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ABSTRACT: The molecular theory for a pure liquid of r-mers formulated in a previous paper 
on the basis of the quasi-chemical treatment (the first approximation) has been extended to 
mixtures. The present theory takes into account nonrandom mixing of both holes and component 
molecules. A more crude formulation of a mixture based on the zeroth approximation is also 
presented for comparison. The expressions for the equation of state, chemical potential and internal 
energy are derived for the mixture. The excess functions of mixing have been numerically calculated 
so as to investigate the effect of nonrandom mixing on these quantities by comparing the first and 
zeroth approximations. 
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In a previous paper, 1 we applied the quasi­
chemical treatment to the lattice fluid theorl- 6 and 
presented a new formulation for a pure liquid of r­
mer. The lattice fluid theory is a simple type of hole 
theory where the cell volume is fixed, and its 
calculation method is very similar to that of the 
Flory-Huggins theory. 7 In the hole theory, a hole is 
treated as if it were a monomer, but it can be created 
or destroyed according to thermodynamic con­
ditions, and this results in a change in the volume of 
the system. The hole has the same role as the free 
volume. In addition, in the lattice fluid theory, the 
coordination number is taken infinitely large (the 
Flory approximation), so that a random mixing of 
holes and molecules is assumed. However, we aban­
doned this assumption and took into consideration 
the nonrandom distribution of holes on the lattice 
with a finite coordination number. 

According to the free volume theory presented by 
Prigogine,8 -lo Flory/ 1 - 13 and their coworkers, the 
thermodynamic properties of polymer solutions are 
very much affected by the difference in free volume 
or the equation of state of the pure components. 
Since, as we have found, 1 the nonrandom distri­
bution of holes influences appreciably the equation 
of state of pure liquids, the thermodynamic quan-

tities of a mixture should be also influenced. 
Furthermore, in a mixture, the hole distribution 
around one molecular species should be different 
from that around another species, depending on 
their cohesive energy densities. This was ignored by 
Renuncio and Prausnitz14 and BrandaniY They 
modified the Flory theory by using the local com­
position concept introduced by Wilson16 so as to 
take into account the nonrandom mixing of com­
ponent molecules having the same amount of free 
volume. 

From these viewpoints, we extend the treatment 
presented in a previous paper to binary systems, and 
discuss the influence of the nonrandom mixing of 
both holes and molecules on the thermodynamic 
behavior of binary systems. 

GENERAL THEORY 

Partition Function17 - 19 

We assume the existence of a lattice of coordi­
nation number z, and consider a system of Ni 
molecules of species i (i = 1, 2, · · ·, n) and N0 vacant 
lattice sites or holes. Each molecule of species i 
occupies ri lattice sites and is characterized by a 
flexibility parameter bi and a symmetry number cri. 
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The following notations are introduced: 

q,z=r,(z-2)+2 

Q=zNq/2 

(1) 

(2) 

(3) 

(4) 

(5) 

where the subscript 0 represents a hole, and 
q0 = r0 = 1 is assumed. The meaning of the above 
notations is the same as those for pure liquids 
presented in a previous paper. 1 Note that u, satisfies 
the following condition, 

(6) 

We denote the configurational potential energy of a 
contact between the segments of species i and j by 
- 2c:u/z, and assign the value zero to that of a 
contact with a hole; c:t = 0 when either i or j is 0. Let 
the number of contacts between the segments of 
species i andj be represented by Q y,j, which satisfies 
the symmetrical condition yij= Yji· The following 
equation holds for the total number of contacts with 
species i, 

L Qy,, = Qu, or Qy,, = Q(u,- I Yik) (7) 
k=O k-:Fi 

Using eq 7, we obtain the configurational par­
tition function as follows: 

where k is Boltzmann's constant, Tis the absolute 
temperature, and the summation is performed for 
all possible sets of yij (i =!= j). Following 
Guggenheim's treatment, 17 •18 the approximate 
number of configurations g is obtained as, 
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g(N,, yij)=N,.! 
N,. 

(i5jCJ;)N'(Qu,- L (Q *·)' 
X IT ki'< ITIT 

( '\' ) ii'j (Qy,)! 
N,! Qu,- L.. Qy,k ! 

k 1:-i 

(9) 

where yiJ stands for the random-mixing value of yij 
and is given by the equation, 

(10) 

Free Energy 
Replacing the sum by its maximum term and 

using Stirling's approximation, we obtain from eq 8 

the configurational Helmholtz free energy F as, 

-F/kT=ln Q 

=2QL:[(u,- L 
i · lc::/::i j*i 

+ L: N, In (i5jCJ;)- L: N, ln N, 
i 

-(z/2-1)N, In N, 

The set of values for y,j which gives the maximum 
term is determined by, 

which yields, 

(a In Qj8y.p)r.N,.y,j*aP = 0 

(ex, {3=0, 1,· · ·, n; ex=/={J) (12) 

= exp [2(s:. + ctp- 2s:p)/zkT] 

(ex, {3=0, 1, · · ·, n; ex=/={3) (13) 

Since the system has n components, eq 13 con­
stitutes simultaneous equations for n(n+ 1)/2 un­
known quantities. Note that the last term of eq 11 
can be rewritten, by substituting eq 13, as, 
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-sf)/zkT 
i=tj 

(14) 

From the Helmholtz free energy, we can derive the 
other thermodynamic quantities in the conventional 
way. 

BINARY MIXTURES 

Equation of State 
The volume of a system V is 

V=N,v*=(N0 +r1 N1 +r2 N2 )v* (15) 

with v* being the volume of a lattice site assumed to 
be independent of temperature and pressure P. 
Therefore, the volume change of a system is ex­
pressed by the change of number of holes. By using 
eq 12 and 15 under this assumption, we obtain the 
equation of state as follows: 

+II [(aF ;aQy,11h. QyiJ*•P·N,. N, 
•<P 

X (aQy,fijaN oh. N,. N,]} 

= -(1/v*)(aFjaNoh.Qyij.N, ( 16) 

(ul- Yo1- yu)(uz- Yoz- yn)/yfz 

=exp {2(sf1 -2sf2)/zkT} (19) 

Chemical Potential and Internal Energy 
For simplicity, we neglect the lattice deformation 

in the mixing process and consider a mixture of 
components having the same z and v*. In other 
words, these quantities of pure liquids should be 
determined so as to have the same values. Therefore 
z and v* are independent of composition. 

With the above assumption and the aid of eq 15, 
the chemical potential 111 of component 1 is derived 
as, 

f1 1=(aF;aNJl-r. v. N, 

=(aF;aN Jh. No. N, -rl(aFjaN oh. N,. N, 

(20) 

Following the same procedure used for the de­
rivation of eq 17, we have, 

f1 1 = -q 1ef1-kT{In (b 1/o-Jl-ln N 1 

-(z/2-l)r 1 ln N, +(z/2)q1 ln Nq 

-(z/2)q 1 ln {(u 1- y10 - y12)/u12]}+Pr1v* (21) 

The internal energy U is given by, 

=- Nq[(u 1 - Y1o- Y12)sft 

+ (uz- Yzo- + 2y12e!z] (22) 

Excess Functions of Mixing Substituting eq 11 to eq 16, we have, 

Pv*jkT=(z/2-1) In (1-1/V) 

- (z/2) In (1-Yo1/Uo- Yoz/uo) 

Let the reduced volume of the pure component i 
be denoted by fl,. The excess volume of mixing vE is 

(17) expressed in terms of the mole fraction x, as, 

where 

V=V/V* and V*=(rlNt+rzNz)v* (18) 

The values of y01 and y02 are determined by the 

following simultaneous equations deduced from 
eq 13, 

(uo- Yo1- YozHu1- Yo1- =exp (2e! 1/zkT) 

(uo- Yo 1 - Yoz) (uz- Yoz- = exp 
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With the ideal volume v0 of the mixture given by 
assuming the additivity of the pure component 
volumes, eq 23 is rewritten as, 

vE /v0 = V/( cfy 1 V1 + cP2 V2)- 1 (24) 

where cfy, is the segment fraction of component i 
defined by, 
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(25) For the equation of state, 

Pv*/kT=(z/2-1) In (1-1/VJ-(z/2) In u0 
The excess heat or the excess enthalpy of mixing hE 
is, -(u128{1 +u/Bj2 +2u1u28{2 )/kT (29) 

(26) For the chemical potential, 

where e and e; are molar internal energies of a 
mixture and a pure liquid of component i, 

respectively. 

ZEROTH APPROXIMATION 

The lattice fluid theory assumes an infinitely large 
coordination number, which implies random mix­
ing, while the quasi-chemical treatment assumes a 
finite coordination number and foregoes the 
random-mixing assumption. As an intermediate 
treatment, we may assume the random mixing of 
components on a lattice of a finite coordination 
number. This treatment takes into account the 
decrease in the contact surface of a chain molecule 
caused by the connectivity of the segments; this 
differs from the lattice fluid theory. This treatment 
is referred to as the zeroth approximation, while the 
quasi-chemical treatment is referred to as the first 
approximation. 

The partition function of the zeroth approxi­
mation for a binary system is obtained by substitut­
ing the random-mixing values Yu= u;uj into eq 8 and 
9. Thus, 

Various thermodynamic quantities are derived from 
eq 27 in the same way as in the first approximation. 
Thus, going on the same assumption in the preced­
ing section, we have the following expression for the 
Helmholtz free energy, 

+N 1 In (c5 1/u 1) 

+N2 ln (c5 2/u 2)-N0 In N 0 

- N 1 In N 1 - N 2 In N 2 + (z/2)N q In N q 

-(z/2-l)r 1 InN, +(z/2)q 1 In Nq]+Pr 1v* 

(30) 

For the internal energy, 

The equation of state may be rewritten in the 
following reduced form, 

PrT= -In (1-1/VJ-[s/(s-1 + VJ] 2/T 

+(z/2) In [l+(s-1)/VJ 

where 

s=q/r 

P=P/P*' 

T=T/T*' 

P*=1:*jv* 

T*=c:*/k 

(32) 

(33) 

(34) 

(35) 

The equation of state for a pure liquid can also be 
written in the same reduced form as eq 32. The 
parameters of a mixture are related to those of pure 
components by the following combining rules, 

where 

s=¢1sl +¢zSz 

S2 D*=(sl¢1)2 B{l +(sz¢z)2 t:iz 

+2(sl¢1) (sz¢zkiz 

NUMERICAL RESULTS AND 
DISCUSSION 

(36) 

(37) 

(38) 

In the following numerical calculations, we set 
v*=l x 10- 5 m3/mol and z=l2 for both the first 
and zeroth approximations, and v1 * = v2 * = v* for 

-(z/2-l)N, InN, (28) the lattice fluid theory. For the contact energy 
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between the segments of different molecular species, 
we use the Berthelot-type expression,4 

(39) 

where the parameter ( measures the deviation from 
the Berthelot rule, which assumes ( = I. Only one 
parameter (, other than those characterizing a pure 
component, is necessary for determining the ther­
modynamic behavior of a mixture. 

Excess Functions of Mixing 
First, we consider a mixture of components each 

having the same chain length but different cohesive 
energies. In this case, the excess quantities arise 
mainly from an energy difference or a contact 
energy dissimilarity. Figure I shows the excess 
volumes uE and excess enthalpies hE at T= 300 K 
and P=O.I MPa for mixtures with r1=r2 =!0, 
T1 *=efdk=500K and T/"=ef2 /k=600K, and 

'b 

,_ 
0 
E 

'P, 

Figure 1. Excess functions at P=O.l MPa and 
T= 300 K. Each component is characterized as follows; 
r1 =r2 =10, T1*=500K, T2 *=600K, and (=0.96, 0.98, 
and 1; ---, 1st approximation; - ·- · -, Oth approxi­
mation;----, lattice fluid theory; hE of the Oth approxi­
mation falls on the same curve as that of the I st 
approximation. 
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( = 1, 0.98 or 0.96. As the contact energy between 
different molecular species decreases, i.e., as ( de­
creases, uE increases and its sign changes from 
negative to positive; also, hE increases. The heat of 
mixing of the zeroth approximation (Oth) is slightly 
larger than that of the first approximation( 1st), but 
the difference is too small to detect on the scale in 
this figure. This means that the effect of nonrandom 
mixing on the heat of mixing is very small in the 
present case (r1 = r2 and T1 * =1= T2 *). In other words, 
the nonrandom mixing of components supresses the 
excess enthalpy arising from the contact energy 
dissimilarity but this is very small. On the other 
hand, the absolute value of uE of the 1st approxi­
mation is always larger than that of the Oth approxi­
mation, indicating that the slope of a V- f curve of 
the 1st for a pure liquid is steeper than that of the 
Oth at the same reduced temperature. 

The heat of mixing in the lattice fluid theory (LF) 
is larger than those of the Oth and 1st approxi­
mations. This fact is attributable to the difference in 

''b 

7 
0 
E 
-. 

"'-'o . 
UJ..c 

6 

1.. 

0.5 
'Pz 

Figure 2. Temperature dependence of excess functions 
at P= 0.1 MPa for the system with ( = 0.98 in Figure I. 
Curves are the same as in Figure I. hE of the Oth and the 
I st at various temperatures fall on almost the same curve 
and are indistinguishable. 
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the available surface of a chain molecule. 1 The total 
contact energy per molecule is larger in the case of 
LF (lattice fluid theory) since the surface area of a 
molecule in the LF is rjq 1) of that in the case of 
the Oth or 1st approximation. In fact, the values of 
hE at ¢ 2 =0.5 for T1*=425K and T2*=510K in 
LF, which are obtained by multiplying T1 * = 500 K 
and T2 *=600K by q/r (=51/60), are 29.4 ((=1), 
502 (( =0.98), and 976 Jjmol (( = 0.96); these values 
are almost the same as those of the Oth and 1st for 
T1 * = 500 K and T2 * = 600 K, though vE becomes 
larger than the values for the Oth and 1st. 

Figure 2 shows the temperature dependence of hE 
and vE calculated from various approximations for 
the system in which ( =0.98 in Figure 1. It is seen 
that hE of both the Oth and 1st are scarcely affected 
by temperature and fall on the same curve. This 
shows again that nonrandom mixing has virtually 
no effect on hE in this case, since nonrandomness 
depends essentially on temperature. The absolute 
value of excess volume vE increases with tempera­
ture because of the large thermal expansion coef­
ficient at higher temperatures. 

Figure 3 illustrates the contribution of the free 

O'l 
0 
X 

-1 .; -UJ 
> 

103 

';" 

0 
E ..., 

';'-

2 
X 

"'.c -1 

0 0.5 

'Pz 
Figure 3. Excess functions at P=O.! MPa and 
T= 300 K for mixtures with r1 = 10, r 2 = 100 or 1000, 
T1 * = T2 * = 500 K, and ( = 1. Curves are the same as 
those in Figure 1. 
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volume or the equation of state toward the excess 
functions hE and vE, for the case in which com­
ponents have different chain lengths (r1 = 10, 
r2 = 102 or 103) but the same characteristic tempera­
tures ( T1 * = T2 * = 500 K) and ( = 1. The excess 
quantities are negative and small compared with 
those arising from the contact energy dissimilarity 
(Figure 1). As the difference in r is increased, the 
equation-of-state difference is also increased and the 
excess quantities become large. It is interesting that 
an asymmetric shape of hE is obtained in spite of 
using the segment fraction as a composition vari­
able. In contrast to the result in Figure I, the Oth 
and 1st give quite different hE and vE Thus we find 
that the contribution of the free volume to hE and vE 
is appreciably affected by nonrandom mixing. 

The temperature dependence of hE and vE in the 
present system is as large as that shown in Figure 4 
for r1 = 10 and r2 = 102 . At a higher temperature 
( T = 350 K), the free-volume difference is enhanced, 
resulting in large excess quantities. In particular, hE 
is sensitive to temperature, thus differing from the 
case in which hE arises from the contact energy 

"' -2 
0 

X 

.; 
w-

> 

-4 

7 
0 
E ..., 

"'- -1 's 
w" .c 

0 0.5 
cp2 

Figure 4. Temperature dependence of excess functions 
at P=O.! MPa for the system with r 2 = 100 in Figure 3. 
Curves are the same as in Figure 1. 
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dissimilarity (Figure 2). 
The difference between the Oth and the I st is 

larger at higher temperatures, and this is closely 
related to the fact that the volume of a liquid is 
always more expanded at the same reduced tem­
perature provided nonrandomness is taken into 
account. In fact, at T=300K, V1 =1.164 and 
V2 =l.l32 for the 1st, while V1 =1.148 and 
V2 = 1.121 for the Oth, and at higher temperatures 
the difference becomes greater. To compare the Oth 
with the 1st for systems having the same V­
difference, we set T1*=482.7K and T2*=484.5K 
for the Oth to obtain the same reduced volumes as 
those of the 1st at 300 K. We then obtain 
vEjv0 =-l.l8x!0- 3 and hE=-58.3 Jjmol at 
¢2 =0.5. These values are close to those of the 1st: 
vEfvo= -1.21 X 10- 3 and hE= -58.1 Jjmol. The 
excess quantities arising only from the free-volume 
difference are thus determined mainly by non­
randomness in a pure liquid and are virtually 
independent of nonrandomness in a mixture. 

Numbers of Contacts 

Figure 5 shows the number of contacts between 
various pairs in a binary mixture calculated from 
the first approximation at ¢2 =0.5 and P=O.l MPa 
in a temperature range 200-350 K. We set 

Ul 

u 
t1l 
c 
0 

u 

1.02 

0 0.98 

(lJ 
..0 

E 
:::J 
z 

0.94 L-------'------'--------' 

200 250 300 350 
T/K 

Figure 5. Numbers of contacts between various pairs, 
which are normalized by the random-mixing values, in 
the same system as in Figure I ((=I) at ¢2 =0.5 and 
P=O.I MPa. 
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r1 =r2 =10, T1*=500K, T2 *=600K, and (=I. In 
the figure, a pair of numbers denotes the kind of a 
c6ntact pair; for example, 0-1 denotes the contact 
between a hole and component I. The ordinate is 
normalized by the random-mixing value, and the 
derivation from unity measures the degree of 
nonrandomness. 

It is seen that the temperature dependence of the 
deviation from randomness in a mixture is essen­
tially the same as that in a pure liquid. Thus, the 
nonrandom distribution is determined by two con­
tributions, that from the energy difference which is a 
decreasing function of temperature, and that from 
the number of holes which is an increasing function 
of temperature. However, the general appearance of 
the figure is complicated by the existence of an 
additional component. 

The deviation of the 2-2 contact is larger than 
those of 1-2 and 1-1, which is reasonable, since the 
2-2 contact is the most stable among the segment 
contacts. The value of 2-0 is smaller than that of 
1-0 as expected from the fact that T2 * > T1 *. Since 
component 2 has a larger cohesive energy, the 
average distribution of holes around it is less dense 
than that around component I, implying that, in a 
mixture, each component preserves the state of the 
pure liquid to a certain extent. 

CONCLUSION 

The quasi-chemical treatment of the hole theory 
has been extended to binary systems on the basis of 
the following conditions: the cell volume is fixed and 
the lattice deformation in the mixing process is not 
considered. The coordination number and the vol­
ume of a lattice site are consequently independent 
of thermodynamic variables. 

The present theory takes into consideration not 
only the nonrandom mixing of component mo­
lecules but also the nonrandom distribution of the 
free volume. The principle of corresponding states 
does not hold even for molecules of the same chain 
length. 

We investigated the effect of nonrandom mixing 
on the excess volume and heat of mixing by compar­
ing the present theory with the more crude zeroth 
approximation. The excess volume arising from 
either the equation-of-state difference or the contact 
energy dissimilarity, always increases as a result of 
nonrandom mixing. The excess heat arising from 
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the contact energy dissimilarity is slightly sup­
pressed by nonrandomness, while that arising from 
the free volume dissimilarity increases. Nonrandom 
mixing of the component molecules in a mixture is 
not large enough to affect the excess function, but 
the nonrandom distribution of holes in a pure liquid 
contributes very much to this function. 
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