilute solutions 
for highly branched polymers. 
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