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ABSTRACT: The excluded-volume effects on polymers were studied by a method developed 
for a random walk problem by Tsuda eta!. on the basis of Feynman's path integral concept. The 
method was applied to ring chains interacting through a soft-core potential, i.e., V(r)=y for r<d 
and V(r) = 0 for r The exponent v which characterizes the dependence of the chain dimensions on 
N (number of segments) was found to be about 0.58 for repulsive interaction. However, no definite 
value of v was obtained for attractive interaction because of large statistical scatters. An 
investigation was also made for chain dimensions as a function of N 112 , y, and N 1' 2 y. 
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The purpose of the present paper is to apply the 
well-known method of numerical computation de­
veloped by Tsuda, Ichida and Kiyono1 to the 
analysis of the statistical properties of interacting 
polymer systems, and to present the preliminary 
results obtained. This method was originally de­
vised for finding an initial solution to a non-linear 
diffusion equation which could not be solved 
analytically. We show that this method can be 
applied as well to the polymer problems in con­
sideration of the similarity between the diffusion 
process and the random walk model of polymer 
chains. Our task has been to evaluate approximately 
the average of observable quantities by the Monte 
Carlo simulation on the basis of Feynman's path 
integral concept.2 

The object of numerical experiments on polymers 
has so far been limited primarily the single-chain, 
with a flexible chain in a dilute solution being 
conceived as a self-avoiding random walk on a 
simple lattice. Two methods were established. One 
was the exact counting of self-avoiding walks of 

some very short chains, supplemented by certain 
techniques for extrapolating the results of very long 
chains.3 Another was the Monte Carlo method in 
which only a small fraction of all possible confor­
mations are generated and used as samples.4 Since 
these numerical methods allow polymer statistics 
to be studied in the frame of a simple lattice model, 
they are extremely usefull and play an important 
role in evaluating various exponents characterizing 
the chain dimensions and their distributions. The 
most important exponent is concerned with the 
asymptotic behavior of the chain dimensions 
for large values of N (number of segments). As is 
well known, the mean-square radius of gyration 
follows the power law <S2 ) Either of the 
above-mentioned numerical methods yields 
which is in good agreement with the most reliable 
theoretical prediction by the renormalization group 
theory.5 Recent progress in the Monte Carlo 
method owes much to Baumgartner et a/. 6 and 
Lebowitz et aC who extensively studied polymer 
systems interacting via the Leonard-Jones 12-6 po-

931 



T. MINATO and A. HATANO 

tential, using models which are free from constraint 
of the lattice. Such a system is certainly much closer 
to real polymer systems than any lattice chain. 
Using the dynamic Monte Carlo method, these 
authors carefully studied complex static and dy­
namic behavior of a polymer chain to which the 
usual static Monte Carlo method cannot be applied. 
The results obtained showed for the first time that 
the exponent v is about 0.59 for the Lennard-Jones 
12-6 potential in which the repulsive force is domi­
nant, and gave good insight into the dependence 
of condensation phenomena on temperature, chain 
response to external forces, and such time­
dependent phenomena as the diffusion or relaxation 
process of the chain. 

It may be considered that the static or dynamic 
Monte Carlo method can be used to study not only 
single-chain problems but also the properties of 
many-chain systems.8 Recent scaling approaches to 
semi-dilute and confined polymer solutions seem to 
be very appealing.9 It is, therefore, of great interest 
to study carefully information obtained by these 
approaches from Monte Carlo simulations. Of 
course, it is possible to extend the usual Monte 
Carlo method to the analysis of many-chain sys­
tems, but enormouse execution time and core mem­
ories seem necessary for performing simulations by 
computer. Our use of the method developed by 
Tsuda et al. was prompted from this consideration. 
This method does not allow us to deal with the 
dynamics of polymer systems, but it has the 
following advantages: 

I) Recent micro-computers are capable of 
carrying through such simulations. The classical 
Monte Carlo method requires very complex algo­
rithms10 to generate self-avoiding walks on a lattice. 
Therefore, an enormously long execution time and 
large core memories are needed when it is used for 
simulation of many-chain systems. On the contrary, 
the present method described in the following sec­
tion needs only a very small number of core mem­
ories and much less execution time, because it is 
essentially based on a simple random walk (Wiener 
path) generated by the use of a recursion relation. 

2) This method seems capable of being gen­
eralized for application to more complex polymer 
systems such as branched chains, stiff-chains, co­
polymers, and many-chain systems in which poly­
mer chains interact with each other via an arbi­
trary potential. In doing so, some modifications 
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suggested in the following sections should be 
made. 

3) By using the present method, we can also 
handle polymer chains between reflecting barriers. 
Recently much attention has been focused on the 
statistical properties of polymers interacting with 
walls. 11 The influence of these reflecting walls can be 
taken into consideration since the Wiener path is 
allowed to reflect at the surface to a mirror image 
point when it crosses the surfaceY 

4) We can further take into account the con­
straints imposed on the chain ends; thus a linear 
chain, a ring chain, and a chain with fixed ends can 
be treated. 

Although the present method has these advan­
tages, its validity as well as its extensibility must be 
examined carefully. For this, we investigated the 
excluded-volume effects of a simple ring chain with 
N segments (N 70) interacting with each other via 
a soft-core potential. Our results were consistent 
with those hitherto obtained, i.e., the exponent v 
was about 0.58 for a repulsive interaction and the 
mean-square radius of gyration decreased smoothly 
with increasing attraction. A remarkable revelation 
was that the mean-square radius of gyration ap­
peared to approach a constant for attractive in­
teractions; it decreased to about 40-50 percent of 
the value for the non-interacting case. 

We also derived an expression that could be used 
for computer simulation of an observable through 
application of Feynman's path integral. The meth­
od of constructing a Wiener path is also discussed 
in this paper on the basis of the technique devleoped 
by Tsuda et al. 

THEORETICAL BACKGROUND 

We treat a flexible chain using a random walk 
model, which, for simplicity, is assumed in this 
chapter to be constrained in one dimension. In this 
model, the chain consists of a sequence of N links. 
The probability that each link starts from X; and 
ends up at X;+ 1 is given by 

p(x;, X;+ 1 : e)=(2ne)- 112 exp [ -(x;+ 1 -x;?j2e] 
(I) 

where e is the average square length of a link and i 
runs from 0 to N- I. The entire distribution func­
tion is represented as13 
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Figure 1. Representation of a Wiener path of finite 
step length e. 

where the subscript 0 to Z0 denotes the free random 
walk, i.e., the unperturbed state in the polymer 
problem. The representation shown in Figure 1 may 
facilitate an understanding eq 2. The chain is repre­
sented by a polygonal line joining x0 to xN through a 
series of intermediate steps x1, x2 , • • ·, xN_ 1 • This 
polygonal line may be called a "path." A path 
constructed in this way is a Wiener path. The en­
tire distribution function is furnished by the assem­
blage of all such possible paths, and given by the 
integration over the intermediate positions x1, x 2 , 

· · ·, xN_ 1 of the path. The fixed points x0 and xN 
must be excluded from the integration. 

Now we consider an average over all the paths 
(x0 , x1, · · ·, xN) of an arbitrary functional A(x0 , x1, 
· · ·, xN), which depends on the path (x0 , x1, · · ·, xN) 
and is assumed to have a finite value for a given 
path: 

<A(xo, x1, ... , xN))o = w- 1 I A(xo, x1, ... , xN) 
all paths 

(3) 

where W is the total number of paths. Since the path 
(x0 , x1, · · ·, xN) has a probability p(x0 , x1 :8)p(x1, 
x2 :8)· ··p(xN_ 1 , xN:8) for the free random walk, 
eq 3 is rewritten more explicitly as 

<A)o =Zo(XN : N)-1 IXloo ... f_oooo A(xo, x1, ... , xN) 

x p(x0 , x 1 : 8) p(x1, x 2 : 8) · · · 

X p(XN_ 1, XN: 8)dx1dx2 • · ·dxN_ 1 (4) 
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(2) 

If eq 3 were used literally, the sum could not be 
taken over the complete set of all possible paths but 
would be limited to some finite sets of paths. In 
order to avoid a situation of this sort, we use the 
path integral representation and consider the limits, 
8--+0 and N--+oo, with N8=finite. The concept of 
path integral and its close connection with polymer 
statistics have been reviewed in detail by Freed.14 

We, therefore, omit explaining all the minor details. 
According to this representation, eq 2 and 4 are 
expressed as, 

Z 0(xN: N)= J.@[x(t)]<l>{x(t)} (5) 

<A)0 =Z0(xN: N)- 1 I.@[x(t)]A{x(t)}<l>{x(t)} (6) 

where the integral is taken over all paths satisfying 
x(O) =x0 and x(N8)=xN, and <l>{x(t)} is a functional 
defined by 

<l>{x(t)} =exp ( -S0)=exp { -(1/2) r· (dx(t)jdt)2dt} 

(7) 
When there are intractions represented by 

(8) 

between all pairs of links, eq 5 and 6 may be 
generalized so as to include this potential, and eq 7 
is modified to 

.P{ x(t)} =exp (- S) =exp (- S0 - S') 

=exp { -(1/2) r· (dx(t)/dt)2dt 

-If' V[x(t)-x(s)]dtds} (9) 

In this case, the average of the path-dependent 
functional F{x(t)} with respect to rP{x(t)} is given 
by 

<F { x(t)}) = J.@[x(t)]F { x(t) }.P{ x(t)} I J.@[x(t)]<i>{ x(t)} 

(10) 

Then if A= F exp (-S ') or A= exp (- S ') is 
substituted in eq 6, it is found from eq 5 and I 0 that 
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(F{x(t)}) 

= (F{x(t)} exp (- S '))0/(exp (- S'))0 (11) 

The average on the r.h.s of eq 11 is taken over all 
paths with x(O)=x0 and x(NB)=xN, and S' stands 
for the effects of intra-chain interactions defined by 
eq 7 and 9. As already stated, the average ofF may 
be evaluated approximately by eq 3 if F exp (- S ') 
and exp (- S ') can be calculated for a given Wiener 
path. The presence of exp (- S ') in both denomi­
nator and numerator allows another interpretation 
of the average in eq 11: eq 11 represents the weight­
ed average ofF over an infinite set of Wiener paths, 
in which each Wiener path does not have an equal 
probability but has a path-dependent weight 
exp ( -S'). 

In the descrete coordinate representation, eq 11 
may be written14 

x exp ( -S') exp ( -S') 

S'=(f3/a2 )82L,L, V(xi.-xi.); 
i j 

(12) 

where a is the length of a link, T is the absolute 
temperature, and the subscript ex represents X; which 
is associated with the cx-th path. As already noted, 
the sum over ex is inevitably restricted to the finite 
fraction of all possible Wiener paths in a real 
simulation. We adopt eq 12 as the basis for our 
simulation. Our task is then to generate zig-zag 
Wiener paths as many as possible by some appro­
priate method and calculate the weighted average 
of an observable F for a given potential. 

EXPERIMENTAL 

Wiener Path 

The method for constructing a zig-zag Wiener 
path (Brownian path) was presented long ago by 
Levy/ 5 and by Paley and Wiener16 (recent progress 
was reviewed by Hida17). The methods by these 
authors are quite general and mathematically 
rigorous, but not convenient for computer use. 
Hence, based on the method of Tsuda et al.; we 
employed a somewhat different and more elemen­
tary way to construct a zig-zag Wiener path as 
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Figure 2. Graphical representation of eq 14. 

shown in Figure 1. Our method utilizes the most 
fundamental properties of the Brownian motion 
and is based also on Levy's idea. 

We denote a Brownian path by B(t) for 
Then if B(a) and B(b) (a< b) are known, the value of 
B(t) at an arbitrary time t between a and b is given 
by 

B(t) = Jl(t) + u(t)X(t) (14) 

where 

Jl(t) = {(b- t)B(a)+(t-a)B(b)}j(b-a) (15) 

u2(t)=(t-a)(b-t)/(b-a) a<t<b (16) 

Here u2(t) represents the variance of[B(t)- Jl(t)] and 
X(t) is a gaussian random variable having unit 
variance around the zero mean: 

(X(t))=O; (17) 

The meaning of eq 14-16 is clear from Figure 2; 
i.e., B(t) is the sum of the random variables X(t)u(t) 
and Jl(t), the latter being the point on the straight 
line connecting B(a) and B(b). The degree of zig-zag 
depends on the gaussian random variable gener­
ated. Fquations 14-17 give the general method 
for dividing a straight line into two parts and 
making a once-broken line. We can obtain the zig­
zag Wiener path shown in Figure 1 by repeating this 
dividing process at adjacent points. 

Note that eq 14 can be transformed into a re­
cursion relation convenient for computer simu­
lation. Replacing B(a), B(b), B(t), a, b, t, and X(t) 

by xi_ 1, xN, xi, ti_ 1, tN, ti, respectively, we get 

Xi={Xi-1(tN-ti) 

(18) 

=(fi- (i-1)(tN- t)j(fN- fi-1) (19) 

where xi denotes xlt) and is a random variable 
obeying 

Polymer J., Vol. 14, No. 12, 1982 



Monte Carlo Simulation of Interacting Polymer Systems I. 

<0=0; (20) 

When values are explicitly assigned to x0 and xN, 
a Wiener path (x1, x2, · · ·, xN_ 1) is determined 
through an iterative use of eq 18. In order to describe 
a random walk in three dimensions, other ortho­
gonal components Yi and zi also have to be con­
sidered. These components are again determined by 
the use of eq 18. The relevant equations for three­
dimensional cases may be symbolically written in 
vector notations as 

fi= {fi-1 (tN- ti) 

+fN(ti-ti-1)}/(tN-ti-1) +{a (21) 

(22) 

where a is given by eq 19 and each component of { 
satisfies eq 20. Equation 21 is the basic prescription 
for the generation of a zig-zag Wiener path in the 
present experiment. 

Observable 
Equation 21 describes the random walk which 

starts from i'0 and ends up at i'N. Such a model, 
however, does not necessarily correspond to an 
actual polymer chain. Therefore, we put i'0 = f N 

without further loss of reality. The result represents 
the random walk which returns to the starting point 
after N steps of walk, and corresponds to the ring 
chain in polymer problems. As the observable 
quantity, we take the square radius of gyration 
defined by 

sz =(2Nz)-1L(i'i -f/ (23) 

We can also examine other observables such as a 
local segment density or 

Potential 
It is difficult mathematically to prove the exis­

tence of the path integral (eq 10) for a given poten­
tial. In a real simulation, we must use a potential V(r) 
that yields the convergent sum in eq 13. Thus, the 
potential V(r) diverging to - oo for small values of r 
should be excluded. For this reason, we chose the 
following very simple potential: 

for r<d 

for 
(24) 

The behavior of a freely jointed, off-lattice polymer 
chain interacting via this type of potential (y--+ oo) 
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was studied by Baumgartner and Binder.18 

We introduce a new variable K, which is the 
coefficient of V(r) in eq 13 and hence depends on a, 
y, {3, and E as 

(25) 

The range d and the strength K are independent 
parameters which characterize the effect of the 
potential V(r). In order to study the behavior of a 
chain having an attractive potential, we also con­
sider the case of negative K. Although pure attrac­
tive potential having no repulsive core has no 
physical meaning, it is by no means trivial. 

Parameters 
The independent parameters characterizing the 

polymer chain with intra-chain interactions are y, E. 
and d, and certain values must be assigned to these 
to carry out the computation. The main difficulty in 
the present method is that the basic unit of length 
such as lattice spacing does not exist for small but 
finite E. That is, the real length of each link is not 
equal to a fixed E but is a random variable as seen 
from eq21. For such a random variable, only the 
mean square length is physically meaningful. This 
mean square length of a link is equal to a2 in eq 25 
and therefore is related to E through a2 3E in three 
dimensional cases. The distribution of link lengths 
gives rise to another difficulty in the calculation of 
the interaction energy in eq 13. There is the possi­
bility that the nearest neighbor interactions, which 
should be definitely distinguished from the long 
range interactions, gives non-negligible contri­
butions to the statistical average in eq 12. This 
unfavorable property may become more appreci­
able for negative values of K or short step walks. 
Keeping in mind what has been mentioned so far, 
and that d, we use the following values for the 
parameters d, E, and K: 

d=0.2; E=0.1; -1.0;:;;;K;:;;;l.2 (26) 

The number of samples generated was about 8000 
for all N, and the number of steps used were 25, 30, 
40, 50, 60, and 70. Tsuda et aU obtained, for the 
case in which there is a one-body potential and 
N=20 (very short steps), a good estimation for the 
local variable ri (see eq21) from the simulation of 
800 samples. We maintain, however, that more 
than ten thousand samples are needed for a pre­
cise estimation of the exponent v. 
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The gaussian random number obtained in our 
experiment, by a random number '1; distributed 
uniformly in the interval [0, 1] through the relation 

12 

'1;-6 
i=l 

After having generated about 2000 samples, we 
changed the uniform random number series to 
another in order to avoid the possible periodicity of 
resulting random numbers. 

RESULTS AND DISCUSSION 

In the present experiment, the length of a link was 
not a con'stant but a random variable. Thus, the 
length of each path generated was different. Our 
statistical average of the observable Fin eq 12 was 
taken over an ensemble of such paths. The square 
radius of gyration defined by eq 23 was used as Fin 
our investigation. For unrestricted random walks, 
the average square radius of gyration is given by 

(27) 

Thus, the mean-square length of a link, a2 , can be 
computed from the observed (S2 ) 0 and the chosen 
N by means of eq 27. The result a2,;:,: 0.3 estimated in 
this way agrees with the expectation and a2,;:,: 3e is 
valid in the three dimensional case. 

We first discuss the asymptotic behavior of (S2 ) 

as a function of N, assuming that (S2 ) follows the 
power law (S2 )ocN2v. The results are depicted in 
Figure 3 and tabulated in Table I. The exponent v is 
a gradually increasing function of K and seems to 
approach 0.58 which is somewhat smaller than 
values obtained in other experiments19•21 , and by 
theoretical prediction. Using the self-consistent-field 
approximation, Edwards first evaluated analytically 
the path integral of eq 10 foi the delta-function type 
potential (K-+ oo, d-+0, and Kd=finite in the present 
model) and showed v=0.6 for very large N. 22 In 
addition, according to the universality concept that 
the exponent v is insensitive to the specific shape of 
the interaction potential, the soft-core potential is 
also expected to give a value near 0.6 for v. 
However, in consideration of the fact that the exact 
value of v has not yet been established and des 
Cloizeaux predicted a value of v somewhat smaller 
than 0.6,23 the present result for v may be regraded 
as reasonable. It is uncertain whether the asymp­
totic behavior, can be seen for small N of less than 
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Figure 3. Log-log plot of <S 2 ) vs. N: a, K= 1.2; b, 
K=0.6; C, K=0. 

Table I. Exponent v as a function of K 

K 2v" 

1.2 1.16 
1.0 1.15 
0.8 1.12 
0.6 1.09 
0.4 1.07 
0.2 1.03 
0 0.99 

-0.1 (0.97)b 
-0.2 (0.82) 
-0.3 (0.76) 
-0.6 (0.82) 
-1.0 (0.79) 

• v is determined by the method of least squares. 
b Value in parentheses is unreliable because of large 

statistical errors. 

70. In order to clarify this point, it is necessary to 
extend the computation to larger N and smaller d. 
In the case of negative K, the sum of eq 12 converges 
so slowly and the variance of data is so great that no 
definite value of v could be determined. Exact 
enumerations based on the Monte Carlo methods in 
which an attractive force is introduced into self­
avoiding walks, have predicted that (S2 ) still has 
the asymptotic form (S2 )ocN2 v, and that v is a 
function of the strength of the attractive force and 
varies continuously from 0.6 to 0.33. In the presence 
of a strong attractive force, the experiments based 
on the ensembles of self-avoiding walks may give v 
values no lower than 0.33. Although v,;:,:0.33 was 
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Figure 4. Expansion factor (/> as a function of K for 
various values of N (number of steps): a <•), N = 70; 
b (0), N=60; c (x), N=40; d (e), N=25. 

obtained in our previous work,24 it is not entirely 
clear whether this value can be derived from an 
ensemble of unrestricted random walks modified by 
the pseudo-potential used in the present calculation. 

The behavior of the renormalized mean square 
radius of gyration cP = <S2 )/<S2 ) 0 is shown in 
Figure 4 as a function of K. For negative K, a 
smooth decrease in cP occurs with decreasing K. This 
tendency is intensified with increasing N.25 Figure 4 
shows that cP is not a rapidly decreasing function of 
K, but appears to approach a constant value, imply­
ing that even in the presence of the attractive force, 
the perturbed square radius of gyration has a finite 
expansion with a non-zero radius. As is seen from 
Figure 4, the square radius of gyration decreases 
with decreasing K to about 40-50 percent of that 
for the unperturbed state. It is quite correct that the 
expansion factor cP vanishes when N tends to in­
finity and remains finite when N is finite. This does 
not mean that, for the pseudo-potential model, the 
chain collapses very rapidly to zero for all N when K 

is negative.26 In the case of pure attraction with no 
repulsive core, it is necessary to investigate carefully 
whether the square radius of gyration vanishes or 
not in the thermodynamic equilibrium state. The 
present method does not appear to give the state of 
zero radius because the entropy force due to ran­
dom walks is balanced with the attractive force. In 
the present model, the vanishing of the square 
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Data taken from Figure 4: a (.6.), N = 60; b (e), N = 40; 
c (0), N=30; d (x), N=25. 

radius of gyration <S2 ) may depend on the poten­
tial range d in the case of negative K. The fact that 
<S2 ) and <R2 ) are independent of the potential 
range in the repulsive force has been established for 
large N by a variety of theoretical and experimental 
studies. Since it is not clear whether this inde­
pendence holds for pure attractive forces, it is 
desirable to examine the behavior of <S2 ) as a 
function of the range d as well as the strength K. 

According to the two-parameter theory, the ex­
pansion factor cP can be expanded in terms of z as 

cP = <S2 )/<S2 ) 0 

= 1 + C1z- C2z2 + C3z3 - · · · (28) 

z=(3/2Jur)312f3N'I2 (29) 

where f3 is the binary cluster integral (for the values 
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of C1 , C2 , and C3 ; see Yamakawa27). This expan­
sion is exact only in the limits N-+r:IJ, {J->0, and 
{JN 112 =finite. Since fJ and N appear in z as a single 
variable {JN 112 , it is important to analyze the be­
havior of 4> not only as a function of fJ and N 112 but 
also as a function of {JN 112 •28 Note that in the 
present model z = f KN 1 12 , where f is the scale factor 
and may be equated to unity without loss of 
generality. Figure 5 and 6 show 4> as functions of 
N 112 and KN 112 , respectively. Equations 28 and 29 
state that data of 4> for different pairs of Nand K fall 
on a single curve. Such behavior seems to hold for 
KN 112 < 2, but not for KN 112 > 2. In order to clarify 
this point, simulations for very large values of N 
and small K are required. Probably, this will give 
significant information, since the present method 
resorts to unrestricted random walk as in the case of 
the two-parameter theory. 

CONCLUDING REMARKS 

It should be pointed out that the results of the 
present study are qualitative rather than quanti­
tative because of the insufficient number of samples 
and unsuitable parameters associated with the po­
tential adopted. Particularly for d, the choice of a 
somewhat smaller value might have been desirable. 
The validity of the present method will be estab­
lished by comparing the behavior calculated for the 
Lennard-Jones 12-6 potential by the present method 
with that by the dynamic Monte Carlo method, for 
which many useful data are available.29 

The purpose of this paper has been to make the 
first application of the method developed by Tsuda 
eta!. to polymer problems. Neither the concept used 
nor the method itself is new to the polymer prob­
lems. The uniqueness of this method lies in the 
construction of the zig-zag Wiener path (see eq 21). 
Up to now, this method has not been used for 
simulation. However, eq21 is limited to a random 
walk which starts from a fixed point and ends up at 
another fixed point. This greatly facilitates the study 
of polymer conformations since usual static Monte 
Carlo method is not valid for such a conformation. 
This method may also provide considerable insight 
into the statistical properties of a ring chain in the 
unperturbed state, because difficulty associated with 
the interaction potential does not appear in this 
case. 

The present method can also be applied to a chain 
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interacting with a wall through an appropriate one­
body potential. Of course, in this case, the ensemble 
of Wiener paths consists of unrestricted random 
walks. Equation 21 should be transformed into a 
different form so as to describe the unrestricted 
random walk repelled elastically by the wall. This 
can be achieved if we utilize the fundamental prop­
erties of Brownian motion (reflection principle). It 
is, however, impossible to describe the system 
placed in a one-body potential undergoing rapid 
variation within a range comparable to the step 
length. 

The method for constructing Wiener paths is not 
limited to the use of eq 21. Levy and also Paley and 
Wiener developed mathematically rigorous theories 
for constructing these paths. Since eq 21 is not valid 
for linear chains, we must use their methods for 
such chains, especially the method of Paley and 
Wiener, in which the Fourier expansion technique is 
used. 

Finally, it may be noted that studies of the two 
problems mentioned above are now in progress. 
The results will be published in the near future,30 

along with a discussion on the statistical errors 
associated with simulation, which have not been 
touched upon in this paper. 
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