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ABSTRACT: Various models of coupling of precursor blocks leading to the formation of block 
and/or graft copolymers are defined. Distribution functions of chemical composition, and in some 
cases also of molecular weights of various types of copolymers have been derived in an analytical 
form for a case in which precursor blocks obey the Schulz-Zimm (gamma) molecular weight 
distribution, and the coupling of blocks has a random character. The effect of polydispersity of 
precursors, simplifying approximations, and certain other factors on the form of distribution 
functions of the chemical composition of copolymers is discussed. Assumption of another type of 
molecular weight distribution of precursors does not give qualitatively different results. 
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The chemical heterogeneity of copolymers is a 
phenomenon inseparably linked with their existence. 
As has been shown in a basic study by Kotaka et 
al./ the chemical heterogeneity of block and graft 
copolymers is sometimes pronounced, although 
they are formed by joining precursor blocks with a 
low polydispersity in molecular weight. In the ex­
tensive literature dealing with the preparation and 
investigation of copolymers, the chemical hetero­
geneity of the individual copolymer species (e.g., 
diblocks, triblocks, etc.) is not mentioned at all, or is 
regarded as negligible. In many real cases such 
approximation appears to be unjustified and may 
possibly lead · to a distorted interpretation of 
experimental data. 

The chemical heterogeneity and molecular weight 
polydispersity of copolymers may be described by 
distribution functions of chemical composition and 
molecular weights or, less adequately, but also with 
less experimental work involved, in terms of statisti­
cal moments of these functions. In principle, distri­
bution functions are amenable to experimental de­
termination after the copolymer has been frac­
tionated by a method which separates a chemically 

heterogeneous and polydisperse sample with respect 
either to the chemical composition of the individual 
macromolecules or to their molecular weight. The 
methods which can be considered for this purpose 
are mainly chromatographic (thin-layer chroma­
tography,2·3 gel-permeation chromatography/·4 ·5 

etc.), and fractionation (various fractionation pro­
cedures,6 cross-fractionation3·7). Experimentally 
obtained estimates of the chemical composition and 
molecular weight distributions can then be com­
pared with distribution functions calculated for 
models, thus checking their adequacy. The chemical 
heterogeneity parameters P and Q have a similar 
importance and use; they are statistical moments of 
distribution functions, and can in principle be de­
termined by light scattering.8 -u 

Distribution functions of the chemical compo­
sition of block and graft copolymers are discussed 
in the literature mostly at a rather general level. If 
they are to be applied to a particular case, simpli­
fying assumptions must be introduced (such as, e.g., 
approximation of equal blocks1•4), and a certain 
form of the molecular weight distribution of pre­
cursor blocks must also be assumed. For this pur-
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pose, the Schulz-Zimm distribution of molecular 
weights was used in several cases (numerical calcu­
lation of the distribution functions of chemical 
composition1 and explicit analytical forms for 
the diblock11 and radial teleblock copolymers5 ). 

In most cases, this distribution function is a good 
approximation of the true molecular weight dis­
tributions of precursors blocks. 

In this study, we want to show what conclusions 
about the distribution functions of chemical com­
position and molecular weights of copolymers can 
be obtained by assuming the Schulz-Zimm (gam­
ma) molecular weight distribution of precursor 
blocks. Accordingly, we derive analytical ex­
pressions for the distribution functions of the 
chemical composition for copolymers of various 
types. Using these expressions, one can avoid 
multiple numerical integration, which is often very 
computer-time consuming, without making the 
simplifying approximation of equal blocks, 
which serves the same purpose. 

Distribution Functions and Their Moments 
Let us consider copolymer molecules consisting 

of two parts, each formed by blocks of repeating 
constitutional units of either the A or B type. The 
two-dimensional differential number distribution 
function Nc (MA, Ms) perfectly describes the 
relative amount of molecules with given molec­
ular weights, MA and Ms, of both components. 
Although the function is often used in the literature 
in the form, 12•13 in many respects it is preferable to 
use as variables the molecular weight of the co­
polymer macromolecule, M = M A+ M B, and its 
chemical composition, x=MA/(MA +Ms), given 
by the weight fraction of component A. Both 
copolymer parts A and B, may consist of several 
precursor blocks. Replacement of the variables 
leads to an analogous distribution function of 
molecular weights, M, and chemical composition, 
X, 

N(M, x)=M Nc[xM, (1-x)M] (I) 

The corresponding weight distribution function is 
given by 

M 
W(M, x)=- N(M, x) 

Mn 
(2) 

where M" is the number average molecular weight 
of the copolymer. From here on, the term distribu-
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tion function will always mean the differential dis­
tribution function. 

Marginal weight distribution functions of molec­
ular weights and chemical composition are given 
by integrals 

W(M)= r W(M, x)dx 

W(x) = f' W(M, x) dM 

(3a) 

(3b) 

Analogous relations hold for marginal number dis­
tribution functions. 

In practice, the following statistical moments of 
the distribution function W ( M, x) are of impor­
tance: the weight average chemical composition, 
xw, and weight average molecular weight, Mw, and 
the parameters of chemical heterogeneity P and Q 
defined by 

xw= f lM xW(M, x)dMdx (4a) 

Mw= f lM MW(M, x)dMdx (4b) 

P= f lM (x-xw)MW(M, x)dMdx (4c) 

Q= f lM (x-xjMW(M, x)dMdx (4d) 

The parameter P is a measure of mutual cor­
relation of the distribution of molecular weights and 
chemical composition, the parameter Q character­
izes the extent of chemical heterogeneity of the 
copolymer. The moments of the number distri­
bution function N(M, x), e.g., the number average 
chemical composition, x", and number average mo­
lecular weight, M", are defined similarly: 

xn= f 1M xN(M, x)dMdx (5a) 

Mn= f 1M MN(M, x)dMdx (5b) 

We shall now derive the distribution functions of 
molecular weights and chemical composition for 
various types of copolymers, assuming that the 
precursor blocks have the gamma distribution of 
molecular weights. Some properties of this distri­
bution are briefly presented below. 

Polymer 1., Vol. 14, No.8, 1982 



Compositional Distributions of Copolymers 

Gamma Distribution of Molecular Weights 
The gamma (Schulz-Zimm) molecular weight 

distribution is described by a two-parameter distri­
bution function 

hY 
F(M; y, h)=- My- 1 exp ( -hM) (6) 

r(y) 

with the positive parameters y and h; r(y) is the r­
function. 

If the molecular weight number distribution 
function of the polymer is given by eq 6, the 
corresponding weight distribution function has 
a similar form: 

N(M)=r(M; y, h) (7a) 

W(M)=r(M; y+ I, h) (7b) 

The parameters of the distribution functions are 
related with the molecular weight averages through 

y+l 
M=­

w h 
(8a) 

and thus the parameter y reflects the polydispersity 
in molecular weight, 

1 
y=--

Mw_l 
Mn 

MODELS OF COPOLYMER 
FORMATION 

(8b) 

Let us have two sets of macromolecules, one of 
type A and the other of type B. The molecular 
weight distributions of these macromolecules (pre­
cursor blocks) are described by the differential 
number and/or weight distribution functions 
N!(M.t), W!(M!) and The 
possibilities will be examined which may arise if the 

a b 

copolymer macromolecule is created by suitably 
coupling various numbers of precursor blocks A 
and B. The term precursor blocks denotes chains 

which, by combining, yield a block or graft co­
polymer. In the former case, block A is the basic 
block and block B, the attached one: in the latter, 
block of type A forms the backbone and blocks 
B form grafts in those cases where such distinction 
is useful. 

If it is assumed that the molecular 
weight distributions of polymers A and B are 
mutually independent and that the coupling of 
presursor macromolecules is random, three basic 
types of coupling can be distinguished (models 

These are demonstrated using a simple 
example of mutual coupling of one block A and 
one block B each time. By generalizing this ap­
proach, more complex structures consisting of 
more than two blocks can also be described. 

Model I 
Each of the macromolecules A and B bears one 

constitutional unit capable of coupling with a 
macromolecule of different type (Figure Ia). The 
number fraction of macromolecules containing 
part A with the molecular weight M A and part 
B with the molecular weight M8 is given by the 
number fractions of precursor molecules with 
these molecular weights, 

Nc(MA, M 8 )dMAdM8 

(9a) 

where Nc(MA, M8 ) is a two-dimensional differential 
number distribution function of molecular weights 
MA and M 8 of blocks which are part of the co­
polymer C. The molecular weight distributions of 
reacted and unreacted precursors A and B are 
identical and independent of the conversion of 
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Figure 1. Three basic types of copolymer macromolecule formed by coupling one block A with one 
block B. 
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precursors into the copolymer. This model can, e.g., 
be used in the description of a diblock formed in 
block copolymerization. 

Model II 
Let it be assumed that, in the polymer A, each of 

its repeating constitutional units is able to become a 
coupling unit and that the polymer block B may, 
similarly to the preceding case, be coupled by a 
single (e.g., end) constitutional unit (Figure !b). 
This model corresponds to the graft copolymer with 
the backbone A to which one graft B has been 
attached. The probability that macromolecules of 
type A with molecular weight MA, will become the 
backbone of a copolymer molecule is proportional 
to their molecular weight (i.e., to the number of 
potential coupling units) and to their number frac­
tion, i.e., altogether to their weight fraction in the 
parent polymer A, 

Nc(MA, M8 )dMAdM8 

= (9b) 

In this case, the stituation is more complicated 
than in the preceding model. Since it is preferen­
tially macromolecules A with the higher molecular 
weight which become part of the copolymer, the 
molecular weight distribution of unreacted back­
bones will vary with increasing conversion of 
precursor A into the copolymer. This is the basic 
difference between the two models. Hence, eq 9b is 
valid in the limiting case of zero conversion, or in 
each moment of the coupling reaction (the distri­
bution functions in eq 9b are then instantaneous 
distribution functions). Like the preceding case, the 
molecular weight distributions of grafts in the co­
polymer and of the unattached grafts are in a sim­
ple relation (not necessarily identical in real cases, 
this depending on, e.g., the termination reaction 
of the grafts) and are conversion-independent. In 
practice, this model is approached by, e.g., prepa­
ration of a graft copolymer by irradiation of the 
polymer A dissolved in the monomer B, when 
radicals formed on the backbone A initiate the 
growth of the polymer blocks B, and the propagat­
ing radicals are terminated by disproportionation. 

Model III 
Each repeating constitutional unit of any of the 

macromolecules A and B possesses the ability to 
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become a coupling unit (Figure !c). The number of 
copolymer macromolecules which will contain parts 
A and B with the molecular weights MA and M 8 will 
therefore be proportional to the weight content of 
precursor blocks with the particular molecular 
weights, 

Nc(MA, M8 )dMAdM8 

= WA,(M!) dM! (9c) 

What in the case of the preceding model is valid for 
the backbone block A, holds here for both com­
ponents A and B. For instance, copolymers arising 
by irradiation of a mixture of two homopolymers in 
solution may in the first approximation be described 
by a model of this type, if no splitting of the main 
chains takes place. 

If the macromolecule contains more than one, 
but not all constitutional units capable of coupling 
with the other macromolecule (e.g., diions in block 
copolymerization, reactive groups introduced into 
the copolymer chain by statistical copolymerization 
with a suitable monomer, or reactive groups due to 
the polymer-analogous reaction, etc.), the following 
holds: if each macromolecule A bears the same 
number of reactive units irrespective of its molec­
ular weight, then the probability of formation of a 
copolymer with the molecular weight of component 
A equal just to MA is proportional to the number 
distribution function, N!(M!) dM!. When the 
number of reactive groups or potential coupling 
units in the macromolecule is directly proportional 
to its molecular weight, such probability is pro­
portional to the weight distribution function 
W!(MA_)dMA. The concept of polymer segment 
has also been introduced in the literature,4 referring 
to a part of the macromolecule bearing just one 
potential coupling unit. 

Cases of coupling of more than two polymer 
blocks may be solved by a multiple application of 
the above models, i.e., by a hypothetical coupling 
of the required number of blocks of type A to one 
part of a copolymer molecule and of the given 
number of blocks B to another part followed by the 
coupling of these two parts into a resulting co­
polymer macromolecule, while respecting differ­
ences of the individual models. 

In order to render the relations more graphic, the 
differentials dMA and dM8 are henceforward omit­
ted. Now, some types of copolymers will be exam-
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ined in greater detail. 

APPLICATION OF MODELS 

Block Copolymers 
A block copolymer consisting of macromolecules 

formed by joining a precursor blocks of the type A 
and b blocks of the type B is considered (Figures 2a­
c). Here again, all quantities related to the proper­
ties of precursor blocks are marked with asterisks; 
symbols without asterisks are assigned to whole 
copolymer parts A and B, generally consisting of 
several blocks. Thus, N,t(M,t) is the number distri­
bution function of molecular weights M,t of pre­
cursor blocks of the type A. From the formal 
viewpoint, distribution functions for more com­
plicated structures are advantageously denoted as 
conditioned distribution functions, i.e., e.g., 
NA(MAI a) is the number distribution function of 
molecular weights M A of the copolymer part A on 
condition that the latter consists just of a blocks, 
and the like. 

Let us now search for an expression for the 
number distribution function of molecular weights 
of copolymer macromolecules, Nc(MM M 8 la,b), 

a 

d 

, 
I 

b 
.... --

e 

which contain part A having the total molecular 
weight MA=M,t, +M!2 + · · · +M!a, and sim­
ilarly part B having the total molecular weight 

+ · · · Sums in the de­
finitions of MA and M 8 represent an arbitrary 
combination of polymer blocks of the given type 
which form a total having the molecular weight MA 

or M 8 , respectively. 
First, the copolymer part A alone is considered. It 

is assumed that a-1 blocks A have been linked to 
form a unit having the molecular weight 
MA -M!a=M,t, +M,t2 + · · · +MA.(a-1) described 
by the distribution function NA(MA-MA.ala-1). 
To this unit, another a-th block is attached accord­
ing to model I having the molecular weight M!a (cf 

eq 9a). The number distribution function of molec­
ular weights of the copolymer part A is then given 
by 

NA(MAia) 

= ( N;t(M!a)NA(MA-M!ala-l)dMA.a 
JMA_a<MA 

(10) 

because one must bear in mind all possible com-

Figure 2. Copolymer structure which can be described by models I through III: (a) block copolymers 
(diblock and triblock); (b) radial teleblock copolymer; (c) sequential copolymer; (d) graft copolymer with 
one backbone; (e, f) graft copolymers with more backbones. 
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binations of molecular weights M!. and 
(MA-M!.) which in their sum give MA. 

Equation 10 is a recurrent relation, because the 
distribution function of molecular weights of a 
more complicated structure is described in terms of 
the distribution function used for a simpler struc­
ture. It can gradually be expanded into an a-fold 
integral, the solution of which is generally difficult·. 
Similar relations hold for the copolymer part B. 

If the precursor blocks have the r -distribution of 
molecular weights 

N!(M!)=r(M!; y!, h!) 
(11) 

then, using eq 10, it can be shown that both 
copolymer parts again exhibit the r-distribution of 
molecular weights (Appendix A), 

NA(MAja)=r(MA; ay!, h!) 

NB(MBib)=r(MB; 

(12a) 

(12b) 

The parameters of these distributions are related 
in a simple way to analogous parameters of molec­
ular weight distributions of the precursors, YA = 

ay!, YB hA = h! and hB = remain unchanged 
(Table 1). According to eq 8, the higher value of the 
parameter y reflects a lower polydispersity index. 
Hence, the molecular weight distributions of co­
polymer parts are always narrower than the initial 
distributions of precursors, if a copolymer part 
contains more than a single block. A similar finding 
is well known in, e.g., the kinetics of radical poly­
merization, where the molecular weight distribution 
for termination by recombination of polymer radi­
cals (i.e. by coupling two macroradicals each time) 

Table I. Parameters y and h of eq 28-39 characterizing individual parts of copolymer 
and their relationship to parameters y* and h* of 1 -distribution 
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Parameter 

YA 
Ya 
hA 

ha 

YA 
Ya 
hA 

ha 

of molecular weights of precursors given by eq 11 

Block copolymer (model I) 
with a blocks of type A and b blocks of type B 

Approximation" 

ayX YX 
by: y: 
h'f.. h'f..fa 

h:fb 

Graft copolymer (model II) 
with one backbone of type A and m grafts of type B 

Zero conversion Nonzero conversion 

y'f..+m 

h'f..+q 

Approximation• 

y'f..+m 

h'f.. 

Grafted copolymer (zero conversion), with I 
backbones of type A and m grafts of type B 

Model II Model III 

lyX+2(1-l)+m /y'f..+2(1-l)+m 

m(yHl) 
h'f.. h'f.. 

h: h: 

• Approximation of equal blocks (cf Discussion). 

Polymer J., Vol. 14, No. 8, 1982 



Compositional Distributions of Copolymers 

is narrower than that observed for termination by 
disproportionation. 

Assuming mutually independent distributions of 
MA and MB, the two-dimentional molecular weight 
number distribution function of copolymer parts 
can be displayed as a product (cf eq 9a) 

Nc(MA, MBia, b) 

=NA(MA I a)NB(MB I b) 

=T(MA; YA' hA) r(MB; JB, hB) (13) 

Further rearrangement of this equation leading to 
distribution functions of chemical composition are 
examined below: it is shown that a formally identical 
equation is also obtained in the case of graft 
copolymers. 

Graft Copolymers 
(a) Limiting Case of Zero Conversion 
A more general case is examined of graft 

copolymer molecules consisting of I blocks of 
the type A (backbone) and m blocks of the type B 
(grafts) (Figure 2e). Thus, we also allow for the 
possibility of connecting more backbones in one 
copolymer molecule. The molecular weight distri­
bution of backbones A in such a copolymer is 
considered first. By analogy with eq 10, for a unit 
obtained by joining I precursor blocks A according 
to model III, a recurrent relation can be written 
which corresponds to the attachment of the /-th 
block A having the .molecular weight M11 to the 
structure which already contains /- 1 joined back­
bone blocks; 

NA(MAil) 

= r * W!(M 1z)WA(MA -M !zll-l)dM AI 
JMAz<MA 

(14) 
Since the joining of precursor blocks proceeds dif­
ferently from the formation of block copolymers, 
weight distribution functions operate in this case, 
unlike eq 10 (cf eq 9c). Assuming the T-distribution 
of molecular weights (eq 11) for the precursor. 
blocks we obtain 

NA(MAII)=T(MA; M+2(/-l), h!) (15) 

Unlike eq 12a, an additive term 2 (1-1) appears in 
the first parameter of the distribution function. This 
is due to the fact that, in the calculation of 
N A (M A it) according to eq 14, the number distri-

Polymer J., Vol. 14, No. 8, 1982 

bution function NA(MA- M!ll-1) calculated ear­
lier must be transformed into a weight distribution 
function, WA(MA-M11 Il-1), using eq2 or 7. 

So far the attachment of grafts has not been 
considered. One should bear in mind that with 
respect to model II, according to which blocks B 
(grafts) are attached in the second stage, the molec­
ular weight number distribution of backbones in 
the copolymer bearing m grafts is equal to the 
molecular weight number distribution of back­
bones in the copolymer with m- 1 grafts, and thus, 

NA(MAI!, m)=WA(MAI!, m-1) (16) 

where N A(M A 11, m) is the number distribution func­
tion of molecular weights M A of backbone units 
consisting of I blocks of the type A, to which m 
blocks of the type B have been attached. Assuming 
the r-distribution of molecular weights for the 
precursors (eq 11), we obtain from eq 15 and 16 

NA(MAI!,m)=r(MA; ly1+2(1-1)+m, h!) (17) 

Another additive term m in the first parameter of 
the distribution function is a result of the repeated 
application of eq 16 and transformation of the 
number to weight distribution functions (eqs 2 and 
7). The character of the r -distribution of molecular 
weights is preserved also in this case; form= 0, eq 17 
reduces to eq 15. 

As in the case of block copolymers, the molecular 
weight distribution of the graft part of the co­
polymer consisting of m grafts is independent of I 
and given by 

NB(MBim)=T(MB; my:, h:) (18) 

As in the preceding case (eq 13), the resulting two­
dimensional number distribution function of molec­
ular weights of the copolymer parts can be written 
as 

Nc(MM MB 11. m) 

= WA(MA It, m-1)NB(MB I m) 

=r(MA; YA, hA)r(MB; YB, hB) (19) 

where, of course, the relation between the param­
eters y and y * differs from that yalid for block 
copolymers {Table 1). 

A comment may be pertinent: If the grafts were 
attached according to model III (Fig. 2f), the 
molecular weight distribution of the graft part of 

the copolymer would be given by 
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N 8 (MBim)=T(M8 ; hV (20) 

(cf eq 18). Generalization to include other struc­
tures, e.g., by involving the possibility of further 
grafting of already attached grafts, can be effected 
by an algorithm similar to that used for joining the 
backbones. 

We have called these reasonings the limiting case 
of zero conversion, as they do not take into account 
one basic fact, namely, that the molecular weight 
distribution of unreacted backbones varies with 
conversion of the backbone precursor molecules 
into the copolymer. Macromolecules with a higher 
molecular weight are preferentially incorporated 
into the copolymer, and their participation in the 
assembly of unreacted backbone blocks decreases 
more quickly than that of blocks having a lower 
molecular weight. It can be expected, therefore, that 
relations derived for graft copolymers hold only 
when the probability of grafting (and thus also 
conversion of a backbone precursor molecule into 
the copolymer) approaches zero. Only then, 
changes in the molecular weight distribution of 
unreacted backbone blocks can be regarded as 
negligible. 

Generalization for nonzero conversions is not 
quite straight-forward, but it is feasible for some 
simplified models. 

Using as an example a simple graft copolymer 
with a single backbone block with m graft blocks 
attached (Figure 2d), we demonstrate how the 
molecular weight distribution of the individual 
parts of the copolymer changes, if facts so far ne­
glected are taken into account. 

(b) Case of Non-Zero Conversion 
The probability that a backbone having the mo­

lecular weight M A contains m attached grafts is 
given by the binomial distribution4 •13 •14 

n, p)=(:)pm(l-prm (21) 

where p is the probability that a backbone segment 
is grafted. A segment is defined as a part of the 
backbone bearing just one potential coupling unit4 ; 

the total number of segments in a backbone, n, is 
thus proportional to the molecular weight of the 
backbone, MA- We introduce an auxiliary param­
eter q by the equation np=qMA- Then, q has the 
meaning of the probability of grafting of a back­
bone segment per unit molecular weight of the 
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segment1 (if each monomeric unit with the molec­
ular weight M 0 can become a linking unit, i.e. a 
graft can be attached to it, q = p/ M 0). Form the 
binomial distribution given by eq 21 can be approxi­
mated by the Poisson distribution4 

The following relation also holds: 

WA(MM m)= WA(MAim)WA(m) 

(23) 

where WA(MA, m) is the two-dimensional weight 
distribution function which gives the weight portion 
of backbones having the molecular weight MA and 
at the same time carrying m grafts. WA(MAim) is a 

unidimensional weight distribution function of mo­
lecular weights of backbones carrying just m grafts, 
and finally, WA(m) represents the weight fraction of 
backbones with m grafts. 

Suppose the initial distribution of precursor 
blocks A is given again by the r-distribution of 
molecular weights, W!(M!) = T(M!; YA +I, h!). 
Then, the integration of eq 23 over all molecular 
weights MA yields the distribution function WA(m) 
which assumes the form of the negative binomial 
distribution, 

WA(m)=n(m; y! + 1, ____11_) 
h!+q 

r(y! + m + 1) [ 1 _ _!1_Jm[_!1_]YA*+ 1 
r(y!+m)m! h!+q h!+q 

(24a) 

Similarly, the number distribution function which 
describes the number fraction of backbones carry­
ing m grafts is also given by the distribution of the 
type 

(24b) 

The molecular weight distributions of backbones 
carrying just m grafts are again given by the r­
distribution 

WA(MA im)=T(MA; y!+m+ 1, h!+q) (25a) 

NA(MAim)=T(MA; y!+m, h!+q) (25b) 

If one compares the latter equation with the result 
obtained for the limiting case of zero conversion 
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given by eql7, where 1=1, it can be seen that for 
low degrees of grafting where h! if> q, both ap­
proaches yield the same result. Both the simple 
model and this approach predict an identical poly­
dispersity of the backbones, but the limiting case 
does not predict a change in the molecular weights 
of ungrafted backbones with increasing conversion, 
unlike the more rigorous approach. 

Now, eq 24a is briefly recalled. According to it for 
m = 0, the weight fraction of ungrafted backbones, 
WA(O), is given by 

(26) 

In principle, this weight fraction can be determined 
experimentally. Assuming that this model ade­
quately describes the experiment, the parameter q 
characterizing the efficiency of grafting can then be 
calculated. Equation 24 can be expressed directly in 
terms of WA(O) after substitution from eq26. 

The number and weight averages of the number 
of grafts attached to the backbones (including the 
ungrafted backbones) are given by the expression 
for the average value of the negative binomial 
distribution 

The meaning of the first average, m", is obvious. It 
represents the average number of grafts in co­
polymer macromolecules, because the number frac­
tion of backbones carrying m grafts, N A(m), at the 
same time equals the number fraction of copolymer 
macromolecules carrying m grafts. This of course 
does not apply to weight fractions. 

Distributions Functions of the Chemical Composition 
and Molecular Weights of the Copolymer 
In the preceding text, we derived the distribution 

functions of molecular weights of copolymer parts 
of block and graft copolymers and demonstrated 
that, if the precursor blocks had the T-distribu­
tion of molecular weights, the molecular weight 
distributions of whole parts A and B of the co­
polymer, formed generally by several precursor 
blocks, also possessed the same character. The two­
dimensional molecular weight number distribution 
of copolymer parts can be written as a product 
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of two T-distributions (cf eq 13 and 19): 

Nc(MA, Ms) 

=r(MA; YA, hA) r(MB; Ys, hs) (28) 

Relations between parameters of this distribution 
function and parameters of the distribution func­
tions of molecular weights of precursor blocks for 
various models of the copolymerization mechanism 
are summarized in Table I. 

By transformation of the variables according to 
eq 1 and 2, we obtain a two-dimensional.ditferential 
weight distribution function of molecular weights, 
M, and of the chemical composition, x, of the 
copolymer 

h YA+1h Ys+1 
W(M, x) A B xYA -1(1-x)Ys-1 

(YAhs + YshA)r(YA)T(ys) 

)( MYA+Ys exp [ -(hAx+h8(1-x))M] 

(29) 

According to eq 3b, integration over all molecular 
weights yields a marginal weight distribution func­
tion of chemical composition 

h YA+1h Ys+1 T(y +y +1) 
W(x)= A s A s 

( Y A hs + Ysh A) T( YAJT( Ys) 

(30) 

The resulting eq 30 is identical with an analogous 
equation given by Tanaka et al.U for a diblock 
copolymer. Here, more generally, all parameters 
refer to the whole copolymer parts rather than to 
the precursors. The number and weight distribution 
functions of chemical composition are related with 
each other by 

(31) 

Analogous marginal distribution functions of mo-. 
lecular weights cannot generally be expressed in a 
closed form, but only as a series. Integration of 
eq 29 according to eq 3a gives the weight distri­
bution function of molecular weights of the 
copolymer, 
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YA(YA+1) (hA-ha)zMz J 
+ +··· 

(yA+Ya)(yA+Ya+1) 2! 
(32) 

In the particular case, where hA =h8 =h, i.e., if the 
difference between the molecular weight averages 
for both parts of the copolymer, A and B, is the 
same, M wA- MnA = M wB- M.a (cf eq 8), the distri­
bution function given by eq 29 is reduced to a simple 
form 

W(M, x) =r(M; YA+Ya+l, h)B(x; YA> y8 ) (33) 

B(x; y A> y 8 ) is the beta distribution function defined 
as, 

B(x; YA, Ya)= B- 1(yA, Ya)xYA - 1(1- x)Ys-l (34) 

where B(yA, Ya) = r(yA)r(ya)/ r(yA + Ya) is the beta 
function. 

As can be seen in eq 33, the relation W(M, x) = 
W(M) W(x) holds, so that in this case the distri­
butions of molecular weights and chemical com­
positions are independent of each other. Also under 
these conditions, the parameter P defined by eq 4c, 
which is a measure of the mutual dependence of 
both distributions, is zero and the number and 
weight distribution functions of chemical compo­
sition are identical, W(x) = N(x), as follows from 
eq 31. 

Calculation of the molecular weight Mw, or of 
M w! M., and of the parameters of chemical hetero­
geneity P and Q from the definition eqs 4 leads to 

Mw x!Ya+ YAYB +(1-xwfYA 
(35) 

M. YAYB 

p Xw(1- Xw)[XwYB- (1- Xw) YA] 

Mw x!Ya + YAYa+(1-xw) 2YA 
(36) 

Q x!(l - x!)( YA + Ys) 

Mw x!Ya + YAYa+(1-xw)2YA 
(37) 

These relations have been proved1 •10 to hold 
independently of the distribution function W(M, x) 
and of copolymer structure. Parameters y A and y8 

generally characterize the polydispersities of the 
individual copolymer parts, YK = 1/(MwKIMnK -1), 
K =A or B. The papers referred to give identical 
equations, differing only in their formal layout. 

For precursors with F-distribution of molecular 
weights, parameters y A and y 8 can be derived from 
the corresponding precursor characteristics, YA and 
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y:, using Table I. For these kinds of precursors, two 
additional relations hold: 

YAha 
(38) Xw 

YAha+YahA 

M. 
YAha+YahA (39) 

hAhB 

Mixtures of Copolymer Species 
In most cases, synthesis of copolymers leads to a 

mixture of copolymer macromolecules differing not 
only in chemical composition and molecular weight, 
but also in the number of constituent blocks. Below, 
the term copolymer species is applied to a set of 
copolymer macromolecules consisting of a given 
number of precursor blocks A and blocks B. Thus, 
for instance, in the preparation of a triblock co­
polymer, the reaction product usually contains, in 
addition to the required triblocks, also other spe­
cies, viz., diblocks and homopolymers. Especially, 
the syntheses of graft copolymers may yield mix­
tures rich in various copolymer species. In these 
cases, it is suitable to introduce distribution func­
tions for the copolymer as a whole (if so desired, 
also including the accompanying homopolymers), 
which are a weighted sum of the distribution func­
tions of the individual species s appearing in the 
mixture, 

Wc(M, x)= I Wts)W(M, xIs) (40a) 

Wc(x)=I W(s)W(xls) (40b) 

Wc(M)=I W(s)W(Mis) (40c) 

etc., where the distribution function W(s) describes 
the weight fractions of the individual species s in the 
mixture; e.g., W(M Is) is the molecular weight 
distribution of the copolymer species s, etc. 

The form of the distribution functions W(s) for a 
given case must be derived from the mechanism of 
the reaction used in the preparation of the co­
polymers, or a simplifying model should be chosen. 
When the reaction mechanism is too complicated or 
not sufficiently understood. If, e.g., we assume in a 
simplified version that the graft copolymer consists 
merely of macromolecules which possess only one 
backbone and various numbers m of the attached 
grafts, then the weight distribution of the individual 
species W(s) can be described by means of the 
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distribution WA(m) given by eq 24a. The distri­
butions of the individual species for various con­
crete cases have been described in the literature. 1 •9 

For parameters of the chemical heterogeneity of a 
copolymer formed by a mixture of chemically het­
erogeneous copolymer species, s, it can be written 
that (Appendix B): 

(41c) 

where is the weight average of the quantity As= 

P8 , Q8 , M 8 , or X 8 of the mixture, 

and are parameters of the chemical hetero­
geneity, p and Q, calculated for a similar hy­
pothetical mixture, all the individual components 
(species) of which are chemically homogeneous. 

EXAMPLES AND DISCUSSION 

Distribution Functions of Chemical Composition 
First, some basic properties of the distribution 

0 

functions of chemical composition and of their 
parameters are shown using several examples. 
Again, the basic block or the backbone is referred to 
as part A and the attached blocks or grafts as part 
B, where such distinction is desirable. The com­
positions are given by the weight fraction of com­
ponent A. 

The required characteristics of the copolymer are 
obtained by the following procedure: 

(a) From the known molecular weights of pre­
cursors or parent polymers, the parameters y * and 
h* of the r-distribution of molecular weights are 
calculated using eq 8. 

(b) Table I gives the relation between the pa­
rameters y and y *, h and h* according to the 
chosen model. 

(c) The required distribution functions of 
chemical composition and molecular weight are 
calculated from eq 29-34; the corresponding pa­
rameters of chemical heterogeneity of copolymers 
are calculated by means of eq 36 and 37. 

A diblock, AB, and a triblock, BAB copolymer 
are considered, formed according to model I from 
precursors A and B having in both cases the same r­
distribution of molecular weights and M: = 50,000, 
M !I M: = 1.2 (the molecular weight distribution is 
relatively narrow). According to eq 8, y% = y: = 5, 
h% = h: = 10-4 . From Table I we determine YA = 5, 

3 (a) 
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3 (b) 

3 (c) 

Figure 3. Two-dimensional differential weight distribution function W(M, x) of molecular weights, M, 
and chemical composition, x, for (a) diblock AB and (b) triblock BAB (in both cases, M:A =M:8 = 50,000, 
M!A/M:A = M!8 /M:8 = 1.2),and(c)triblock BABwhere M:A =70,000, M:8 =40,000, M!A/M:A = 3, M!s/ 
M:8 =1.2. 
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5,------------------,------------------. 

2 

X 

4 (a) 

5,-----------------,-----------------, 
1.1 

0 0.5 1.0 
X 

4 (b) 

Figure 4. Marginal differential weight distribution functions W(x) of chemical composition, x, of (a) 
model diblock AB, and (b) model triblock BAB formed by joining blocks A and B with the same r­
distribution of molecular weights having polydispersity M!/M: indicated for individual curves. 
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Ys = 5 for the diblock and y 8 = 10 for the triblock, 
hA =hl, The two-dimensional distribution 
functions W(M, x) have for this case the form of 
eq 33 (Figures 3a, b) 

W(M, x)=r(M; 11,10-4) B (x; 5, 5) (diblock) 

W(M, x)=F(M, 16,10-4) B (x; 5, 10) (triblock) 

Figure 3c shows a more general case of such 
distribution function. 

The marginal distribution functions of chemical 
composition for a model diblock1 and triblock are 
relatively broad (Figure 4), even if both precursors 
have a narrow molecular weight distribution. This 
means, in practice, that the chemical heterogeneity 
of block copolymers cannot, as a rule, be neglected. 
The case where for both precursors M!/M:=2 is 
of interest (the so-called most probable distribution). 
The chemical composition ofthe diblock has then a 
uniform distribution (Figure 4a), i.e., copolymer 
macromolecules with any composition are present 
in identical relative amounts. Under the same con­
ditions, the distribution of the triblock copolymer 
is triangular (Figure 4b ). If the polydispersity in­
dices of the precursors M!/M:>2, the distribu­
tion functions of chemical composition are con­
cave, and the content of macromolecules having 

a composition close to that of homopolymers in­
creases compared with the preceding cases. 

Such a trend could be expected. For instance 
with a diblock copolymer, because of the broad 
molecular weight distributions of the precursors, 
the probability of joining of two macromolecules 
with the same molecular weight (i.e., the occurrence 
of the composition x=0.5) is obviously low. 

The distribution functions of chemical compo­
sition of graft copolymers can be represented in a 
similar way. Figure 5 shows such functions for a 
graft copolymer consisting of one backbone to 
which m grafts have been attached; the grafts are 
attached according to model II. In this case too, one 
can see a strong effect of the initial polydispersity of 
parent polymers on the final form of the distri­
bution functions. 

A real graft copolymer consists of a mixture of 
more species, and its distribution function of chemi­
cal composition is a weighted sum of the distri­
bution functions of these species, some of which are 
depicted in Figure 5. 

Parameters of Chemical Heterogeneity 
A preliminary view of the magnitude of the 

parameters of chemical heterogeneity of both block 

2 

0 0.5 1.0 
X 

5 (a) 
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3 r--------------------.-------------------, 

X 

2 

0 
X 

5 (b) 

0 0.5 1.0 
X 

5 (c) 

Figure 5. Marginal differential weight distribution function W(x) of chemical composition, x, of graft 
copolymer bearing on one backbone of type A m grafts of type B. Number of grafts m is given for 
individual curves. Both blocks A and B have the same r-distribution ofmolecularweights,M!/M:=Ca) 
1.2, (b) 2, and (c) 5. 
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0.5 1.0 
Xw 

6 (a) 

0.2 

5 

a 

0.1 

6 (b) 

Figure 6. Parameters of chemical heterogeneity (a) P/Mw, and (b) Q/Mw of copolymer whose parts A 
and B have polydispersity Mw/M,=i.2, 2, 5 (assumed to be the same for both parts of the copolymer) 
depending on average chemical composition of copolymer, xw. 

Polymer J., Vol. 14, No. 8, 1982 



Compositional Distributions of Copolymers 

and graft copolymers can be obtained from Figure 
6, where these parameters are graphically repre­
sented according to eq 36 and 37 as a function of the 
chemical composition of the copolymer for various 
polydispersities of copolymer parts, MwfMn (as­
sumed the same for both copolymer parts). 

The following trends can be stated: 
(a) The absolute value of the parameters P/Mw 

and Q/ M w increases with increasing polydispersity 
of molecular weight of the individual parts of the 
copolymer. The more precursor molecules partic­
ipate in the build-up of a copolymer macromol­
ecule, the lower is the polydispersity of copolymer 
parts (Table I, eq 8b), and consequently, the lower 
are the parameters of chemical heterogeneity of 
such copolymer. 

(b) If the number average molecular weights of 
the individual copolymer parts, each of which may 
consist of more blocks, are the same (xw = 0.5), and 
if they have the same polydispersity, then P/Mw=O 
while Q!Mw assumes its maximum for the given 
polydispersity M wf M"" 

(c) Both parameters, I P / M w I and Q/ M w' are 
high, exceeding by several orders of magnitude 
values common with statistical copolymers pre­
pared up to medium and high conversionsY In 

many cases, the parameters of chemical hetero­
geneity are so high that they can with sufficient 
accuracy be determined by light. scattering, 16 or the 
chemical heterogeneity of copolymers can be char­
acterized by another method. 15 

Comparison of Models of Formation of Copolymers 
Figure 7 shows how the form of the distribution 

function of chemical composition is affected by the 
model chosen, i.e., by the mechanism of formation 
of the copolymer. As expected, the differences are 
relatively small if the molecular weight distributions 
of the precursors are very narrow and become 
increasingly pronounced with broadening poly­
dispersity of the latter. In this case, too, several 
rather general conclusions can be drawn: 

(a) The distribution functions of chemical com­
position for model I are U-shaped (convex) for JA, 

YB< 1 and JI-shaped for YA> YB> 1, or have a more 
complicated form for other combinations of these 
parameters (cf, e.g., Figure 9). On the other hand, 
as follows from Table I, yA, YB > I always hold for 
model III, i.e., the distribution functions for model 
III are always JI-shaped. For model II, we always 
have YA> I, i.e., the distributions are never U­
shaped. 

Ill 

2 

0 1.0 
X 

7 (a) 

Polymer J., Vol. 14, No. 8, 1982 619 



620 

J. STEJSKAL and P. KRATOCHViL 

0 o.s 1.0 
X 
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0 0.5 1.0 
X 

7 (c) 

Figure 7. Comparison of marginal differential weight distribution functions W(x) of chemical com­
position, x, for copolymer obtained by joining one block A and one block B with the same r-distribution 
of molecular weights having M!/M: =(a) 1.2, (b) 2, and. (c) 5 for individual models I through III. 
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(b) Model III always gives narrower distri­
butions of chemical composition than model I. 

(c) For a high polydispersity of precursors, y A, 

y8 ->0, the distribution of chemical composition for 
model III approaches a uniform distribution. 

These conclusions obviously hold only on the 
assumption that the precursors haver-distributions 
of molecular weights. In the discussion below, it is 
shown, however, that the type of molecular weight 
distribution of the precursors does not affect the 
conclusions to any essential degree. 

Approximation of Equal Blocks 
Quite often, the distribution function of mo­

lecular weights of copolymer parts cannot be ex­
pressed in an analytical form, especially if the 
distribution functions of molecular weights of pre­
cursors have a rather complicated character. For 
this reason, the so-called approximation of equal 
blocks is sometimes introduced in the literature. 1•4 

It is assumed that all precursor blocks of the A or 
B type which form a given copolymer macromole­
cule have the same molecular weight, but have dif­
ferent weights in different macromolecules in ac-

cord with the assumed type of molecular weight 
distribution of the precursors. This means that, 
e.g., the molecular weight of part A of the co­
polymer molecule composed of a blocks, M A= 

MA_1 +MA.2 + · · · +MA.., is approximated by the 
molecular weight MA =aM A_, which in terms of 
the distribution functions can be written as (cf 
eq 10) 

(42) 

If the precursor blocks have the r-distribution of 
molecular weights, then ( cf, e.g., eq 12a) 

NA(MAia)::::::F(MA; y!, hA_/a) (43) 

A similar relation holds for the precursor blocks B. 
Further equations which apply to the distribution of 
chemical composition of the copolymer are the 
same as in the cases already discussed, only re­
lations between the parameters YA and yA_, hA and 
hA. are different, as summarized in Table I. 

The above approximation does not respect the 
important fact that by interlinking the blocks the 
molecular weight distribution of the copolymer part 
thus obtained becomes narrower. It can be seen in 

0.5 1.0 
X 

Figure 8. Comparison of marginal differential weight distribution functions W(x) of chemical com­
position, x, of triblock BAB (I) and of the same function calculated with approximation of equal blocks B 
in given copolymer macromolecule (2). For both precursor block identical r-distribution of molecular 
weights is assumed, M:fM: = 1.2. 
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eq 43 that the parameter y A= y A does not depend on 
the number a of the joined blocks, and thus that, 
according to eq 8, the ratio M wAI MnA is also inde­
pendent of a. 

The approximation specified by eq 42 holds ex­
actly for a diblock or for a graft copolymer with 
one graft. Already in a triblock, the differences be­
tween calculated distribution functions cannot be 
neglected (Figure 8), and the difference increases 
further with increasing number of the joined 
blocks. The use of this approximation predicts 
always a broader distribution of chemical com­
position, and hence also a higher chemical hetero­
geneity of the copolymer compared to a more 
rigorous calculation without such approximation. 
Consequently, the approximation is not advised 
wherever statistical analysis or computing tech­
nique make possible calculation without such 
simplifying assumptions. 

Number and Weight Distributions of Chemical 
Composition 
For chemically heterogeneous copolymers, two 

basic types of the distribution functions of chemical 
composition can be distinguished, viz., the number, 

N(x), and the weight, W(x), functions which give 
the number and weight fractions, respectively, of 
macromolecules having the given composition, x. 
This is an analogy of the common number and 
weight distribution functions of molecular weights. 

If the distributions of molecular weights and of 
chemical compositions of the copolymer are mu­
tually independent, i.e., if a two-dimensional distri­
bution function can be written as a product of the 
corresponding marginal functions, e.g., N(M, x) = 

N(M) N(x), it can be derived from eq2 and 3 that 
N(x) and W(x) are identical (cf discussion of eq 
33), because 

W(x)= L W(M, x)dM=Mn-lL MN(M, x)dM 

=N(x)M; 1L MN(M)dM=N(x) (44) 

In a general case, N(x) and W(x) differ from each 
other (Figure 9, cf also Figure 3c). Hence, the 
number and weight averages of chemical com­
position, X0 , defined by eq 5a, and xw are also 
different (for the case illustrated in Figure 9, 
X 0 = 0.33 and xw = 0.47). Thus, in principle, the ratio 
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Figure 9. Comparison of marginal differential number and weight distribution functions, N(x) and 
W(x), of chemical composition, x, for the model triblock BAB. F-distribution, M:A = 70,000, M:B = 
40,000, M!A/M:A=3, M!B/M:B=l.2. 
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xwfxn could serve as another parameter of chemical 
heterogeneity having a meaning similar to that of 
parameter P. 

All experimental methods of determination of the 
chemical composition of copolymers give the weight 
average value, xw; we are not aware of the existence 
of any procedure in use which would yield the 
number average value, x .. In principle, however, 
methods leading to its determination could be sug­
gested. Thus, e.g., if each macromolecule caried one 
certain characteristic group (fluorescence, isotope, 
or other label), it would become possible, after the 
fractionation of the sample according to chemical 
composition, to determine not only the weight, but 
also the number of macromolecules having the 
given composition in each fraction, and thus to 
derive the number distribution of chemical com­
position and its average. 

For the sake of completeness, it should be men­
tioned that all the distribution functions discussed 
here can have their variable chemical composition 
expressed not only through the weight fraction, x, 
of one of the monomer units, but also through the 
mole fractions, of these units. For all distribution 
functions, both these ways of expression are related 
by 

where t = M 0 A/ M 08 is the ratio of molecular weights 
of the monomer units, and 1]. 

Comparison of Various Types of Molecular Weight 
Distributions 
It has been assumed throughout this study that 

the molecular weights of precursors (parent poly­
mers) have the T-distribution. It is undoubtedly a 
question of principle whether and how the con­
clusions would change if the character of the distri­
bution is different. We have, therefore, examined 
also some special cases where both parts A and B of 
the copolymer have an identical Tung or 
logarithmic-normal distribution. 

(a) Tung distribution. Let both the parts A and 
B of the copolymer (or the precursors A and B, if 
the copolymer is a diblock) have an identical Tung 
number molecular weight distribution17 

N(M)= T(M; y, h)= yhMy-! exp ( -hMY) (46) 

where the positive parameters of the distribution 
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function, y and h, are related with the molecular 
weight averages by 

Mn=h- 11Y T (1+{) (47a) 

Then, the two-dimensional distribution function of 
molecular weights and chemical composition has 
the form 

exp {-[xY+(1-x)Y]hMY} (48) 

and the marginal number and weight distribution of 
chemical composition are given by 

[x(1-x)JY- 1 

N(x)=y[xY+(1-x)Y]z (49a) 

y+1 [x(1-x)JY- 1 
W(x) -- (49b) 

2 [xY+(1-x)YJ<2+1/yl 

(b) Logarithmic-normal distribution. Similarly 
to the preceding case, let the parts A, B of a 
copolymer have an identical logarithmic-normal 
molecular weight distribution 

N(M)= lo(M; y, h2 ) 

1 exp [--1-ln2 !!..._] 
J2nhM 2h2 M 0 

(50) 

where the distribution parameters y=lnM0 and h2 

are related to the molecular weight averages by 

Mn=M0 exp (h 2 /2) (5la) 

Mw/Mn=exp WJ (5lb) 

Then, the two-dimensional distribution function 
W(M, x) has the form 

1 
W(M x) = ---:c-;;-----

, 4nh2x(1-x)M0 

exp [--1- (ln2 xM +ln2 (1-x)M)- h2] 
2h2 M 0 M 0 2 

(52) 

and the marginal distribution functions are given by 
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1 ( 1 X ) N(x)= exp --2 ln2 -- (53a) 
2J n hx(1-x) 4h 1-x 

W(x) 
1 

4J n hx(1-x)2 

exp _x +!!_)2
] 

2h 1-x 2 (53 b) 

It can be seen from eq 53a, among others, that the 
number distribution of x/(1- x) is again loga­
rithmic-normal. A more general case, when the 
logarithmic-normal molecular weight distributions 
of copolymer parts are not identical has been 
treated by Tanaka et al.U 

By comparing the courses of the distribution 
functions of chemical composition calculated as­
suming different molecular weight distributions of 
the copolymer parts A and B and their different 
polydispersities (Figure 10), the following con­
clusions can be drawn: 

(a) At a low polydispersity of the copolymer 
parts A and B, the distributions of chemical com­
position are virtually independent of the type of 
molecular weight distribution (Figure lOa). This 
conclusion is also supported by the calculations 
performed by Tanaka et a/. 11 

(b) If for both parts of the copolymer M wf M" = 
2, an identical uniform distribution of chemical 
composition of the copolymer is obtained for both 
the Tung and the F-distribution. For the 
logarithmic-normal molecular weight distribution, 
the distribution of chemical composition is virtually 
uniform in the composition range between x=0.3 
and 0.7 (Figure lOb). 

(c) Even for broad molecular weight distribu­
tions, the character of the compositional distri­
bution depends only very little on the type of the 
molecular weight distribution. The vertical dis­
placement of curves in Figure 1 Oc is mainly 
due to the different marginal behaviour of the dis­
tribution functions. In this case, the distributions 
of chemical composition calculated for the Tung 
and r-molecular weight distributions have at the 
boundaries of the interval of the composition x, 
the limit + oo; function 1 for the r-distribution 
increases more quickly that function 2 for the 
Tung distribution (Figure lOc). Curve 3, which 
corresponds to the logarithmic-normal distribution, 
has both limits equal to zero; hence, in this case the 
distribution function of chemical composition 
exhibits a bimodal character with maxima localized 
at low x values and x values approaching unity. The 
bimodality of the same function with unpronounced 

3,------------------.------------------, 
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1.5,------------.-----------.., 
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Figure 10. Marginal differential weight distribution functions W(x) of chemical composition, x, of 
model diblock AB formed by combination of blocks A and B with identical molecular weight distribution: 
(1) [' (Schulz-Zimm), (2) Tung, and (3) logarithmic-normal of various width characterized by M = 

(a) 1.2, (b) 2, and (c) 5. 
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maxima for x=0.33 and x= 0.67 is also slightly 
indicated in Figure lOb. The tendency to form 
copolymer macromolecules having a composition 
close to that of the homopolymers is most pro­
nounced with the r -distribution and least pro­
nounced with the logarithmic-normal distribution. 

We believe, on the basis of this comparison, that 
the form of distributions of chemical composition is 
relatively little dependent on the type of the mo­
lecular weight distribution of the precursors, and, 
consequently, that approximation of a real molecular 
weight distribution of the precursors by the r­
distribution is justified in the absolute majority of 
cases. 

APPENDIX A 

(A) Molecular Weight Distribution of the 
Copolymer Part Consisting of a Precursor Blocks 
We shall prove that, if the precursor blocks A 

have the r -distribution of molecular weights 
N;t(M;t)=T(M;t; y;t, h!) and the copolymer part 
containing a-1 joined blocks similarly has the 
molecular weight distribution 

NA(MA-M!.Ia-1) 

=T(MA -M;t.; (a-1)y;t, h;t) 

then the distribution of molecules weights M A in 
a system containing a joined blocks A is described 
by the distribution function N A (M A I a)= T(M A; 
ayf, h;t). 

By substituting the T-distribution functions into 
eq 10, we obtain 

NA(MAia)= r T(M;t.; y;t, h!) 
JMA0 <MA 

X T(MA -M;t.; (a -1)y;t, h;t)dM!a 

(A-1) 

According to the definition of the r -distribution 
(eq 6) we have, then, 

NA(MAia) 

h*"YA* 
A M ( h*M ) 

T(y;t)T[(a-1)y;t] A exp - A A 

Jooo ( M * )(a-1)YA*-1 (M * 1 dM * 
MA MA MA 

(A-2) 
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Substitution S=M!.IMA yields 

NA(MAia) 

h*"YA* 
A M ayA'- 1 exp (-h*M ) 

r(y;t)T[(a- 1)y!J A A A 

f (A-3) 

On changing the integration boundaries we re­
spect the requirement M!. < M A• i.e., S <I. The 
improper integral in (A-3) is T[(a-l)y;t]r ( y;t)/ 
T(ay;t), and hence, 

h*aYA* 

NA(MA I a)=-A __ MA"YA'- 1 exp ( -h!MA) (A-4) 
T(ay!) 

By comparing with eq 6, we obtain eq 12a, 

NA(MA la)=T(MA; ay;t, h!) 

The resulting equation also follows directly from 
eq 33, if the system of a- I blocks is formally 
regarded as part B and the last joined block 1s 
regarded as part A; then, 

WA(MAia)=T(MA; ay;t+1, h!) 

and from eq 7 we again have eq 12a. 

APPENDIX B 

(B) Parameter P of a Mixture of Chemically 
Heterogeneous Copolymer Species 
With regard to the general definition of the 

parameter P given by eq 4c, it can be written for a 
mixture of chemically heterogeneous species s that 

Pc=IJI (x-xc)MW(M,xls)W(s)dMdx 
s JxM 

(B-1) 

the parameter P of the individual components of the 
mixture being 

Ps= I lM (x-x.)MW(M, xls)dMdx (B-2) 

The weight average of Ps is 

(B-3) 

and the parameter P of a hypothetical mixture 
whose individual components s are chemically 
homogeneous is 
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(B-4) 

After extension of the integral in eq B-1 and by 
changing the order of integration and summation, 
we obtain 

Pc=I W(s)f I (x-x5)MW(M, xis)dMdx 
s JxM 

+I (xs- xc) W(s)f I MW(M, xIs) dM dx 
s JxM 

and thus 

A comparison of the latter relation with eq B-2 
through B-4 gives eq 4la. Derivation of an ex­
pression for the parameter Q is quite similar. 
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