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ABSTRACT: This article presents an original algorithm for calculating, using the theory of 
branching processes, the probabilities of branched macromolecule fragments of different con
figurations. This multi purpose algorithm is illustrated for the simplest possible case of equilibrium 
homopolycondensation with due regard for substitution effects of various orders. The number of 
independent parameters of the kinetic model and experimental methods which may be used for 
determinating these parameters are discussed. 

KEY WORDS Branched Polymers Configurational Statistics 
Equilibrium Polycondensation I Network Formation I Branching Processes I 
Gelation I 

The preceding article1 formulated a method for 
describing the configurational statistics of branched 
polymers by specifying the mean numbers c( Uk.q) of 
various fragments (k-ads ( Uk.q)) of molecules.* 
These numbers can be calculated using the theory of 
random branching processes introduced by Gordon 
in his pioneering paper.2 This theory has been 
found 3 - 7 quite applicable to random copolycon
densation (both equilibrium and nonequilibrium) 
and to equilibrium copolycondensation of any 
monomer mixture involving substitution effects 
(SE) of the first order, or first-shell substitution 
effects (FSSE 4 ). In the following is proved that this 
theory is applicable for equilibrium polycondensa
tion with SE of the second order (SSSE 8). There 
are grounds to believe that in this way a discription 
can be made of the products of equilibrium poly
condensation with SE of an arbitrary order be
cause in this case, the probability of any molecule 
is independent of the order in which its links 
(bonds) are formed. Thus, it may be considered 
that these links are obtained by monomer attach
ment in an order associated with some random 
branching process. 9 For nonequilibrium polycon-

densation, a branching process does not, general
ly speaking, agree with an FSSE modeJ1° but in 
many cases it can be used as a good approximation. 

The proper choice of branching process con
venient for calculating the statistical characteristics 
of a polymer can usually be made in several ways. 
For instance, its individuals (particles which give 
birth to other such particles) may be associated with 
monomer units and functional groups or with in
tramolecular links. The final results of the calcu
lation do not depend on the choice of process as was 
shown for random polycondensation and for the 
FSSE model. 3 •5 •6 Individuals of branching process 

a b c d 

Figure 1. Ways to choose correspondence between in
dividuals of a branching process and elements of a 
rooted ordered tree associated with a molecule. 

* The notation used in the preceding article will be preserved and the formulae and figures in it will be labeled with 
a prime. 
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can also be classified into types by coloring. Thus in 
Figure Ia all the individuals are the same. In 
Figures 1 b and 1c the individuals have colors de
noted as 0, 1, 2, and 3. Similarly, in Figure 1d the 
colored individuals are links. An additional division 
of individuals into types is in some cases necessary 
to provide more detailed information on the con

statistics of macromolecules. 

PROBABILITIES OF DIRECTED 
SEQUENCES 

For calculating the number of various molecule 
fragments the probabilities P{ Uk.q}r of directed k
ads1 are necessary (eq 10' of ref 1). Let us show how 
P{ Uk.q}r can be found using the theory of random 
branching processes. An ordered tree may be re
garded as a family tree defined by the family 
history. 11 The probability of an ordered tree is 
equals to the product of probabilities of giving birth 
to a certain litter by each of the individuals. If there 
are different types of individuals, that product 
should be multiplied by the probability of the initial 
individual being of a specified type. Thus for any 
branching process with two types of individuals 
represented as the black and white vertices, the 
probability of the tree in Figure 2', can be repre
sented as where p0 is the probability that a 
black individual is in the zeroth generation, p 1 , the 
probability that a black root will give birth to three 
black individuals, and p 2 the probability of a black 
individual of the first generation having two white 
children. Finally, p3 is the probability that a white 
individual of the second generation will have no 
descendants. To determine P{ Uk.q}r, it is necessary 
to add up the probabilities of all the trees starting 
with the k-ad { Uk.q}r.lt is easy to see that P{ Uk.q}r is 
the product of the above form over all elements of the 
the k-ad { uk.q}r. 

y + 

i 

Figure 2. Scheme of a reaction of monomer attach
ment to a monomer unit of the i-th kind linked with 
(i- l) units of the first kind and a unit of the U + I )-th 
kind; a by-product z is formed. 
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FIRST-SHELL SUBSTITUTION EFFECT 
FOR DISCRIBING THE F-FUNCTIONAL 

HOMOPOL YCONDENSA TION 

In this paper all general ideas are illustrated for 
the /-functional homopolycondensation of the 
monomer SAf. The homopolymer which then 
forms can be regarded as a copolymer in which 
the monomer unit of the i-th (i = 0, 1, · · ·,f) type 
coincides with the homopolymer unit S(i) of the i-th 
kind (or with the unit in which i off functional 
groups have reacted). Any molecule is characterized 
by a vector I and a matrix B, I; being the number of 
units S(i), and b;j=bii is the number of links 
between units S(i) and S(j) in it. Such links are 
referred to as links of kind (ij). Isomers enumerated 
in an arbitrary way by the subscript q are molecules 
with the same values of I and B. The share B; q) 
of units taken by the q-th isomer of the (/,B)-mer 
determines the function B; q) of the molecular 
configurational distribution (MCD) and the sum 
f wU. B; q) over all q's specifies the function B) 
of the size-composition-functionality-distribution 
(SCFD) because in equilibrium, bonds of various 
kinds (ij) in the presence of SE should be regarded 
as internal functional groups of various types. 

Let us illustrate a probabilistic measure on di
rected sequences with an example6 of a branching 
process which describes equilibrium homopolycon
densation in an FSSE model. Its individuals are 
divided into two classes. An individual of the i-th 
type of the first class ( i = 0, 1, · · ·, f) is associated 
with the monomer unit of the i-th kind (in Figure 1 b 
such an individual is represented as a graph vertex 
of the i-th color). Individuals of the second class are 
all identical (uncolored) and each is associated with 
a pair of reacted functional groups, or the link 
which is represented in Figure 1 b as a graph edge. 
Probability generating functions (PGF's) ff!0l and 
ff; of the number of children of an individual of the 
first class in the zeroth and in all other generations 
and the PGF $' for the children of individuals of 
the second class, respectively, have the form: 6 

ff;(x)=xi-l, 
f 

ff(s)= I disi 

f 

pf= I jAj 
j= I 

j= I 

(1) 

(2) 
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Here p is the conversion of functional groups, A1, 

the fraction of units of the j-th kind equal to the 
probability that the branching process starts with an 
individual of the j-th type and d1 is equal to the 
fraction of reacted groups of units of the j-th kind 
among all reacted groups. From eq 1, it fol
lows that an individual of the i-th type gives rise, 
with a probability of I, to exactly i children of the 
second class if the individual is of the zeroth 
generation and in all other generations, it gives 
birth, with the same probability, to (i- I) such 
children. Consequently, its associated multiplier in 
the above product (which is equal to the probability 
of the ordered sequence) is unity. An individual 
from the second class gives birth to exactly one child 
of the first class which is found to be of the j-th type 
with a probability of d1. Consequently, in this case, 
it is associated with the multiplier d1. Since the 
probability that an individual of the i-th type will 
appear in the zeroth generation is A;, and since the 
multiplier d1 occurs as many times as there are non
root units SU) in the k-ad, the general algorithm 
leads to the probability 

of the branching process which we describe are 
T-trees1 since the individuals associated with unre
acted groups are absent. Consequently, the numbers 
of D-trees in the formulae of the preceding paper1 

should be replaced by corresponding values of T 
trees. As a result, we have for monads the obvious 
expression c( Ul.i) = P{ =A; and the number of 
dyads and triads of Figure 1 ' is summarized in the 
Table I. 

Applying eq 3 and 6' to sequences that are 
(1, B)-mers and summing up all equivalence classes 
with the same degree of vertices i and all (/,B)
mers with the same values of the vector /leads to 
the fraction fw(/) of units in a molecule obtained 
by Lubyl 2 as 

f'w({)= If'w(l,B;q)=l'I(;)({)pffl(dYJ!il; (4) 
B.q 

Here Tul(l) is the number of various ordered T
trees with 11 vertices of degree j ( 1 and a root 
of the degree i. Tul(l) is equal to, 12 ·13 

(1-2)! . 
1(m= 11 

I 11! lz! ... If! I 

P{U } =A.fl(d)ki-ou k,q r 1 J 
(3) In the particular case of ideal homopolycon-

of the k-ad { uk.q}r which has kj units ofthej-th kind 
U = 1, · · ·,f) and a root of the i-th kind. Here [>iJ is 
the Kronecker delta. Bearing in mind the relation 
( eq 2) between A1 and d1, we can see that, as noted 
in the preceding paper,1 the product i·P{Uk.q}, 
of the probability (eq 3) of the k-ad by the degree 
i of its "root is the same for all { Uk,q}, associated 
with a certain sequence ( Uk.q). Furthermore, in the 
FSSE model, the product is the same for all k-ads 
{ Uk,q}, having the same value of the vector k = 

{k1,k2, .. ·, kf}. 
The number of undirected sequences ( Uk. q) is 

obtained through eq 3 and 10'. Family trees 

q 

0 
I 
2 
3 
4 
5 

Table I. Numbers of various dyads ( V2 ) and 
triads ( U3 ,q) shown in Figure I, ref I 

c(V2,q) q c(V3,q) q c( u3,q) 

3pdif2 0 3pdfd2/2 6 
3pd,d2 I 7 
3pd,d3 2 3pdfd3 8 

3 3pd,d2d3 9 3pd2dV2 
3pd2d3 4 10 

5 6pd,d2d3 II 
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densation 

A;= C}i(l-p)f-i, 

d;= 

and the number c( Uk, q) of sequences ( Uk, q) with k' 
external edges obtained through eq 3 and 10' has 
a more compact form if T-trees (whose probability 
is computed by eq 3) are replaced by D-trees 
using eq 12' and 7'. 

kc( Uk,q) = D(k, q)p"(l-p)m, 
(5) 

n=k-1 +k', m=(f-2)k+2-k'. 

If the sequence ( Uk,q) is a k-mer, or includes no 
connecting edges (k' = 0), then summing up eq 5 
all k-mers leads to the well-known expression3 for 
the molecular weight distribution (MWD) 

f'w(k) = D(k)pk-1(1- p)(f-Z)k+z (6) 

where D(k) is the total number of various ordered 
D-trees with k nodes of degree j: The generating 
function (GF) of these numbers is easily obtained 
by the graph theory3 ·14 

I D(k)sk=g(s)=s(l +flY, 
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Note that individuals of the first and second classes 
of the above branching process consistently alter
nate. Therefore we can limit ourselves to either 
class. Thus, in considering individuals only of the 
second class leads to the well-known4 branching 
process with one type of individuals (Figure Ia). 
Though in ref 4 they are associated with monomer 
units, all final formulae remain unchanged if a 
branching process is used in which the individuals 
are associated with links. 3 This branching process 
with one type of individuals has the simplest form 
but is less informative on the configurational statis
tics of the molecules than the initial process speci
fied by eq I. Thus, instead of the GF of the dis
tribution fw(l) of eq 4, this branching process 
leads only to the GF of the MWD (eq 6). If we 
limit ourselves to individuals of the first class, then 
the details of the configurational statistics of poly
mers with the aid of the resultant process do not 
different from that determined by the initial branch
ing process(!). The PGF's of one individual of the 
i-th type in the zeroth and all other generations 
F; have the form6 

SECOND-SHELL SUBSTITUTION 
EFFECT 

Let us now proceed to the design of a branching 
process in the SSSE model. A similar mathematical 
description has been suggested earlier8•9 but no 
rigorous proof of its applicability has been avail
able. Reference 9 has established the relation of 
parameters introduced formally in ref 8 with 
equilibrium constants of elementary reactions that 
are the thermodynamic parameters of the system. 

Formulae of the branching process will be de
rived in the same manner as in the case of FSSE in 
ref 6. Let us first find the bond energy D.F*(l, B; q) of 
an arbitrary molecule, which is equal to the differ
ence in the energy of the (/, B; q)-isomer and that 
of l monomers. The change in the standard free en
ergy D.F(l, B; q) of formation of that isomer from 
monomers is different from D.F*(l, B; q) by the 
value TD.S(l, B; q) where Tis the absolute tempera
ture and D.S, the change in the combinatorial en
tropy15 resulting from that reaction. The quanti
ties D.F(l, B; q) dictate the equilibrium concentra-
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tions c(/, B; q) of molecules. To determine SCFD 
fw(l, B), c(l, B; q) should be added up for all 
isomers q having the same value of D.F* and differ
ing in the value of D.S. Changes in the combinatorial 
enetropy depend only on the topology of the re
sultant molecule and can be found as in the 
case of ideal copolycondensation. 7 This permits 
reducing the PGF of SCFD to a standard form in 
the branching process theory. 

In this model, a change in the energy D.F*(f, B; q) 
is the sum of partial energies F't) of all its bonds of 
various (ij) kinds whose numbers in the molecule are 
equal to biJ' Since their linear combination 

f 

ui = I bij(l + b;) (8) 
j= 1 

determines the numbers l; of units of the i-th kind in 
the molecule, another equivalent representation is 
possible in which the energy of the molecule is 
associated with its monomer units as well as its 
bonds. Associating each unit of the i-th kind with an 
energy F; (i>O) and monomer, with F0 =0, the 
bounds are associated with energies FiJ < F't}; and 

f 

LJF*(f, B; q) = I bijF 0 = I l;F; + I bijFij (9) 
j=l 

The number of independent thermodynamic 
parameters F't), i <£;.j, of the model is obviously equal 
to the number f'(f+ 1)/2 of various kinds of links 
(ij). Consequently, in the second representation, f 
arbitrary relations should be imposed on the ther
modynamic parameters F; and FiJ whose number is 
equal to f(f+ 3)/2. 

To establish eq 9 in strict terms, let us make 
use of the basic property of equilibrium polycon
densation reactions3 whereby the energy of forma
tion of any molecule does not depend on the way 
in which it forms and is equal to the sum of en
ergy increments at each stage. Let this way of 
formation of the q-th isomer of the(/, B)-mer (which 
is unambiguously determined by the sequence of 
formation of links in it) be a sequence of monomer 
attachments dictated by representation of that iso
mer as a family tree in Figure I. Thus, one can 
enumerate the links in that tree rightwards for all 
generations starting with the zeroth and assume that 
they form in this sequence. At each stage the 
monomer attaches to the unit S(i) of some i-th kind 
whose "children" are all of the first kind and the 
kind of its "father" is j + I, 0 <£;.j <£;.f- I, in Figure 2. 
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If the unit S(i) is in the zeroth generation, then it 
has no "father" and automatically )=0. Change in 
the energy !J.F,U) as a result of that attachment is 
expressed as an equilibrium constant k,U) of that 
elementary reaction which, with i>O, can be repre
sented as 

. <P(i + 1) ifJ(i, j) 
kU) =-- k0(0) 

' $(i) ifJ(i -1,j) , 
1 ::::;i::::;f-1, 

O::::;j::::;f-1, 
(10) 

using the definition of <P(i), ifJ(i,j) =cPU, i)9 and 
some other expressions of ref 9. Consequently, 
energy change !J.F,U) = - k Tin kiU) as a result of 
one stage can be represented as 

LJF,UJ=Fi+ 1-F,+F1 -F0 +Fi+J.j+ 1-Fi.j+l 

+F,+1.1• 1::::;i::::;f-1, O::::;j::::;f-1, 

LJF 0(0) = - kTln k0(0), (11) 

F,= -kTln$(i), Fij= -kTln(k0(0)cP(i-1,j-1)), 

$(0)= $(1)= cP(i, 0)= 1 (12) 

where k is the Boltzmann constant. Equation 11 
can be interpreted in a simple way so that the truth 
of eq 9 is proved. This follows at once from the 
stoichiometric scheme of the equilibrium reaction in 
Figure 2, which involves units and bonds of dif
ferent kinds: 

S(i)+S(O)+(i,j+1) k;U) 

S(i+ 1)+S(1)+(i+ 1,j+ 1)+(i + 1, 1)+z 

In addition to the above way of specifying 
f(f+ 1)/2 independent thermodynamic parameters 
F(j, there are other equivalent sets of such param
eters. One is characterized9 by equilibrium con
stants k,U) for 0::::; i ::::;j ::::;f- 1, another by param
eters <P(i) (2::::; i ::::;j), cP(i,j) (1 ::::; i ::::;) ::::;f- 1) and 
k0(0), and another by energies F, (1::::; i ::::;f- 1) and 
Fij (1 ::::; i ::::;j ::::;j). It has been noted above that f 
relations can be imposed on the parameters F, and 
Fij. From eq 12, these relations are in this case 
F11 = F21 = · · · = F11 , F1 = 0. Each of these sets of 
independent parameters can be obtained from 
the knowledge of any other. Thus, from eq 8 and 
9 with due regard to the above relations on F,, Fii 
we have 
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The remaining sets of parameters are expressed in 
terms of each other through eq 12 and 10 and 
the definition of &(i) and cP(i,j). 9 

The concentration c(l, B; q) of specific (1, B; q)
isomers is found through the law of mass action 
for the polymolecular reaction of its formation from 
I monomers 

c(/, B; q)z1- 1 

M' 
( 

LJF(/, B; q)) 
exp 

kT 
(13) 

where z and M = A0 are the concentrations (as 
c(l, B; q) is, per monomer unit) of the condensation 
by-product and the monomer, respectively. 'The 
change !J.F in free energy as a result of this reaction 
is dependent on !J.F* of eq 9 and change in the 
combinatorial entropy !J.S 15 •7 

!J.F(l, B; q) = !J.F*(l, B; q)- T!J.S(l, B; q), (1 4) 

!J.S(l, B; q) =kIn ((9" vO))I/9" vU, B; q)) 

where 9" vOl = f! and the order 9" vU, B; q) of the 
automorphism group of the D-tree which represents 
the (/, B; q)-isomer can be expressed in terms of an 
analogous quantity 9" T(l, B; q) for the correspond
ing T-tree 

9" v(l, B; q) = 9" T(/, B; q) IT ((f- i)!)1' (15) 

since each automorphim of the T-tree is associated 
with a set of automorphisms of the D-tree which are 
different in permutations of (f- i) unreacted groups 
in each unit of the i-th kind. From eq 9 and 12-15 
we have 

1 (f! <P(i)A0 )'' c(/, B; q) = IT 
i=l (f-i)! 

x IT (ko(O) cP(i-1,j-1))b'J 1 
i <i,j z 9" T(l, B; q) 

(16) 

Application of eq 7' to T-trees enables summa
tion of eq 16 all q's and finding the GF G(s,X) of 
the SCFD f'w(l, B) 

G(s, X)= Ifw(l, B) IT (sY' IT (x,/'1 

l,B i i:=::;j 

= ( f!<P(i)Aosi )'' 
l,B i i i (i-1)J(f-i)! 

( k (0) )bij 
X IT -0- cP(i -1,j -l)xij 

z 
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where T!i)(/, B) is the number of various ordered T
trees with a root of the i-th kind associated with all 
(1, B)-mers. Changing the order of summation in 
this formula we have the expression 

f 

G(s, X)= I gM, X')/i, 
i=1 

(17) 

of the function G through GF's g; of the number 
TuP, B) that can be obtained using the algorithm of 
ref 14. 

(18) 
Consequently, the GF G is determined by eq 

17 and 18 in terms of the parameters cP(i), qJ(i,j), 
A0 , and k0(0)/z. To reduce G to a form standard 
in the theory of branching processes, let us express 
k0(0)/z in terms of auxiliary variables w;, i=l, · · ·, 
;; using the relations of ref 9. 

k0 (0)/z = wjfL:)o , 

f 

Z:;= I cf=1&(i)qJ(i-1,j-1)(wy- 1 , 

1 

i=1,2, .. ·,f, 

(19) 

Following the replacement 

iiJs', X')= (wY- 1uJs, X) 

with due regard to eq 19, the GF can be repre
sented as 

f 

G(s, 1)= I ),;s;F)0 )(u), 
i=O 

(20) 

A;=CJ.P(i)(wYAo, 

d/i) = cf= 1<P(j)qJ(i -1,j -1)(wy- 1 /I:; (21) 

Here we assume that xiJ = I for all elements of the 
matrix X= 1. Note that, with fixed thermodynamic 
parameters <P(i), qJ(i,j) and k0(0)/z, the value of 
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k0 (0)jz and eq 19 unambiguously determine the 
vector w = { w1, · · ·, w1 } and consequently the values 
of A; and dp) and also the conversion p expressed in 
terms of A; in eq 2. Consequently, the parameters 
A; and d/i) of the branching process implicitly de
pend, through the vector w, on the conversion p 
and on the above thermodynamic parameters. 

Equation 20 has a standard form in the theory 
of branching processes. Equation 20 has the fol
lowing sense. With a probability of A; the branch
ing process, as in the FSSE model, starts with an 
individual of the i-th type associated with a mono
mer unit of the i-th kind (Figure !b). The PCFs 
F f0 ) and F; for the children of one such individual in 
the zeroth and all other generations are straightfor
ward generalizations of the PG F' s ( eq 7) and F l0 ) and 
F; (eq 20) become eq 7 in the absence of SSSE 
when qJ(i,j) = I for all i, j. The dependence of dp) 
on i is thus equivalent to SSS.J; when the repro
ductive behaviour of some individual depends on 
the kind of the unit which is associated with the 
father of the individual. As in the case of ideal 
polycondensation,4 the PGF's of the zeroth and all 
other generations are related as 

f 8Fl0)(s)/ f 8F)0)(1) 
F;(s)= I I 

1 asj 1 asj 

The earlier8 •9 branching processes for the SSSE 
model are different from the above one with respect 
to the correspondence between individuals and 
graph elements. Thus the branching process of ref 8 
always starts. with an individual (associated with a 
unit) of the special type 0 found only in the zeroth 
generation. Individuals of the subsequent genera
tions belong, by definition, to the i-th type if they 
have (i-1) "brothers" (Figure !c). The PGF's F)1) 

for the children of one such individual in the /-th 
generation can be expressed in terms of the pa
rameters of eq 21 in the form 

f 
F)0)(s)= I A.;(sY, 

i=O 

J-1 
- (l) "' . j F; (s)=L... di+ 1(z+1)(s), (22) 

In ref 9 the individuals were links whose i-th type is 
also dictated by the number (i- I) of their "broth
ers" (cf Figures ld and c). The PGF's for the 
children of one such particle have the same form 
(eq 22) as in ref 8. The parameters of such a proc-
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ess introduced in ref 9 are expressed in a simple 
way in terms of)., and d/i) of eq 21: p(0 l(i)=A., 
and p l1 >(j) = dj + 1 (i) while their relation with the 
parameters introduced in ref 8 is given in ref 9. The 
probabilistic measure on the trees and, conse
quently, all final results naturally coincide for all 
three branching processes. 

Selection of Parameters of the Model and Deter
mination of Adequacy 
The probabilistic parameters (eq 21) of the 

above branching process are related in a simple 
way with the experimental numbers of various 
dyads consisting of two units, S(i) and S(j). 
These numbers coincide with the concentrations 
Q, - 1.j _1 of links of the kind (ij) per monomer unit. 
Choosing the unit S (i) as the root of the directed 
dyad {ij} let us find its probability from the 
theory of branching processes 

(23) 

where A., is the probability that the branching proc
ess starts with an individual of the i-th type and 
d/i), the probability that its child is of the j-th type. 
Since there are i ordered T-dyads { ij} the con
centration Q,_ 1,j_ 1 is, according to eq 10', equal 
to the product of the probability formula (eq 23) 
by i that should be halved with i = j when both 
vertices of the dyad belong to the same equivalence 
class. Applying the same reasoning to the directed 
dyad Ui} with a root S(j) yields the formula 

Q,_ 1.j_ 1(1+b;)=iA,d/i)=JA.A(J), (24) 

which, together with normalization conditions or 
with their equivalent stoichiometric relations 

f f 

I dii)=1, iA;= I Qi-1,j-1(1+b,) (25) 
j= 1 j=1 

determines all parameters of the branching process 
A., and 

d/i)=Qi-1,j-1(1 +b;4J1 Qi-1,s-1(1 +b;,) (26) 

in terms of link concentrations Qi,j· 
In an actual determination of concentrations Q,,j, 

for instance by NMR spectroscopy, ratios of these 
concentrations rather than these quantities Q,,j are 
determined. This enables obtaining the values of 
d/i) from eq 26 but the fractions A.,, i = 1, .. ·, 
f, are found from the eq 25 only up to an un-
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Figure 3. A set of low molecular oligomers sufficient 
for determining thermodynamic parameters in an SSSE 
model of equilibrium homopolycondensation of a three
functional monomer. 

specified factor. To find this factor, the fraction A., 
of some monad S(i) should be also measured and 
normalized together with others A.0 + A.1 + · · · + A.1 = 
1 so as to determine that factor and values of all A.,, 

Note that the number of independent 
probabilistic parameters, according to eq 24-
26, is equal to the number f(f+ 1)/2 of possible 
kinds of links (ij) and to the number of the 
above independent thermodynamic parameters 
of eq 9-12. Thus, specifying f(f + 1)/2 quan
tities d;(j), 1 i<j and A.,, I i permits find
ing Ao = 1 - A1 - · · · - A.1 , d;(j) with i > j from the 
second equality (eq 24) and d,(i), from the condi
tions (eq 25) of normalizing the quantities d;(j). 

There is still another way to determine the pa
rameters of our model through measurement of 
relative concentrations of the most low molecular 
weight reaction products such as those of Figure 3 
by chromatographic methods for instance. Once 
the concentrations c, of oligomers numbered as i 
(Figure 3) have been calculated by the above 
theoretical relations, the independent thermody
namic parameters can be expressed through exper
imental values of c,. Thus, with the polyconden
sation of a three-functional monomer to determine 
the parameters k,(j), i j, it is sufficient to measure 
the relative concentrations of the by-product z and 
molecules enumerated as 1-5, 7, and 11 

2 z c2 1 z c3 z c5 
k0(0)=---, k1(0)=---, k2(0)=--, 

9 c1 c1 6 c1 C2 c1 c3 

1 z c4 1 z c7 
k1(1)=---, k2(1)=---, 

6 c1 c3 3 c1 c4 

4 z c11 
k2(2)=---. 

3 c1 c7 
(27) 

Note that six independent constant ki(j) are de
termined through seven ratios of concentrations 
c)cj and z/c1. In the case of a closed system, the 
latter quantity is not independent and can be ex-
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pressed in terms of the others since zjc1 is essential
ly calculated through constants k;U). In addition to 
k;U), there is one more independent parameter for 
an open system, the concentration of the with
drawn by-product, zw=fp/2-z. The probabilistic 
parameters A; and d/i) can be found either in a 
similar way or by calculating through k;U) and z or 
p, using the relations (eq 19 and 21) and the de
pendences of the parameters tP(i) and rl>(i,j) on 
k;U).9 To verify the adequacy of the chosen SSSE 
model for a specific chemical system, it should be 
determined whether the experimental values of 
oligomer concentrations c; satisfy certain theoretical 
relations, such as 

c c c c 

c6 c4 z c3 

Clo cl kW) 1 c3d 
-=3--=--
c6 z k2(0) 3 dc 5 

(28) 

Another way to check the adequacy is to de-
termine the probabilistic parameters of the branch
ing processes, calculate the numbers c( Uk) of vari
ous k-ads or concentrations c(l, B; q) of certain 
isomers, and compare these with experimental data. 
For the theoretical calculation of these quantities, it 
is necessary to find the probabilities P{ Uk,q}r of 
associated directed k-ads. 

Probabilities of Directed k-Ads 
The probabilities P{ Uk,q}r in this model are found 

in the following way. Let i0 denote the kind of unit 
which is the root of the k-ad { Uk,q},. With the 
direction "from the root" links of various kinds also 
become directed links. Transition from a unit of 
the i-th kind to one of the j-th kind is a directed link 
{ij} # {j i}. If the k -ad { U k, q}, has f3 ij such links {ij}, 
then its probability is 

(29) 
i,j 

In addition to the degree i0 of the root, this prob
abiiity depends only on the numbers b;1, k;, k; of 
the undirected links (ij), units S(i), and connecting 
links1 which issue from such units in the k-ad 
{ Uk,q}r because, in compliance with (24) and (29), 

1 
P{uk.q},=-:- n (Qi-l.j-1<1 +bij))biin (iA;)-"' 

lo i 

(30) 
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Thus the probability of the tree of Figure 1 is 

P{ U g} = A3d1 (2)(d1 (3))4 d2(3)(d3(3))2 

Qo, 1 (Qo, z)4 (2Qz, z)2 

3 · 2A2(3A3 ) 6 

The probability of the directed trail {i0 i1 · · · i.}, or 
of a linear sequence of units of the kinds i0 , i1 , · · ·, i. 
(ik# 1 with O<k<n) has, in compliance with eq 
29, the form 

P{ioil · · · i.} = AiAJio)d;,(i1 ) • • -d;Ji._ 1) (31) 

which almost coincides with the probability of the 
realization {i0 , i1 , · · · , i.} of a Markov chain with 
states I, 2, · · ·, f and a transition matrix D with 
elements dp). The difference is in that instead of 
components n; of the fixed probability vector n for 
D, eq 31 includes quantities A; determined by 
the matrix D up to an unspecified factor through an 
equation obtained from eq 24 and 25 and is akin 
to the equation for determining the vector n 

iA;='f.jAiJ(i), n;='f.n1d1(i) 
j j 

To find an uncertain factor, either Ao or p should be 
additionally specified and then either the normaliz
ing condition on A; or the second equality of eq 
2 should be used. 

Numbers of Trails, Gel-Point, and Sol-Fraction 

The numbers c(Uk,q) of the sequences (Uk,q) are 
determined from the probabilities P{ Uk,q}r by eq 
10'. For instance, permutation of branches in the 
tree of Figure 1 leads to six different ordered trees 
and its root is one of two elements of its equiv
alence class; therefore the number of associat
ed isomers is c(U9 )=3P{U9 }. In the case of linear 
sequences, or trails {i0 i1 • • · i.}, the number of as
sociated ordered trees is easy to find. Let us 
choose the extreme unit S(i0) as the root and then 
change, in all possible ways, the position of the 
unique child of each individual S(i0), S(i1), · · ·, 

S(i._ 1) among its connecting edges. For the root we 
have i0 such positions, for the individuals S(ik), 

0 < k < n we have ik- I positions. The last individual 
S(i.) has no children and so all its identical connect
ing edges are traced in a unique way. Consequently, 
the number of different directed T-trails { i0 i1'· · · i.} 
is equal to 

T;0 (iOil · · · i.) = io(i! -I)··· Cin-1 -I) 
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Bearing in mind eq 29 and 10' we find the num
ber of undirected trails 

c(i0 i1 ···in) 

n-1 

= i0 A;0 0 ((ik -l)d;Jik-1))d;)in- d/G"(io ···in) 
k=1 

(32) 
where G"(i0 • · ·in) is equal to 2 for symmetrical and I 
for the remaining trails. Thus, the number of vari
ous triads that can be regarded as trails (ijk) is 
obtained from eq 32 with due regard for eq 26 and 
25 

" j-1 
C(l)k)(J+6;k)= JAj Qi-1,j-1(J+6;)Qj-l,k- 1(1+6jk) 

Equation 31 holds, naturally, also for the FSSE 
where the probabilities dp) are independent of i. 
This formula immediately leads to the number of 
various dyads and triads if the relation of Aj and dj 
in eq 2 is used (see the Table I). The numbers of 
trails in the case of ideal copolycondensation are 
reported in ref 7. 

With the numbers c(i0 • • ·in) of all trails available 
and a certain conformational model of the chain 
assumed, one can calculate various physico
chemical properties of the polymer following the 
lines of ref 16. Note, however, that for a model of 
ideal polycondensation, the number of trails of 
different lengths n was found16 belonging to /-mers 
with a certain l while eq 32 provides less de
tailed information in the sense that only the total 
number of trails can be determined belonging to all 
molecules (with all values of 1=1, 2, ···).Con
sequently, this formula can lead only to a few of the 
characteristics calculated in ref 16 such as ·only 
z-average rather than number-average or weight
average radius of gyration. Equation 32, how
ever, is derived for SSSE and makes possible more 
realistic conformational models where confor
mational probability of the chain depends on the 
kinds (ij) of links. Note that in earlier papers, this 
dependence was neglected. 

A condition for the gel-point is that the de
terminant of the matrix with elements 

oF;(t) . . 

sj 

vanishes. After the gel-point all the above findings 
can be used for calculating the configurational 
statistics of the sol-fraction. For this purpose, 
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modified PGFs17 should be used which are obtain
ed in the following way. First it is necessary to 
find the components u 't < I of the vector u* by 
solving the equations u 't = F;(u*) with functions 
F; determined in eq 20. Then modified values 
of the parameters f.; and d-/i) should be found 
through eq 21 where W; should be replaced 
by W;=W;(u't) 1f(i- 1>. Modified PGFs are obtain
ed from eq 20 by replacing the parameters A; 
and dp) by f.; and Jp) with f.; equal to fractions 
of units of the i-th kind among all units of the 
sol-fraction. The share of units taken by the sol
fraction is equal to 

f 

wsol = I A;FlO>(u*) 
i=O 

REMARKS ON SUBSTITUTION EFFECTS 
OF HIGHER ORDERS 

The results of this paper suggest possible exten
sions of the theory to SE models of higher orders. In 
the case of an SE of the third order, for instance, the 
individuals of the branching process can be charac
terized by a pair of numbers (ij) which denote the 
kinds of units associated with the individual and its 
"father." In a model of the SE of the fourth order, 
the individual type depends also both on the kinds 
of units that represent its "grandfather" and 
"brothers," etc. The probabilistic parameters of the 
branching processes should be expressed as the 
numbers c( Uk, q) of various k-ads of an increasing 
diameter. Note that the number of individual types 
rapidly increases with the SE order; even more so 
does the number of probabilistic parameters of the 
branching process which should be found experi
mentally. 

THE CHOICE OF MODEL USING 
EXPERIMENTAL DATA 

In conclusion, let us formulate the algorithm for 
the choice of a kinetic model for specific equilibrium 
polycondensation systems provided that experimen
tal data are available on the number of sequences 
(Uk,q) with small values of k. In order to find 
whether the system is ideal, it is sufficient to confine 
oneself to an experimental determination of the 
fractions}.; of any two monads; for convenience one 
of these can be a monomer. For random polycon-
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densation system, the following condition should be 
met: 

A;= C}(A.o)1-ilf(I-A.61f)i (33) 

Otherwise the SE should be recognized in the design 
of a kinetic model. Furthermore, to be able to use 
only an FSSE model, all the ratios 

Q;-1.j-10 + .5ij)/Q;-1.k-1(1 + .5;k) = JA/kAk, 

1 :::;j, k :::;J (34) 

of the concentrations Q;_ 1 .i_ 1 of various links 
should be independent of the first subscript i. If one 
of these conditions is not met, similar relations 
between triads should be verified: 

c(ijk)(1 + .5;d/c(ijl)(1 +oil) 
= Qj-1.k-1(1 + (jjk)/Qj-1,1-1(1 + (jjl), 

1 :::;j, k, l :::;J (35) 

where there is obviously no dependence on the first 
subscript i. Feasibility of eq 35 is the criterion 
for applicability of an SSSE model. The further 
sequence of actions in this algorithm is obvious. 

A kindred algorithm for the choice of a kinetic 
model can be used if data on concentrations of 
lower molecular oligomers are available. Thus, 
with polycondensation of a three-functional mono
mer the criteria (eq 33-35) can be replaced, 
for instance, by 

3 
c =-c413(1 -c1i3) 

2 2 1 1 , 

c4=7ci{l-c(;3)3; (36) 

ell c7 C1o 

0 4c3 4c6 ' 
(37) 

and eq 28 where c; are concentrations of mole
cules numbered as i in Figure 3. 

For nonequilibrium polycondensation, the pos
sibility of describing the configurational statistics 
of its products in terms of a branching process 
does not generally follow from the kinetic FSSE 
model. 10 This is especially true of SE models of 
higher orders. There are grounds to believe, how
ever, that as Markov chains of higher order are 
increasingly accurate in describing the distribution 
of units in non-Markov linear copolymers/ 8 so the 
higher the level in the above hierarchical sequence 
of branching processes, the better the approxi-
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mation of SE models by such a process. 
Concentrations of monads, dyads, etc. which de
termine, by eq 2 and 26, the probabilistic param
eters di and d/i) of branching processes eq 7 
and 20 are calculated in this case by solving kinetic 
equations for c( Uk,q). What term of the hierarchical 
sequence should be chosen depends on the accuracy 
of experimental methods for determining the num
ber of sequences or oligomer concentrations. 

The algorithm suggested above for equilibrium 
polycondensation systems makes it also pnssible to 
use the relations- (eq 33-37 and 28) to determine 
which of the branching processes of the hierarchical 
sequence describes the nonequilibrium system with 
an accuracy sufficient for practical purposes. Its 
parameters are calculated by using eq 2 and 26 
where experimental values of monads, dyads, etc. 
are substituted. 

The above mentioned principles were used for 
describing configurational stat1st1cs of urea
formaldehyde resins. The content of different mo
lecule fragments was determined using 13C NMR 
spectra. 19 A part of these data were used for 
determination of probabilistic parameters for the 
branching process. The remaining experimental 
meanings of fragment fractions were compared with 
theoretical ones and the latter were calculated using 
the theory of branching processes. According to this 
comparison, a conclusion on the possibility of the 
use of a given modification of branching process 
was made. It was found that the simplest branching 
process satisfactorily describing the studied samples 
corresponds to the first-shell substitution effect 
model for formaldehyde and third-shell substitu
tion effect for urea. The results of the study of 
configurational statistics of urea-formaldehyde 
resins will be published in a separate paper. 
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