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ABSTRACT: A modified fluid-lattice theory of fluids considering a finite quasi-lattice coordi
nation number and a constant lattice site volume for all r-mers is developed. The theory is tested 
against experimental information on specific volumes, vapor pressures, orthobaric densities and 
heats of vaporization of pure components. Some common polymers and some typical polymer 
solvents have been chosen for testing the theory. The theoretical treatment has been extended to 
mixtures and tested against experimental data on volumes of mixing, heats of mixing, and x 
interaction parameters of polymer solutions. Results have been compared with those obtained with 
a two-parameter new Flory theory and with the three-parameter new Huggins theory. Both for pure 
components and for mixtures, the effect of introducing a non-random quasi-chemical correction is 
discussed. 
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Considerable effort has been made in recent years 
towards the development and refinement of 
statistico-mechanical theories of the liquid state. 
The radial distribution function approach1 has pro
vided with a successful treatment of liquids formed 
by small molecules of nearly spherical force fields. 
For polymeric molecules, however, its applicability 
is limited and exact theoretical treatments remain 
elusive. 

In this work we study the applicability of an 
approximate model to some polymer fluids, to some 
common polymer solvents and to their mixtures. In 
this approximation, a molecule is assumed to be 
divided in r occupying r consecutive lattice 
sites. The unoccupied sites of the quasi-lattice are 
called holes. Each site of the quasi-lattice is assumed 
to have Z neighboring sites. In this work, for 
simplicity, the value of the coordination number of 
the quasi-lattice, Z, has been arbitrarily assumed to 
be equal to ten. Each mer (segment of a molecule or 
a hole) is assumed to have a constant volume, vH. 

In this model, the relative number of holes play 
the role of free Thus, the model does not 
require explicit consideration of the motion of 
segments around their equilibrium lattice positions 

as required by cell theories,2 •3 nor does it require 
explicit assumptions regarding the flexibility of the 
polymer molecules.2 Simha and co-workers,4 and 
more recently Nose,5 have included a separate free 
volume term in their hole theories, thus incorporat
ing a parameter c, similar to that of Prigogine,2 to 
account for the flexibility of the molecule. The 
disadvantage of this approach is the need to con
sider the volume dependence of c if the theory is to 
be applicable to both the liquid and the gaseous 
phases. A more detailed discussion of this subject is 
given elsewhere.6 

In the following sections we discuss the applica
bility of the random and non-random versions of 
the theory to pure components and concentrated 
polymer solutions. 

PURE COMPONENTS 

The Partition Function 
In our previous work,7 •8 we have presented de

tailed equations for the case of non-random distri
bution of molecules and holes in a quasi-lattice of 
constant lattice site volume, vH, and finite coordi
nation number, Z. We have also discussed a par-
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ticular application of the model for calculation of 
volumetric properties of polymeric fluids. 9 In this 
work we retain the basic formalism of our previous 
work7·8 and develop in detail the equations for the 
case of random distribution of molecules and holes. 

For N1 molecules of pure component 1, the 
maximum term of the canonical partition function 
may be written as/·8 •10•11 

(.:)1)N' -E 
Q= a! gcgNR exp RT (1) 

Since we are concerned with fluid regions not 
affected by high fluctuations, the maximum term is 
overwhelmingly larger than any other term in the 
sum over all microstates and may be considered to 
represent the configurational integral of the system. 

The first term of eq 1, ( bd a 1), taking into account 
the flexibility and symmetry of the molecules,11 does 
not contribute to the thermodynamic properties of 
interest to this study. 

For gc, the random combinatorial term, we adopt 
the Guggenheim-Huggins-Miller10 approximation, 

N,! (Nq!)Z/2 
-NI 

NH. N!. r· 
(2) 

where N, is the total number of lattice sites, namely, 

(3) 

with NH and N1 being the number of holes and the 
number of molecules of component I, respectively. 
Similarly, the total number of external contacts 
displayed by the system, ZNq, is given by 

(4) 

where the number of external contacts for each r

mer, Zq1, is assumed related to r1 by 

(5) 

The non-random correction factor, qNR• included 
in eq 1, has been discussed in detail in our previous 
work7·8 and more recently by Nose and Okada.U 

Finally, the lattice energy E of the system appear
ing in eq 1, may be considered to be determined by 
the nearest neighbor interactions only. If N11 de
notes the number of nearest neighbor contact pairs 
of molecular segments interacting with a character
istic energy ew E is given by 

(6) 

Since e11 represents an average value over all pos-
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sible configurations of the system, it has been 
suggested10 to consider it as an interactional free 
energy composed by an "enthalpic" and an "en
tropic" contribution. Thus, 

(7) 

The evaluation of N11 depends on the assumption 
made regarding the randomness or non-randomness 
of pure component segments and holes in the 
system. 

If a random distribution of the free volume (holes 
around segments of a molecule) is assumed, gNR = 1, 
N11 is approximated by its random value N1°1 , 

No _N!Zq!(J 
u---2- 1 (8) 

where 81 is the fraction of the total external contacts 
in the system that corresponds to mer-mer contacts 
in a random array 

(9) 

On the other hand, if a non-random array of 
segments and holes is assumed, according to the 
quasi-chemical approximation, gNR takes the 
form,7.s,Jo 

with 

and 

No 1 No 1 11· HH· 2 · 

gNR= [(N ) ]2 
N u! NHH! d" ! 

Nu =Nt!ru 

N""=N[I"r "" 

(10) 

(II a) 

(llb) 

(11c) 

In eq 11 b, N[I" is approximated in a similar way 
as N1°1 in eq 8, i.e., NfiH=(NHZ/2)8", with 8"= 
1-81. In eq llc, N1°" is given by N1°H = (N1 Zq1)8" = 
(NHZ)81 • The non-random factors T11 , 

r ""' and T1" are related by 

(J!T!H+(}HT HH=(JHTIH+(JIT1l = 1 (12) 

and r!H is given by the quasi-chemical expression, 

2 
(13) 
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with 

(811) G=exp RT (14) 

Equation of State and Second Order Thermodynamic 
Functions 
The basic step to obtain the equation of state and 

related functions is to introduce the volume de
pendence explicitly in the terms of the partition 
function. Since each segment of the molecules and 
also the holes are assumed to have a constant 
volume vH, the total volume of the system is given 
by 

(15) 

NHvH represents the free volume of the system and 
N1 r 1 vH the "hard core" contribution that will be 
given the symbol V* 

(16) 

V*, or more properly, the related specific hard core 
volume v:P' is considered to be a characteristic 
parameter of the pure component. Thus, if a value 
for vH is assumed, eq 16 defines r1 and eq 15 allows 
the calculation of NH. 

The equation of state for the system is now 
obtained by 

P=RT(o In Q) av r.Nt 
(17) 

For simplicity, we introduce the following con
ventional reduced quantities 

- T 
T1=

T,* 1 

where the reducing temperature, T1 *, and the reduc
ing pressure, P1 *, are defined by the relation 

(18) 

Since e11 is assumed to be temperature dependent, 
eq 7, P1 * and T1 * are also temperature dependent. 

With the above nomenclature, the following ex
pressions are obtained for the equation of state. 
Random approximation: 

P 1 Vt Z (vt +q1/r1 -1) 8/ -=ln--+-ln ----;- (19a) 
T! VI -1 2 Vt T! 

Non-random approximation: 
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P1 vt z (v1+qt!r1-1) z =-=ln--+-ln --InrHH 
T! VI -1 2 Vt 2 

(19b) 

Each fluid is fully characterized by its three 
equation of state parameters, namely, v:P' e11 h, and 
e11,. Of considerable value for the calculation of 
these parameters, particularly in the case of poly
mers, are data on second order thermodynamic 
functions such as thermal expansion coefficient 0(1, 
isothermal compressibility coefficient /31 and ther
mal pressure coefficient y1. In the random approxi
mation for pure components the following ex
pressions for these functions are obtained: 

Thermal expansion coefficient, 0(1: 

TO( = T (av) 
1 v aT p 

1/(v1 -1) +(1/r 1 -1)8tf(q tfr 1)- (2v1 813)/(T1 qtfr 1) 

(20) 

Isothermal compressibility coefficient, /31: 

P/3 = _ P (av) 
1 v OP T 

1/(v1 -1) + (1/r 1 -1)81/(qtfr 1)- (2v1 813 )/(T1 qtfr 1) 

(21) 
Thermal pressure coefficient, y 1: 

T Yt= T (oP) =1+(ellb8t2/e11Pt) 
P P aT v 

(22) 

For polymers, the above expressions simplify 
somewhat since r1 -+ oo and 1/r1-+0. In addition, 
if the assumption Z=·lO is made, qtfr1 =0.8 ac
cording to eq 5. Second order thermodynamic func
tions for the non-random case are obtained in a 
similar way from the equation of state 19b. 

Liquid-Vapor Transition 
The chemical potential is obtained from the 

canonical partition function as 

J.1 1 (a In Q) 
- RT= oN1 r.v (23) 

Thus, for the random approach, 
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+{In iJ1 + Zq1 In (iJ1 +q1/r1 -1)} 
2 v1r 11 

(24b) 

For the calculation of the heats of vaporization, it is 
usually assumed that the rotational and vibrational 
modes of motion in the gas and the liquid states are 
the same. Thus, the configurational energy of the 
liquid state may be considered equal to the internal 
energy of vaporization into vacuum with a likely 
small error. The configurational energy of each 
phase is obtained as 

U =RT2 (a In Q) 
oT V,N, 

(25) 

The heat of vaporization !!.Hvap is then obtained 
from the enthalpy H = U + PV, of each phase as 

For the random approach, 

NlZql 
H=PV----81euh 

2 

and for the non-random approach 

NlZql 
H =PV ----81Fueub 

2 

(26) 

(27a) 

(27b) 

The condition for vapor-liquid equilibrium of a 
pure component is 

(28) 

The terms in the first brackets in eq 24a and 24b 
will cancel out in eq 28. Thus, eq 28 may be written 
as 

(28a) 

where the auxiliary function F represents only the 
terms of the second bracket in eq 24a and 24b. 

For the vapor pressure, the model does not 
provide with a direct analytical expression. 
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However, the numerical calculation of the vapor
pressure at a given temperature is straightforward. 
In this work we have used the following com
putational scheme: a value of the vapor pressure is 
assumed and from the equation of state the liquid 
volume is obtained. Using eq 24a or eq 24b, the left
hand side of eq 28a is evaluated and the vapor 
volume is obtained from the right-hand side. With 
this vapor volume, the pressure is evaluated from 
the equation of state and the procedure is repeated 
until the assumed and calculated values of the 

Table I. Comparison of random and non-random 
approach with data on acetone 

Molecular parameters 

Random 255.59 -0.0306 1.1785 
1.1671 Non-random 262.15 -0.0479 

Temperature 

0.0 
15.0 
20.0 
25.0 
30.0 
40.0 
50.0 

35.11 
45.76 
56.13 
66.62 
71.92 

56.2 

Specific volume 

Experimental 
Random 
approach 

Non-random 
approach 

1.2308 1.2502 1.2444 
1.2566 1.2640 1.2604 
1.2649 1.2690 1.2662 
1.2739 1.2742 1.2722 
1.2832 1.2795 1.2785 
1.3021 1.2909 1.2919 
1.3228 1.3031 1.3065 

Vapor pressures 

atm 

0.47 0.47 0.47 
0.69 0.70 0.69 
1.00 1.00 1.00 
1.41 1.41 1.41 
1.67 1.67 1.67 

Heat of vaporization 

ca1mol- 1 

7277 7170 7207 
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Polymer 

Polystyrene (atactic) 
Poly(o-methyl styrene) 
Poly(methyl methacrylate) 
Poly(n-butyl methacrylate) 
Poly(cyllo-hexyl methacrylate) 
Poly(vinyl acetate) 
Polyethylene (branched) 
Polyisobutylene 
Poly(propylene oxide) 
Polyethylene (ultra HMW, linear) 
Poly(dimethyl siloxane) 
Polyethylene (linear) 

Table II. 

Reference 

15 
15 
16 
16 
16 
17 
16 
18 
19 
16 
18 
16 

Equation of state parameters for some common polymers 

Temperature Pressure Maximum 
011h Gus v:P range range deviation 

cal mol K cmJ oc bars X 100 

167.54 +0.222 0.8801 115-195 1-2000 0.5 
182.60 +0.203 0.9000 139-198 1-1600 0.3 
221.46 +0.131 0.7900 124-159 1-2000 0.9 
197.97 +0.103 0.8810 34-200 1-2000 0.5 
197.38 +0.157 0.8400 123-199 1-2000 0.8 
239.o! -0.007 0.7850 35-100 1-800 0.3 
184.46 +0.141 1.0954 135-198 1-1000 0.3 
190.49 +0.124 1.0080 53-llO 1-1000 0.4 
203.54 +O.Oll 0.9162 
244.80 +O.Oll 1.1077 147-200 1-1000 0.3 
133.13 +0.145 0.8911 25-70 1-1000 0.7 
226.41 +0.053 1.0951 153-200 1-1000 0.3 

Overall average % 

Average % error 
in density 

Cll 

Present S-L 
theory theory g. 

e?.. 

0.15 0.30 
..., 
g-

0.09 0.16 ..., 
3 

0.15 0.22 0 
0.. 

0.19 0.38 '< p 

0.21 0.30 Ill 

0.10 0.10 "' 0.10 0.12 0 ...., 
0.13 0.18 'Tj 

a-
O.ll 
0.18 0.20 
0.12 0.09 
0.14 0.20 
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pressure agree within a tolerance error. 

Comparison of the Theory with Experimental Data 
for Pure r-Mers 
In the original fluid-lattice theory/ 2•13 the volume 

of a lattice site was assumed to be different for 
different fluids. When extending their theory to 
mixtures, Sanchez and Lacombe14 were forced to 
consider a composition dependent volume of a 
lattice site. Consequently, the number of segments 
of a given molecule resulted as a function of the 
composition of the mixture. Sometimes, the number 
of segments of a given molecule duplicated or 
triplicated and this was interpreted as a "surface 
effect." However, in order to "facilitate the anal
ysis" of phase stability, the author14 assumed a 
constant lattice-site volume. In our previous work,9 

we have discussed the advantages of assuming a 
constant lattice-site volume for all fluids and their 
mixtures. In this work, we continue this practice 
and assume vH=9.75 (cm3 mol- 1) as suggested 
previously.9 

Preliminary calculations showed that there is 
little practical advantage in considering the more 
complex non-random approach for pure com
ponents .. As an example, Table I presents a com
parison of results for acetone at different 
temperature. 

In view of the above results, the random model of 
molecules and holes was adopted for pure com
ponents. The main advantage of the random ap
proach for pure components becomes evident in the 
treatment of mixtures. If non-randomness is con
sidered for pure components, binary molecular sys
tems have to be treated as ternary systems and so 
on. With the random approach for pure com
ponents, correction for non-randomness may still 

Table III. Equation of state parameters 
for some common solvents 

Solvent 
calmol- 1 calmol- 1 K- 1 cm3 g- 1 

Acetone 255.59 -0.0306 1.1785 
Benzene 234.78 0.0121 1.0576 
Carbon tetrachloride 221.23 0.0202 0.5781 
Chloroform 242.94 -0.0132 0.6200 
n-Heptane 177.92 0.0615 1.2826 
n-Pentane 182.27 0.0185 1.3695 
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be applied to binary molecular systems formally 
treating them as binaries, as is explained in the 
section on mixtures. 

Table II presents a comparison of the perfor
mance of the theory with volumetric data of some 
common polymers over an extended range of tem
perature and pressure. For comparison, we have 
included in Table II the results obtained with the 
fluid-lattice theory of Lacombe and Sanchez.13 For 
the determination of the parameters for 
poly(propylene oxide), second order thermody-

Table IV. Densities, vapor pressures, and 
heats of vaporization for n-heptane 

Temperature 

0.0 
10.0 
15.0 
20.0 
25.0 
30.0 
40.0 
50.0 

0.0 
80.0 

100.0 
120.0 
140.0 
160.0 
180.0 
200.0 
220.0 
230.0 

25.00 
58.06 
77.33 
90.48 

ExperimentaJ2° 

Specific volumes 

1.4278 
1.4449 
1.4539 
1.4622 
1.4716 
1.4810 
1.4997 
1.5197 

Vapor pressures 

atm 

0.275 
0.561 
1.046 
1.799 
2.933 
4.539 
6.699 
9.554 

13.296 
15.539 

Heats of vaporization 

calmol- 1 

8735 
8244 
7938 
7715 

Calculated 

1.4261 
1.4409 
1.4486 
1.4566 
1.4649 
1.4733 
1.4911 
1.5100 

0.279 
0.572 
1.075 
1.873 
3.072 
4.782 
7.124 

10.203 
14.175 
16.536 

8726 
8393 
8171 
8006 
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Figure 1. Orthobaric densities of n-heptane: 0, ex
perimental data20; --, present theory; ---, fluid
lattice theory _12 

namic functions were used. As shown in Table II, 
the maximum percent deviation in the computation 
of the specific volume obtained with the present 
treatment is 0.9. For the same polymers, Lacombe 
and Sanchez13 have reported a maximum percent 
deviation of 1.2. 

For small molecules, such as common polymer 
solvents, a more stringent test of the theory is 
possible due to the plethora of data including heats 
of vaporization and vapor pressures. 20 - 23 The data 
have been chosen at conditions far from the critical 
point since the model is not expected to be valid in 
the proximity of the critical region. 

Table III presents the equation of state param
eters for some common polymer solvents obtained 
with the random approach. It is not our purpose to 
endeavor on the physical significance of the pa
rameter e11 s. It is, however, worthy of mention 
that the parameter e11s is at least sensitive to 
the nature of interactions involved in the fluid. 
As it is shown in Table III, the two fluids ace
tone and chloroform, where strong interactions 
are involved, show a negative e11 s in contrast to 
all other studied fluids. Similar behavior is ob-
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served for poly(vinyl acetate) in Table II. 
In addition to the detailed comparison for ace

tone previously presented in Table I, Table IV 
presents a detailed comparison for data of n-hep
tane. Figure 1 compares the predicted orthobaric 
densities of n-heptane with experimental data20 and 
with the predictions obtained with the fluid lattice 
theory of Lacombe and Sanchez.12 

As it may be seen from Figure 1, the present 
model presents a definite improvement in the pre
diction of orthobaric densities. 

MIXTURES 

The Partition Function 
The basic formalism of the quasi-chemical cor

rection ·for non-randomness, in terms of non
random factors, has been discussed in detail pre
viously.7·8·24 In a rigorous application of the Hole 
theory,7 a binary system is formally a ternary one 
(the third component being the holes) and implicit 
expressions for the non-random factors are ob
tained. In this work we follow an approximation 
that has been previously used to correct for non
randomness the new Flory theory,24·25 i.e., to con
sider that the molecular segments are non-randomly 
distributed while the free volume (holes) is evenly 
distributed throughout the system. For a binary 
system, this approximation24 produces explicit ex
pressions of the form of eq 44 for the non-random 
factors. 

The canonical partition function for a system 
containing NH holes, N1 molecules of r1-mer and N2 

molecules of r2-mer, may be written as 

Q=e:r1e:r2

gcgNR exp (_RET) (29) 

As for pure components, the first two factors 
include the geometric characteristics of the mol
ecules and do not contribute to mixing properties 
of interest in this work. 

The total number of sites of the fluid lattice, N., is 
given by 

where 

(31) 

and 
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(32) 

X; being the mole fraction of component i. In 
addition, the total number of external contracts 
between the molecules is 

ZNq=Z(NH+q1N1 +q2N2)=Z(NH+qN) (33) 

where 

(34) 

Thus, for a binary mixture, the combinatorial 
factor has the form 

N,! (Nq!)z;z 
gc= 1 1 1 -1 NH.Nl.N2. N,. 

(35) 

The factor gNR in eq 29 is unity for the random 
case. In order to treat the non-random case, we 
define the molecular surface fraction iJ; by 

Because of this even distribution of holes, for the 
non-random case, we may assume that gNR is given 
by 

gNR (41) 

The potential energy of the system, in turn, is 
obtained as 

=fJ(N11e11 +N12e12 +N22e22) (42) 

where e;i is a characteristic energy for the contacts 
of segments of molecules i and j. 

The non-random factors tii are related by 

iJl tll + iJ2tl2 = iJ2t22 + iJltl2 = 1 (43) 
{J.= Zq;N; 
' ZqN 

(i = 1, 2) (36) and f 12 is given by the quasi-chemical expression,24 

In addition, to simplify the nomenclature, we define (44) 
the overall surface fraction 8; as it was done in eq 9 
for pure components, namely with 

ZqN. 
(}.=--' -' 
' ZNq 

(37) 

While the summation of the values of ii; over all 
the components adds to unity, the summation of 8; 
adds to (1- fJH). Thus, for convenience, we also 
define 

fJ=fJ1 +fJz=1-fJH 

Combination of eq 36 to 38 gives 

Furthermore, we define N;i by 

- Nu NlZql n . 
Nll =--=---ulrll e 2 

and 

(38) 

(39) 

(40a) 

(40b) 

where Nii are the number of external (energetic) 
contacts between segments of molecules i andj. The 
dot over the non-random factors f;i denotes the 
assumption of random distribution of holes. 
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. [fJ(e11 +e22 -2e12)] [ L1e] G=exp =exp fJ-
RT RT 

(45) 

From the above equations, it may be observed that 
for the random case, = 0, t 11 = t 22 = t 12 = 1. In 
addition, even if =f. 0, when the volume of the 
system increases, e-o and the random array is 
approached. This limiting qualitative behavior of 
the above expressions is in agreement with physical 
expectation. 

Equation of State 
The total volume of the system V, the hard core 

volume V* and the reduced volume v, are expressed 
in terms of the previously defined variables by 

V=N,vH (46) 

V*=rNvH (47) 

and 

v= V/V*=N,/rN (48) 

We define a characteristic energy of the system e* 
by 

Polymer J., Vol. 14, No. 9, 1982 
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For a given composition and temperature of the 
system, the characteristic temperature T* and the 
characteristic pressure P * are then obtained from 

(50) 

The reduced temperature and the reduced pres
sure are then 

T= T/T* and F=P/P* 

With the above nomenclature, the equation of 
state obtained from eq 17 is formally identical to the 
equation of state for pure components, i.e., eq 19a. 
Thus, for both the random and non-random 
cases, we write 

!=In(_!____)+ z In (v+q/r-l)_e: (51) 
T v-l 2 v T 

Chemical Potential 
For a binary mixture, e11 , e22 , and e12 are con

sidered to be functions of temperature of the form 
given by eq 7. While we consider e12h to be an 
adjustable parameter, for simplicity, the small "en
tropic" contribution e12• is approximated by the 
arithmetic mean of e11• and Bzzs· 

The chemical potential of component i in the 
mixture is obtained using eq 23 with N2 constant. 
The difference of the chemical potential of com
ponent 1 in the mixture and the chemical poten
tial of pure component 1 at the same temperature 
and pressure, /1111 , for the non-random case takes 
the form 

L1111 vl ( v vl -1) -=In cjJ +ln-+q In ----
RT 1 v 1 v-1 vl 

(52) 

and for the random case, 

L1111 vl ( v vl -1) -=In"' +ln -+q In ------
RT 'l'l v 1 v-1 vl 

(52a) 

where IJ1,p refers to pure component 1 at the same 
temperature and pressure and T12 has been defined 
as 
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_ 2RT 
Tlz=-

Ze12 

cjJ is the segment fraction of component i, 

riNi (v+q/r-l) 
c/J·=-=IJ.---

1 rN ' (qJri) 

(53) 

(54) 

The Flory-Huggins x12 interaction parameter 
may be directly obtained from eq 52 or 52a and its 
defining equation: 

LIJ1 1 =In c/J 1 + c/J 2 + X12c/Jz 2 (55) 
RT r 2 

For the non-random approach 

For the random approach 

+2ql )} 

Tl T12 
(56a) 

Expressions for the activity coefficient of com
ponent 1 in the mixture, y1 ', are readily obtained 
combining eq 56 or 56a with 

LIJ-tl ' -=In (x1y1) (57) 
RT 

Volume Change and Heats of Mixing 
The volume change of mixing is given by 

LIV 
-=vH(v-c/Jlvl -c/JzV'z) 
N 

for both random and non-random approaches. 

(58) 

For low to moderate pressures, the identification 
of enthalpies with configurational energies is a 
satisfactory approximation. Thus, for the non
random case, the heats of mixing are given by 

LIH Zq _ _ 
N=l [IJl(IJl,p -IJ)em + Bz(Bz.v -IJ)Bzzh 

+ el e2t 121JLle] (59) 

while, for the random case, 

LIH Zq _ _ 
N=l [IJl(IJl,p -IJl)ellh + Bz(Bz.v -'ilz)Bzzh 

-28182 1Je12h] (59a) 
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For polymer solutions, it is usual to find infor
mation of the heat of mixing at infinite dilution, 
11H ro, or of the equivalent quantity B, given by 

(60) 

With the present model, in both random and non
random approximations, gives 

Application of the Theory to Polymer Solutions 
Complete and accurate data on heats of mixing, 

volumes of mixing and vapor pressure lowering 
have been reported by Kershaw and Malcolm19 for 
the systems chloroform-poly(propylene oxide) and 
carbon tetrachloride-poly(propylene oxide). Data 
on the latter system were used by Huggins26 to test 
his three parameter theory and data of both systems 
were used by the authors to test the two parameter 
new Flory non-random theory.24 From our pre
vious experience with the new Flory theory,Z4 one 
single parameter (X12) is insufficient to reproduce 
both sets of data, especially the data of the first 
system. 

In the new Flory theory,Z7 a second adjustable 
parameter has been introduced in order to account 
for an extra entropic contribution in the interaction 
energies, absent in the parameter'X12 . Thus, X12 has 
essentially been replaced by X12, using 

(62) 

With the above substitution, the equation of state 
and the expressions for volumes and heats of mixing 
of the new Flory theory remain unchanged, while 
the expression for x12 is modified. In the present 
theory, the same effect is obtained replacing the 
adjustable parameter e12h by 

e12h=e12h-( TQ 12 (62a) 
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since (1/8) is the formal equivalent to iJ in the new 
Flory theory. 

However, Simha,28 studying the applicability of 
his hole theory to polymer mixtures, has found the 
1-2 interaction energy parameter to be composition 
dependent. Preliminary calculations with the pres
ent theory have shown the same effect. After some 
trials the following empirical composition depen
dence of the parameter Q12 has been found to give a 
better representation of the data 

(63) 

The gas constant R has been included in eq 63 in 
order to have dimensionless. As with the new 
Flory theory, this correction affects the expressions 
for x12 • For the non-random approach, the follow
ing term should be added to eq 56: 

1i • (02)2 
Zq1u1Q12F12 4>

2 

while, for the random approach the additional term 
is: 

- (02)2 
Zq1(1 +2K1281)Q'12 4>

2 

In the random approach the parameter e12h may 
be derived from data on heats of mixing and/or 
volumes of mixing while the other two parameters 
K12 and may be obtained from fitting the data 
on x12 interaction parameters. 

In Table V we present experimental and calcu
lated volumes and heats of mixing for the system 
chloroform (1)-poly(propylene oxide) (2) at 5.53°C. 

Two sets of parameters have been used in the 
random approach as indicated in Table V. Set #1 
reproduces satisfactorily heats of mixing and X12 

interaction parameters as shown in Figure 2, but 
overestimates somehow the volumes of mixing. The 
second set reproduces in an identical manner the x12 

interaction parameters and quite satisfactorily the 
volumes of mixing but underestimates the heats of 
mixing. The non-random approach makes an in
termediate representation of heats and volumes of 
mixing and good representation of the x12 in
teraction parameters. The overall performance of 
the model is rather satisfactory if one takes into 
account the nature of the intermolecular interac
tions involved in this system. On the other hand, 
there is a considerable improvement over the two
parameter new Flory theory.24 
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Table V. Experimental and calculated mixing functions for the system: 
chloroform (1)-poly(propylene oxide) (2) at 5.53aC 

Binary parameters 

calmol- 1 

Random approach Set #I 
Set #2 

Non-random approach 

Volume fraction, ¢2 

0.1396 
0.2887 
0.4127 
0.5213 
0.5928 
0.6800 
0.7620 
0.8551 

0.1512 
0.2725 
0.3744 
0.4690 
0.5223 
0.6126 
0.6923 
0.7985 
0.9054 

Experimental19 

-0.00426 
-0.00793 
-0.00988 
-0.01037 
-0.01006 
-0.00883 
-0.00697 
-0.00458 

-3.12 
-5.23 
-6.97 
-7.64 
-7.84 
-7.70 
-6.87 
-5.24 
-2.62 

258.4 
246.2 
251.9 

In the second system, carbon tetrachloride (1)
poly(propylene oxide) (2), no hydrogen bonding is 
involved and a better agreement is expected. In 
Table VI we present experimental and calculated 
data for the volumes and heats of mixing for this 
system. The agreement is quite satisfactory. Only 
the random approach has been used. The non
random approach is not expected to make any 
perceptible improvement for this system. In Figure 
3 the present model is compared with the three 
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Calculated 

Set #I 

0.705 
3.320 
0.943 

Set #2 

Volumes of mixing 

cm3 cm- 3 

-0.00704 -0.00473 
-0.01198 -0.00818 
-0.01430 -0.00981 
-0.01504 -0.01032 
-0.01483 -0.01014 
-0.01376 -0.00933 
-0.01182 -0.00793 
-0.00831 -0.00541 

Heats of mixing 

calcm- 3 

-3.96 -2.58 
-6.11 -3.98 
-7.22 -4.70 
-7.68 -5.00 
-7.69 -5.01 
-7.32 -4.76 
-6.57 -4.27 
-4.96 -3.21 
-2.62 -1.68 

0.026 
0.006 
0.035 

Non-random 
approach 

-0.00585 
-0.01006 
-0.01207 
-0.01270 
-0.01252 
-0.01156 
-0.00988 
-0.00683 

-3.24 
-5.01 
-5.94 
-6.32 
-6.34 
-6.03 
-5.41 
-4.07 
-2.13 

parameter new Huggins theory26 and the two
parameter new Flory theory24 against experimental 
data on x12 interaction parameters for the same 
system. The maximum in x12 calculated by the 
present model is a handicap obviously stemming 
from the simple linear composition dependence of 
the corrective term to e12h. 

As a further test of the theory the data reported 
by Bawn and Wajid29 for the system acetone (I)
polystyrene (2) at 25°C have been chosen. For this 
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Figure 2. X12 interaction parameters for the system: 
chloroform (1)-poly(propylene oxide) (2) at 5.53oC: O, 
experimental data19; --, present theory (random ap
proach); -· -, present theory (non-random approach); 
---, new Flory theory.24 
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Figure 3. x12 interaction parameters for the system: 
carbon tetrachloride (1)--poly(propylene oxide) (2) at 
5.53°C: O, experimental data19; --, present theory 
(three parameters);---, new Flory theory (two param
eters);-·-, new Huggins theory (three parameters). 

692 

Table VI. Experimental and calculated mixing 
functions for the system: carbon tetra

chloride (1)-poly(propylene oxide) 
(2) at 5.53°C 

Binary parameters 

Volume fraction, ¢2 ExperimentaJI9 Calculated 

0.1918 
0.3240 
0.4437 
0.5099 
0.5986 
0.7313 
0.8381 

0.2040 
0.3511 
0.5010 
0.6630 
0.7923 
0.8985 

1.4 

12 

10 

.;_ 08 

06 

04 

u5 0.6 

Volumes of mixing 

-0.00166 -0.00177 
-0.00245 -0.00250 
-0.00277 -0.00279 
-0.00281 -0.00281 
-0.00263 -0.00264 
-0.00211 -0.00201 
-0.00154 -0.00113 

Heats of mixing 

calcm- 3 

-0.74 -0.85 
-1.12 -1.19 
-1.30 -1.31 
-1.12 -1.15 
-0.83 -0.83 
-0.53 -0.43 

0.7 ¢. uo 0.9 

' 
lO 

Figure 4. x12 interaction parameters for the system: 
acetone (I)--polystyrene (2) at 25oC: 0, experimental 
data29 ; --,calculated. 

system the quantity B, eq 67, is B = 87 ± 5 cal mol- 1 . 

The following set of parameters in the random 
approach: 
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e12h=213.4calmol-1 , K12 =-0.363, 

estimates B = 89 cal mol- 1 and reproduces the x12 
interaction parameters as shown in Figure 4. Again, 
no perceptible improvement is expected with the 
non-random approach. 

CONCLUSIONS 

A molecular theory of fluids and their mixtures 
has been developed and tested against experimental 
data of pure components and polymer solutions. 
The results are rather satisfactory. In the pure 
component case the third parameter (variable cell 
size) of the well known fluid-lattice theory12·14 has 
been replaced by an "entropic" contribution to the 
interaction energy parameter. This leads to a sim
pler formulation of the mixture treatment and gives 
an equally good, if not better, representation of the 
pure component data. For mixtures, the formalism 
has been developed in close parallel to the new 
Flory theory.3 Three parameters have been used for 
an adequate representation of experimental data on 
concentrated polymer solutions. The necessity of 
the empirical correction for the entropic contri
bution to the residual chemical potentials obviously 
points to inherent shortcomings of this rather ele
mentary model. The non-random approximation 
has been found to be unnecessary for pure compo
nents. For mixtures, the non-random approxima
tion improves the results for the system chloro
form-poly(propylene oxide). 
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NOTATION 

B heat of mixing constant given by eq 60 
E potential energy of the system 
F auxiliary function 
G quasi-chemical constant defined by eq 14 and 

45 
9c random combinatorial term 
9NR non-random combinatorial correction factor 
H enthalpy 
N number of moles 
Nii total number of external contacts i-j 
Jiiii quantities defined by eq 42a, b, c 
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N, total number of lattice sites 
p pressure 
Q partition function 
Q12 binary parameter 

binary parameter defined by eq 63 
R gas constant 
r number of mers in a fluid 
T temperature (K) 
u configurational energy 
v total volume of the system 
v volume per segment 
x12 binary parameter in new Flory theory 
z lattice coordination number 
ZNq total number of external contacts 
Zq number of external contacts per r-mer 

Greek Letters 
ex thermal expansion coefficient 
p isothermal compressibility coefficient 
rij non-random factors 
y thermal pressure coefficient 
.1 property difference 
b flexibility factor 
eii interaction energy for contact of type i-j 

( = eijh + Teijs) 
() overall surface fraction 
(fi molecular surface fraction of component i 
K12 binary parameter 

f-1 chemical potential 
p density (gcm- 3 ) 

(J symmetry factor 
QJ; segment fraction of component i 

X12 Flory-Huggins interaction parameter 

Superscripts 

* 
values pertaining to the random case 
reducing quantities 
reduced quantities 
non-random quantities with even distribution 
of holes 
quantity at infinite dilution 

Subscripts 
quantity pertaining to component i 

ij quantity pertaining to contact of type i-j 
i,p quantity pertaining to pure component i 
H quantity pertaining to holes 
L liquid state 
sp specific 
V gas state 
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