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ABSTRACT: An approach was developed to describe configurational statistics of branched 
polymers, with recognition of the difference in monomer units caused by the difference in the 
number of their reacted functional groups. By this approach, configurational statistics are 
characterized in terms of fractions of arbitrary sequences (k-ads) of k monomer units. Each k-ad is 
a molecule fragment consisting of k interconnected monomer units. Unlike sequences used in the 
case of linear copolymers, the k-ads, introduced in this article, recognize the topology of links be
tween fragment units. Relations are given between k-ad fractions with different values of k that 
can be used for processing NMR spectroscopy data. An algorithm is formulated for calculating 
the probabilities of arbitrary sequences using the theory of branching random processes. 
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Branched macromolecule configuration is deter
mined by the distribution of links between mono
mer units. With the same number of links, vari
ous topological isomers can exist, as in the case of 
the isomerism of alkanes. With typical values for 
the degree of polymerization of macromolecules, 
the number of isomers is so high that a description 
of a polymer sample by specifying the concentration 
of chemically individual compounds, as is done in 
the traditional organic chemistry, makes no sense 
even for homopolymers. 

A similar problem arises in the case of linear 
copolymers because of the isomerism which results 
from differences in unit distributions in thier macro
molecules. In this case, a configurational description 
of a copolymer is obtained by specifying the prob
abilities P(Uk) of various sequences (Uk) of k 
units. 1 - 4 With increasing k the information on the 
configurational structure of copolymers becomes 
increasingly detailed and an exhaustive description 
of such a structure implies designing an algorithm 
for calculating the probabilities of any sequences. 
The objective of this paper is to extend this ap
proach to branched polymers. Many physico-

chemical properties of branched macromolecules 
are determined by their configurational and confor
mational structures. Some of these, the mean mo
lecular dimensions, the particle light scattering fac
tor, the average hydrodynamic Stokes radius, and 
the second virial coefficient depend on sequences of 
all sizes5; others, so-called additive structure-borne 
properties (glass-transition temperature, formation 
enthalpy, combustion enthalpy, density, and en
tropy), depend only on the number of some mol
ecule fragments of small size such as atoms or 
bonds of a certain type and pairs or threes of atoms 
or bonds.6 - 9 Essentially all the literature proposals 
for predicting such measurable quantities are 
schemes for linear combinations of graph
theoretical invariants.10 Additive structure-borne 
properties of oligomer hydrocarbons can be pre
dicted but in the literature there is no reference to 
the properties of a mixture of numerous individual 
compounds. This is a problem typical of polymer 
systems. Therefore an algorithm for calculating the 
probabilities of various sequences would permit 
deriving the above physico-chemical properties. 
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CONFIGURATIONAL STATISTICS 
OF POLYMERS 

The macromolecule topology is characterized by 
its molecular graph which is akin to the structural 
formula in essense. Use of graph theory methods in 
the polymer chemistry has been developed by 
Gordon and co-workers in their papers (see, e.g. ref 
11). It is an important feature of polycondensation 
polymers that the number of branching units is 
usually comparable to the total number of units, 
which is essentially different from polymers of the 
crosslinked rubber type where chain segments be
tween two network branchpoints contain large 
numbers of units. While in showing the vulcanizate 
structure, the graph vertices represent cross-links 
and the edges, internodal chains of random length, 
it is better to also show bifunctional monomer units 
in the molecular graphs of polycondensates. In this 
case, the graph edges stand for the links of fixed 
length and the configurational structure of the 
molecule is completely determined by the graph 
topology. Typical polymers whose configurational 
statistics can be described by the theory to be 
discussed below are phenol-, urea-, and melamine
formaldehyde resins. 

Thus, nodes of the molecular graph (vertices of 
degree higher than I) represent monomer units, the 
edges represent links, and vertices of degree 1 
(endpoints), unreacted functional groups. 1 •11 To 
denote the differences in the chemical nature of 

0 

these fragments, the associated graph elements are 
colored. By a sequence ( Uk) referred to as a k-ad, we 
shall mean a connected subgraph of the molecular 
graph that consists of k nodes with all outgoing 
edges. Some of these, internal edges, connect the 
nodes of the sequence ( Vk) between themselves and 
the endpoints while the remaining connecting edges 
(edges of attachment12), connect these nodes with 
others not included in ( Uk). Figure I shows all 
monads ( V1), dyads ( V2 ) and triads ( V3 ) not con
taining cycles for the case of the homopolyconden
sation of a monomer of the 1,3,5-trimethylol ben
zene type with three identical groups. The idea that 
such sequences can be used for description of the 
topology of branched polymers has been suggested 
by Ziabicki and WalasekY However, no new useful 
results in calculating the configurational statistics of 
macromolecules have been obtained using this idea. 
In surveying the thermodynamic measurable prop
erties of alkanes, Gordon and Kennedy10 con
sidered subgraphs of molecular graphs which, un
like those introduced above, do not contain con
necting edges. Furthermore, they looked into re
lations between numbers of subgraphs of a certain 
fixed graph rather than between numbers of sub
graphs in a random mixture of graphs. 

Unlike linear homopolymers, branched ones can 
be regarded as consisting of units of different kinds. 
For instance, let us refer to a unit as of the i-th kind 
if it is connected with other units through i links. 
Thus the monads of Figure 1 with i external edges 

Figure 1. All different monads (U1 •• ). dyads (U2 •• ). and triads (U3 •• ) without cycles which are fragments 
of molecules resulting from three-functional polycondensation. The arabic numbers denote their ordinal 
numbers q and the Roman numbers, the equivalence classes of connecting edges. Black vertices denote 
monomer units and white vertices, unreacted functional groups. 
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are associated with units of the i-th kind. The 
simplest possible way to describe the topological 
structure of a polymer is to specify fractions ).; of 
units of the i-th kind. Further levels of detailing the 
descriptions are obtained by specifying the fractions 
P( U2 ,q), P( U3.q), · · · of various dyads ( U2 ,q), triads 
( U3 . q), · · · which are enumerated in an arbitrary 
way by the subscript q separately for each set of 
sequences ( Uk, q) with a given k. The theory of 
stationary random processes for linear copolymers 
helps to calculate, with P( Uk,q) known, the prob
abilities of all sequences with downwards of k- I 
units, as is done when describing the tacticity of 
homopolymers. 3 End effects can be neglected and 
formulae are used that were derived for macromol
ecules with an infinite number of units. Analogous 
relations between P(Uk-J,q) and P(Uk,q) for 
branching polymers will be seen unachievable unless 
fractions of (k- I )-ads which do not contain exter
nal edges (such as ( U1,0), ( U2 , 0 ) and ( U3 , 0 ) in Figure 
I) can be neglected. For polycondensation systems, 
this condition does not generally hold. Therefore a 
better technique is to consider the numbers c( Uk,q) 
of sequences ( Uk,q) per monomer unit in the poly
mer. Similar relations can be obtained for these 
which are stoichiometric and hold for any polymer 
sample, no matter in what way it is formed. Like 
analogous relations for copolymers, they can be 
used in processing NMR spectroscopy data3 in the 
cases where proper sequences can be resolved 
spectroscopically. 14·15 

If there is a kinetic scheme of the polyconden
sation process, the values of c( Uk,q) can be rather 
easily found only with small k. However, with 
increasing k, the calculation of c( uk,q) by the 
straightforward kinetic method becomes too cum
bersome. On the other hand, these values determine 
the above polymer properties which depend on its 
configurational structure. In the case of linear co
polymers, c( Uk,q) is calculated with using the theory 
of random processes, the macromolecules being re
presented as realizations of such processes. The 
well-developed tools of the theory of Markov 
chains are used in most cases.4 For basic widely 
used models of chain growth in linear copolymeri
zation and copolycondensation, this description 
has been found theoretically and confirmed exper
imentally.1 In other cases, this theory is generally 
inapplicable; nevertheless, configurational statistics 
of such non-Markov copolymers can be approxi-
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mately described in terms of first-, second-, etc. 
order Markov chains. 16 The order increases with 
introduction of increasingly higher order correla
tions between chain units into the model of chain 
growth. The accuracy of approximate description 
increases as does the number of probabilistic pa
rameters of the random process and the kinetic 
parameters which determine them. An analog of 
Markov chains in the case of branched polymers 
is a random branching process. 17 Their applicabili
ty for describing an ideaJ1 8 (i.e. random) poly
condensation (both equilibrium and nonequilib
rium) and an equilibrium polycondensation with 
the first shell substitution effects19 has been rigor
ously proved. 19 - 22 In other cases, a hierarchical 
sequence of such processes can probably be con
structed to describe increasingly more accurately 
the statistics of branched polycondensation prod
ucts. This requires, however, a certain extension 
of the existing theory which would be analogous 
with that of Markov chains of an order higher 
than the first because the usual branching proc
ess does not recognize correlation between the 
reproductive behaviours of various individuals 
of this process. Such correlations should be recog
nized in calculating the probabilities of various 
configurations of branched macromolecules in the 
framework of all kinetic models allowing for 
short-range correlation effects18 other than the 
above equilibrium polycondensation with first 
shell substitution effects. In the framework of an 
arbitrary model of the substitution effects neglect
ing long-range correlation effects18 the equilibrium 
systems probably can be described using such ex
tended branching processes. For arbitrary poly
condensation systems, the degree of approxima
tion in describing them in terms of the above 
hierarchical sequence of random processes should 
be found anew in each specific case. 

The theory of branching processes permits find
ing probabilities of sequences ( Uk, q) of an arbitrary 
size k using a small number of probabilistic pa
rameters which, in turn, are expressed in terms of 
c( Uk,q) with small k. The latter, as noted above, can 
be measured experimentally or calculated theoreti
cally by the kinetic method. Note that calculation of 
probabilities of arbitrary sequences has not been 
done before. Knowledge of these probabilities en
ables calculating the above macroscopic character
istics of a polymer sample. Since for some kinetic 
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schemes, applicability of the theory of branching 
processes for description of the configurational 
statistics of associated polymers has been proved, 
comparison of theoretical fractions of various k-ads 
for initial values of k with their experimental NMR 
values reveals whether the model is a good repre
sentation of the real polycondensation system. 

TOPOLOGICAL STOICHIOMETRY 

To derive the relations between probabilities of 
various sequences, let us examine a certain (k- I, r)
ad (Uk_ 1_,) containing L(k-1, r) connecting edges. 
If ( Uk _1• ,) does not coincide with the (k- 1 )-mer 
molecule, i.e., L(k-1, r)#O, then it is a component 
(subgraph) of L(k- 1, r) various k-ads. Each of the 
latter contains, in addition to the (k-1) nodes of 
the sequence (Uk_ 1 _,), another node of the molec
ular graph with which (Uk- 1,,) is connected by its 
connecting edge. Consequently, the number 
c( Uk-J,,) of such (k- I)-ads per monomer unit in all 
the molecules is one L(k-1, r)-th fraction of the 
number of various k-ads if each of these is counted 
as many times .as there are subgraphs of the type 
( Uk -J.,) it contains. Thus, 

c( Uk-J.,) = L K(k -1, r; k, q)c(Uk.q)/L(k -1, r) (1) 
q 

Here the coefficient of topological stoichiometry 
K(k-l,r;k,q), or the weak lattice constant,12 de
notes the number of subgraphs ( Uk-J.,) in ( Uk.q), or 
the number of ways in which one of the nodes of 
( Uk. q) can be removed by breaking the proper bond 
so that the remaining (k-1) nodes make a sequence 
( Uk -1.,). Thus by removing either extreme node of 
the triad ( u3.o) (Figure I) we have a dyad ( Uz, I) and 
so K(2,1;3,0)=2. From the triad (U3.1) we have 

dyads (U2 , 1) and (U2 , 3), etc. (see Table I). 
What is important is that the numbers c( Uk,q) of 

sequences with the same k and different q are 
generally mutually dependent in that between them 
some linear relations may exist which are obtained 
by considering the topological stoichiometry of the 
sequences ( Uk,q). Each contains some of the sum
mands on the right-hand side of eq I and is 
derived by generalization (1) in the following way. 
Let L(k- 1, r) connecting edges of the sequence 
( Uk- 1,,) generate A(k -I, r) equivalence classes with 
a.(k-l,r) elements in the Q(-th class. Two edges (or 
vertices) of a graph belong to the same equivalence 
class if they can be mapped one on the other with 
certain automorphism of the graph. 12 In Figure I, 
the equivalence classes of connecting edges of the 
graphs are shown in Roman numbers. A certain 
sequence (Uk- 1,,) is a subgraph of a.(k-1, r) vari
ous k-ads, each obtained when its (k-1) nodes are 
supplemented with another molecular graph node 
connected with ( Uk- 1 ,,) by its connecting edge from 
the equivalence class Q(. Note that such a k-ad ( Uk,q) 
was not obtained by adding a node to a connecting 
edge from a different equivalence class f3 # Q(. 
Consequently, all k-ads ( Uk,q) with nonzero values 
of the coefficient K(k- I, r; k, q) are divided into 
A(k-l,r) nonintersecting classes. The number 
c(Uk- 1,,) is a.(k-l,r) times smaller than the total 
number of k-ads from the Q(-th class (counted with 
due regard to the multiplicity of inclusion of 
(Uk- 1,,) into (Uk,q), as in eq 1) 

c(Uk- 1 ,,)= La K(k -1, r; k, q)c(Uk,q)/a.(k -1, r) (2) 

where the subscript Q( of the summations symbol 
denotes the summation of ( Uk,q) only from the Q(-th 
class. Consequently, each sequence with A(k-1, r) 

Table L Values of K (2, r; 3, q) for the dyads and triads of Figure I 

q 

0 2 3 4 5 6 7 8 9 10 II 

0 0 0 0 0 0 0 0 0 0 0 0 0 
2 I 0 I 0 0 0 0 0 0 0 0 

2 0 0 2 0 0 I 0 0 0 0 0 
3 0 I 0 0 2 0 0 0 0 0 0 
4 0 0 0 I 0 I 0 2 2 0 
5 0 0 0 0 0 0 0 0 0 2 
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equivalence classes of connecting edges is associated 
with A(k- I, r)- I relations between the numbers 
c( Uk,q). A single such relation for the triads of 
Figure I is, 

c( u2,4) = c( u3,3) + c( u3, 7) + 2c( u3,9) 

= (c( U3, 5) + 2c( u3,s) + c( u3. 10))/2 

since only in ( U2 ,4 ) do the connecting edges make 
more than one equivalence class. For 32 tetrads of 
three-functional nodes not containing cycles, we 
have seven such relations because each of the triads 
(U3 , 5), (U3.6), (U3 , 7), (U3 , 8), and (U3, 11 ) contains 
two equivalence classes of connecting edges and 
( U3 , 10) contains three such classes. The total num
ber of various tree-like k-ads with arbitrary num
bers of functionalities and types of nodes can be 
calculated by the graph theory but with small k it 
can be easily found by exhaustive search. 

NMR spectroscopy data lead, rather than to 
numbers c( Uk, q) of various k-ads, to their fractions 
P(Uk,q)=c(Uk,q)/ck where ck is a total number of 
various k-ads per monomer unit. Note that the 
number of (k-1)-mers, or (k-1)-ads without con
necting edges (with subscript 0 in Fig. I) cannot be 
expressed in terms of numbers c( Uk,q). Therefore 
formulae (1) and (2) make it possible to find the 
probabilities P( Uk _1 ) of all the remaining se
quences from the available P(Uk,q) only up to an 
uncertain factor S: 

P(Uk-I,,)=(L(k-1,r))- 1 I K(k-1,r;k,q)P(Uk,q)/S 
q 

=(a,(k -1, r))- 1 I. K(k -1, r; k, q)P(U k,q)/S 
q 

(3) 
To determine the factor S, it is necessary to know 
also the fraction of (k-1)-mers among all (k-1)
ads. Thus if only the gel fraction, i.e. an infinite 
network, is considered, then the contribution of 
finite molecules is zero. In this case the relations (3) 
can be supplemented with normalization conditions 
whereby the sum of P( Uk, q) over q with any k is 
equal to unity and so 

S =I (K(k -1, r; k, q)P(Uk,q)/L(k -1, r)) (4) 
q,r 

From (3), formulae are obtained which are exten
sions of well-known relations earlier derived for 
linear polymers,3 assuming the statistical station
arity of the random process of motion along the 
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chains.2 This stationarity condition is not, however, 
necessary because in deriving the relation of 
P(Uk_ 1) with P(Uk,q), only infinity of macromol
ecules is used in this article. Indeed, in the case of 
linear infinite polymers of different units, we have 
for all sequences L(k, q) = 2. Since from each se
quence (Uk,q) exactly two (k-1)-ads (identical or 
different) can be obtained, the sum of the coef
ficients K(k-1, r; k, q) over r is equal to 2 and 
according to (4), the factor S= L Consequently, 
from (3) and (4) we have the limit (for infinite 
molecules) relations 

1 
P(Uk-l,r)=l I K(k -1, r; k, q)P(Uk,q) 

q 

=(a,(k -1, r))- 1 I. K(k -1, r; k, q)P(Uk,q) 
q 

(5) 

If, furthermore, the sequence ( uk -I,,) is nonsym
metrital, then its two external edges belong to two 
different equivalence classes with ex= 1 and ex= 2. 
Equating the right-hand sides of eq 5 with these 
values of ex, we have exactly one relation between 
the probabilities P( Uk,q). There are as many such 
relations as are nonsymmetrical sequences 
(Uk- 1,,). Thus, in the case of a binary copoly
mer, the dyad (RS) enters two times in the 
triads (RSR) and (SRS) and once in (RSS) and 
(RRS). Then from eq 5 immediately follow the 
well-known relation 

P(RS) = 2P(RSR) + P(RSS) 

= P(RRS) + 2P(SRS) 

as earlier obtained3 by the theory of random 
stationary processes. Equation 5 easily leads to 
all analogous relations without using this theory. 

For linear copolycondensations the limit ex
pression (eq 5) holds since the processes are carried 
out up to nearly complete conversions, p = L The 
bulk of monomer units is included in reasonably 
long macromolecules. This is not the case of 
branched polycondensation, at least until the 
gel-point is reached where the limit expressions 
(eq 4 and 5) should be replaced by more general 
formulae (eq 1 and 2). For instance, in ran
dom /-functional polycondensation, the fraction 
A0 =P(U1, 0)=(1-pY of monomers is not small 
until the gel-point is reached, p<(f-1)-1, so that 
the contribution of monomers to the normalizing 
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sum S (eq 4). In the gel fraction, limit relations 
naturally become accurate. All the above formu
lae are valid for describing the configuration sta
tistics of polymers containing cycles that form 
during the synthesis. In addition to tree-like k
ads (Figure 1), there are cycle-containing sequences. 
In counting the numbers L(k, q) or u.(k, q) for 
such sequences, all edges which connect ( Uk, q) with 
a certain molecular graph node not belonging to 
( Uk,q) should be counted as one connecting edge. 
Since cycles lead to great complications in cal
culating the configurational statistics of the poly
mer by the theory of branching random processes, 
our discussion is confined to tree-like polymers 
without cycles. 

CONFIGURATIONAL STATISTICS OF 
TREE-LIKE POLYMERS 

To employ the theory of random processes in 
describing the configurational statistics of linear 
polymers consisting of different units (copolymers 
and homopolymers with due regard to tacticity), it 
is necessary to choose one of two possible directions 
of motion along the macromolecule. At this point, 
the notion of directed sequences { uk,q} is intro
duced; each of these is obtained from a k-ad ( Uk,q) 
choosing one of its boundary units to serve as the 
initial one. 2 The convenience offered by using this 
notion is that probabilities (fractions) of directed 
sequences, in terms of which P( Uk,q) are express
ed, can be calculated by the theory of random 
processes. A similar procedure will be used for find
ing the probabilites of sequences ( Uk,q) of branch
ed polymers. Directed sequences that are asso
ciated with some undirected sequence are ob
tained from the latter by choosing one of its units to 
serve as the root. To determine the relations be
tween the numbers c(Uk,q) (or the probabilities 

P( Uk,q)) and the probabilities P{ Uk,q} of directed 
sequences and to calculate the latter using the 
theory of branching processes, tree-like graphs 
should be replaced, following Gordon et a/.,23 by 
rooted trees. 

From a Molecular Forest to an Ordered Clone 
A set of macromolecules is associated with a set 

of nonrooted trees referred to as a molecular forest. 
The probability of finding a certain tree is equal to 
the fraction of associated molecules in the polymer 
sample. The chemical composition of the molecule 
is described by a vector I whose component lv is 
equal to the number of units of the v-th type in it 
and a symmetrical matrix B with elements bij=bji 
which are equal to the number of intramolecular 
bonds resulting from reactions of the functional 
groups Ai and A j· With I and B fixed, the molecules 
may differ in their topology and form a set of 
isomers differentiated hereafter by the subscript q. 
The fractionfw(l, B; q) of units in the q-th isomers of 
(1, B)-mers is equal to that of nodes in the molecular 
forest taken by trees representing that isomer. The 
function f'w(l, B; q) is the weighted molecular con
figuration distribution (MCD). The set of rooted 
trees obtained in this way is one clone. From the 
technique for obtaining a clone, it follows that the 
probability of finding a certain rooted tree (its share 
among all trees of the clone) is equal to that of 
choosing the node associated with the root in a 
random choice among all nodes of the molecular 
forest. Consequently, the fraction of rooted trees 
associated with the (I, B; q)-isomer is equal to 
f'w(l, B; q). Let us now associate each rooted tree of 
the clone with all different ordered, or plane rooted 
trees/·11 by permuting its vertices in different ways. 
Different ordered trees obtained from the same 
rooted tree will be regarded, by definition, as equi
probable and their total probability should equal 

1 3 l i i i 
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Figure 2. A tree from a molecular forest (a) and the associated trees from a clone (b) and an ordered 
clone (c). The numbers denote fractions of rooted unordered (b) and ordered (c) trees associated with the 
isomer (a). 
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that of the original unordered rooted tree. A set of 
such ordered trees in Figure 2 will be referred to 
as an ordered clone. The probabilities of different 
trees with I, B and q fixed are naturally interre
lated. Indeed, in some equivalence class ex of 
nodes of a (1, B; q)-isomer, there are a.(l, B; q) ele
ments. The probability of a rooted tree with a 
root from that class (all a.(l, B; q) such trees are 
indistinguishable among themselves and differ 
from trees with roots from another equivalence 
class) is then equal to a.(l, B; q)fw(l, B; q)/1 where 
l is the total number of units of that isomer. 
Let D.(l, B; q) denote the number of various or
dered trees with a root from the cx-th equivalence 
class that are associated with the (/, B; q)-isomer. 
They are all equiprobable and so the probability 
of each is equal to 

P{l, B; q}.= a.(l, B; q)Jw(l, B; q)/ID.(l, B; q) (6) 

The number D.(l, B; q) is related to the total number 
D(l, B; q) of various rooted ordered trees associated 
with the (1, B; q)-isomer and can be found from the 
relation23 

a.(l, B; B; q) 
D.(l, B; q) "' 

L... a p(l, B; q)}p 
p 

a.(l, B; q)f. IT ((fp -l)WP 
p 

Y'(/, B;q) 
(7) 

where J. is the degree of a node (equal to the 
functionality of the associated monomer unit) of the 
cx-th equivalence class and Y'(l, B; q) is the order of 
the automorphism group of the graph of the 
(1, B; q)-isomerY From eq 6 and 7, it follows 
that the product of the probability of an ordered 
tree by the degree of its root is constant for all 
trees associated with the (1, B; q)-isomer 

P{l, B; = f'w(l, B; q) I a p(l, B; q)fp/ID(l, B; q) (8) 
p 

This formula is independent of the polymer for
mation conditions and enables expressing the MCD 
J'w(l, B; q) in terms of D(l, B; q), a,(l, B; q), J. which 
depend only on the topology of the (1, B; q)-isomer, 

and the probability of the ordered tree P{l,B;q}. 
which depends on the polycondensation mechanism 
and kinetics. When the probabilities P{l, B; q}. can 
be calculated using the theory of branching random 
processes, the distributionJ'w(l, B; q) is characterized 
in terms of a small number of probabilistic param
eters of such processes. These parameters are, in 
turn, dependent on the probabilities P{ Uk.q} of 
directed sequences with a low number k of units 
and, through these, with the number c( Uk,q) of 
undirected k-ads. The relationship between P{ Uk,q} 
and c( uk, q) is dictated by the above replacement of 
nonroot trees by ordered trees. 

Number of the k-Ads 
The sequence ( Uk,q) from a molecular forest is 

associated in an ordered clone wih D(k, q) various 
k-ads {Uk,q}r (r=l, 2, · · ·, D(k,q)) obtained from 
( Uk, q) by successive choices, as the roots, of all k 
nodes and permutations of the remaining vertices in 
various ways as shown in Figure 3. Because choice 
of the root specifies the direction ("from the root") 
of all the tree's branches, such k-ads { Uk,q}r are 
directed in a manner similar to the directed se
quences of random process describing linear co
polymers.2 By choosing nodes from a certain cx-th 
equivalence class of nodes in ( Uk, q) to serve as the 
root we have D,(k, q) various { Uk,q},. Expression 7 
also applies to an arbitrary sequence ( Uk,q) if the 
argument (1, B; q), related to the q-th isomer of the 
(1, B)-mer, is replaced by (k, q). Let us consider 
D(k, q) families of ordered trees whose r-th includes 
all trees starting with { uk,q}r (i.e. having { uk,q}r as a 
subgraph). The probability P{ Uk,q}r of the directed 
k-ad { uk, q} r is equal to the total probability of trees 
from the r-th family. Note that the sum of prob
abilities of all families is not equal to unity be
cause, first, the families do not include trees as
sociated with(/, B)-mers with I <k and secondly, a 
tree of an ordered clone can be a member of several 
such families, as many as there are non-coinciding 
( Uk. q), where its node which is a root is included. 
Thus, tree I in Figure 2 is included in three families 
that start with the first three dyads of Figure 3 and 
its root is included in three noncoinciding dyads 

Figure 3. All different directed diads associated with the undirected dyad ( U2 •2 ) of Figure I. 
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( U2 •2 ) (Figure 1). Consequently, the total prob
ability of trees of all families is equal to the total 
concentration of monomer units included into the 
k-ads ( Uk, q) if each of these units is counted as many 
times as there are k-ads containing it. Since the 
number c( Uk.q) of the k-ads ( Uk.q) is one k-th of the 
total number of the units included, taking multi
plicity of their inclusion into consideration, we 
have 

(9) 

In each family, there are the same number of 
ordered trees associated with some (/, B; q)-isomer 
since no matter what root of a certain k-ad is chosen 
and in what order the vertices in it are placed, the 
remaining vertices of the (/, B; q)-isomer can be 
permuted in the same number of ways. Since the 
product of the probability of any such tree by the 
degree of its root is constant, the same holds for the 
probabilities of directed k-ads. Summing in eq 9 
first all D.(k, q) of equal addends P{ Uk.q}, = 

P{ Uk,q}. corresponding to the root from the a-th 
equivalence class of the nodes ( Uk,q) and summing 
all a (with expression 7 considered), eq 8 is gener
alized as, 

kc(Uk,q)= I D.(k, q)P{ U k,q}a . 
= kP{ U k.q}.f.D(k, q)/LO" p(k, q)fp 

p 

=kP{ U k,q}a D.(k, q)/ O".(k, q) (10) 

This expression clearly relates the number c( Uk, q) of 
undirected k-ads and the probabilities P{ Uk, q}. of 
associated directed sequences with roots from any 
a-th equivalence class. The quantities D(k, q), 

D.(k, q), O".(k, q) and are topological characteris
tics of the k-ad ( Uk, q) while the multiplier P{ Uk. q}. 
(the same for all equivalence classes a with the same 
root degree) represents the individuality of the 
configurational structure of the polymer sample. 
The numbers D and D. should be found for each 
such sequence separately. With small k, this is done 
by exhaustive search; with· large k, eq 7 and 
the algorithm for finding the tree automorphism 
group order24 should prove useful. In a particular 
case of nodes of the same degree = f for all a) the 
probabilities of all trees associated with the same 
isomer are identical; thence P{ Uk.q}, = P{ Uk.q} for 
all r and 
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kc(Uk.q)=D(k,q)P{Uk.q} (ll) 

Molecular Graph Representation 
Molecular graphs and their subgraphs ( Uk,q) can 

be shown without endpoints representing unreacted 
functional groups. Such trees are referred to as T
trees, as opposed to D-trees with unreacted groups 
discussed thus far. The degree of a vertex of a T
tree is equal to the number of its links with other 
units, rather than to the functionality of· the unit. 
In particular, the degree of such a vertex may be 
equal to unity and so, in dealing with T-trees, there 
is no need to distinguish endpoints from all other 
vertices (nodes). All the above findings concerning 
D-trees are extendible to T-trees. The set of nodes 
becomes the set of vertices and all the reasoning 
concerning the former applies to the latter. In eq 
6-11 the numbers D and D. of various D-trees 
should be replaced by corresponding numbers T 
and T. of T-trees. These numbers are related in a 
simple way since to obtain all D-trees corresponding 
to a certain T-tree, it is necessary to supplement in 
all ways possible the missing edges which lead to 
endpoints independently for each vertex of the T
tree. These endpoints correspond to unreacted 
groups of various types whose number is unam
biguously restored by coloring of edges and vertices 
of the T-tree. Thus, in the case of /-functional units, 
the root of the i-th kind is associated with C} = 

JC}-=.1Jii ways to place (f-i) unreacted groups 
among its i connecting edges and any other vertex of 
the i-th kind, with C}-=.\ ways (because one of the 
edges connects it to the preceding generation). 
Therefore, if the (1, B; q)-isomer contains I; units of 
the i-th kind and i. denotes the degree of the root 
which belongs to the a-th equivalence class, then 

D.(l,B;q)=T,(l,B;q/ 0(C}-=.\)1' (12) 
l!J. .i 

From eq 6 it follows that the probability of the 
T-tree is D.(l, B; q)/T.(l, B; q) times higher than 
From formula (6) it follows that the probability of 
the T-tree is D.(l, B; q)/T.(l, B; q) times higher than 
that of the corresponding D-tree. Replacement of 
D-trees by T-trees reduces thus to obraining simple 
combinatorial multipliers which in some cases sim
plify expressions for P{ Uk, q}, calculated using the 
theory of branching processes. 
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CONCLUSION 

In summary, the above findings suggest an algo
rithm for describing the configurational statistics of 
branching polymers. Any set of macromolecules 
which make a polymer sample with a certain mo
lecular configurational distribution f w(l, B; q) is as
sociated with an ordered clone with relations (8) of 
probabilities P(l, B; q) of ordered rooted trees in it. 
The numbers c(Uk,q) of various sequences (Uk,q) in 
the molecular forest are related as eq 10 with the 
probabilities of directed sequences P{ Uk,q} in the 
clone through topological characteristics D(k, q), 
a.(k, q), and f. of the k-ad ( Uk,q) which are in
dependent of the conditions under which the sample 
was obtained and may be found by the graph theory 
alone. On the other hand, any branching process 
characterized by probability generation functions 
Fi(s) of the number of children of individuals of 
different types i is also associated with a certain set 
of ordered trees (a statistical forest23) with specific 
values P{l, B; q} of probabilities. A branching pro
cess also specifies the probabilities P{ Uk,q} of arbit
rary directed sequences 

MOLECULAR FOREST: fw(l,B;q), c(Uk,q) 

t t 
ORDERED CLONE: P{l,B;q}, P{Uk,q} 

t t 
STATISTICAL FOREST: P{l,B;q}, P{Uk,q} 

"" 0 BRANCHING PROCESS: FJs) 

Sometimes a branching process may be selected in a 
way such that the probabilities P{l, B; q} of its 
associated statistical forest with all/, B, q are equal 
to the probabilities P{l, B; q} of an ordered clone 
associated with a specified molecular forest. In such 
cases, the configurational statistics of the polymer 
sample represented by this molecular forest can be 
calculated by the theory of random branching pro
cesses. The probabilities P{ Uk,q} with arbitrary k 
and q can then be expressed in a standard way 
through probabilistic parameters of the branching 
process determined in turn by probabilities P{ uk.q} 
with small k. Since from the equalities P{l, B; q} = 

P(l, B; q) for all /, B, q follow the equalities 
P{ uk, q} = P{ uk. q} for all k, q and the quantities 
P{ Uk,q} and c( Uk,q) are clearly interrelated, the 
number c( Uk,q) with arbitrary values of k, q is 
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expressed through the number of k-ads having a low 
number of monomer units. The latter can be mea
sured experimentally by spectroscopic methods or 
calculated theoretically if an appropriate kinetic 
model of polymer formation is available. 

APPLICATION TO NMR DATA 

The theory described above was applied to an 
experimental study of urea-formaldehyde resins. In 
13C NMR spectra, one can measure the squares of 
CH2 , CO, CH3-group signals in various molecule 
fragments. 14•25 The signals of CH2 -groups are 
clearly separated and permit determination not 
only different formaldehyde monads but more com
plicated fragments. However, individual peaks of 
CO-group signals are only partly resolved, 14 and 
this is the reason why only the content of free and 
monosubstituted urea can be determined by re
liable experiments. The numbers of symmetric 
and asymmetric disubstituted, and trisubstituted 
urea were calculated by eq 2 and CH2-group sig
nals. The theory of branching processes26 made it 
possible to find the number c( Uk) of arbitrary k-ads. 
The details of calculation will be published in 
the following paper specially devoted to the 
study of configurational statistics of urea-form
aldehyde resins on the basis of the given theory. 
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