Study on Polysaccharide by the Fluorescence Method. II. Micro-Brownian Motion and Conformational Change of Amylose in Aqueous Solution

Abstract

The segmental motion of amylose in aqueous solution and the conformational transition with temperature and pH were studied by the fluorescence polarization method. We prepared two types of fluorescent conjugates of amylose: amylose conjugated with fluorescein randomly throughout chain (F-Amylose) and amylose conjugated locally on a terminal segment (t-F-Amylose). The value of the rotational relaxation time for t-F-Amylose was much smaller than that for F-Amylose. This result suggests that a terminal segment undergoes a more rapid micro-Brownian motion than interior segments. Polarization curves of these conjugates gradually departed from the Perrin equation when the temperature was raised. F-Amylose showed a gradual departure above 45°C but t-F-Amylose showed a departure at room temperature. This indicates that the conformational transition occurs first in terminal segments and then extends to the interior segments with increasing temperature. The effect of pH on the polarization was also examined. When measured as a function of pH, fluorescence depolarization increased pronouncedly in the alkaline region. In contrast to changing temperature, depolarization began to increase at the same pH for the two amylose conjugates.

References

  1. 1

    J. M. G. Cowie, Makromol. Chem., 42, 230 (1961).

  2. 2

    W. Burchaurd, Makromol. Chem., 64, 110 (1963).

  3. 3

    W. Banks and C. T. Greenwood, Makromol. Chem., 67, 49 (1963).

  4. 4

    W. Banks and C. T. Greenwood, Carbohydr. Res., 7, 349 (1968).

  5. 5

    W. Banks and C. T. Greenwood, “Starch and Its Components,” Edinburgh University Press, Edinburgh, U.K., 1975, Chapter 4.

    Google Scholar 

  6. 6

    T. Kuge, “Denpun Kagaku Handbook,” N. Nakamura and S. Suzuki, Ed., Asakura Shoten Co., Tokyo, 1977, pp 20—23.

    Google Scholar 

  7. 7

    S. Kitamura, H. Yunokawa, and T. Kuge, Polym. J., 14, 85 (1982).

  8. 8

    E. V. Anufrieva, M. V. Volkenstein, M. G. Krakovyak, and T. V. Shevelava, Dokl. Akad. Nauk SSSR, 186, 854 (1969).

  9. 9

    T. J. Gill III and G. S. Omenn, J. Am. Chem. Soc., 87, 4188 (1965).

  10. 10

    W. J. Whelan and J. M. Bailey, Biochem. J., 58, 560 (1954).

  11. 11

    A. Kamogawa, T. Fukui, and Z. Nikuni, J. Biochem., 63, 361 (1968).

  12. 12

    A. N. De Belder and K. Granath, Carbohydr. Res., 30, 375 (1973).

  13. 13

    J. E. Hodge and B. T. Hofreiter, “Method in Carbohydrate Chemistry I,” R. L. Whistler and M. L. Wolfrom, Ed., London, U.K., 1962, p 388.

    Google Scholar 

  14. 14

    G. Weber, Biochem. J., 51, 145 (1952).

  15. 15

    International Critical Tables,” Vol. V, E. W. Washburn, Ed., McGraw-Hill, 1929, p 23.

  16. 16

    Kagaku Binran,” Vol. 1 (II), The Chemical Society of Japan, Ed., Maruzen Co., Tokyo, 1966, Sections 5—10.

  17. 17

    V. S. R. Rao and J. F. Foster, Biopolymers, 1, 527 (1963).

  18. 18

    L. Doppert and A. J. Staverman, J. Polym. Sci., A-1, 4, 2373 (1966).

  19. 19

    S. R. Erlander, R. M. Purvinas, and H. L. Griffin, Cereal Chem., 45, 140 (1968).

  20. 20

    M. Uchida, M. Yamamoto, and Y. Nishijima, Polym. Prepr., Jpn., 25, 2. 297, (1976).

  21. 21

    M. Uchida, M. Yamamoto, and Y. Nishijima, Polym. Prepr., Jpn., 25, 2. 298 (1976).

  22. 22

    T. F. Schatzki, J. Polym. Sci., 57, 496 (1962).

  23. 23

    E. Helfand, J. Chem. Phys., 54, 4651 (1971).

  24. 24

    B. Valeur, J. P. Jarry, F. Gény, and L. Monnerie, J. Polym. Sci., Polym. Phys. Ed., 13, 667 (1975).

  25. 25

    F. Gény and L. Monnerie, J. Polym. Sci., Polym. Phys. Ed., 17, 131 (1979).

  26. 26

    T. Kuge and S. Ono, Bull. Chem. Soc. Jpn., 34, 1264 (1961).

  27. 27

    T. Kuge, Bull. Univ. Osaka Pref., B, 11, 121 (1961).

  28. 28

    J. Holló and J. Szejtli, St, Stärkeamp;auml;rke, 10, 49 (1958).

  29. 29

    J. Szejtli, M. Richter, and S. Augustat, Biopolymers, 5, 5 (1967).

  30. 30

    M. Senior and E. Hamori, Biopolymers, 12, 65 (1973).

  31. 31

    R. C. Jordan, D. A. Brant, and A. Cesáro, Biopolymers, 17, 2617 (1978).

  32. 32

    C. Tanford, “Physical Chemistry of Macromolecules,” John Wiley & Sons, Inc., New York–London, 1961, p 343.

    Google Scholar 

  33. 33

    F. Perrin, J. Phys. Radium, 5, 497 (1934).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kitamura, S., Yunokawa, H., Mitsuie, S. et al. Study on Polysaccharide by the Fluorescence Method. II. Micro-Brownian Motion and Conformational Change of Amylose in Aqueous Solution. Polym J 14, 93–99 (1982). https://doi.org/10.1295/polymj.14.93

Download citation

Keywords

  • Amylose
  • Fluorescent Conjugate
  • Fluorescence Depolarization
  • Segmental Motion
  • Terminal Segment
  • Interior Segment
  • Deformed Helix
  • Conformational Transition

Further reading

Search