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ABSTRACT: A finite element method was extended and applied to a microphase-separated 
poly(styrene-b-butadiene-b-4-vinylpyridine) (SBP) three-block polymer for analysis of temperature 
dispersion of dynamic viscoelastic response under a small-amplitude sinusoidal oscillation. The 
application of this method to a multiphase viscoelastic system requires a knowledge of the typical 
relaxation spectrum of an amorphous polymer and the temperatures of the onset of glass transitions 
of the constituent homopolymers as well as the morphology of the system. Two typical 
morphologies were examined. One was a "ball-in-a-box" structure in which a poly(4-vinylpyridine) 
(P) ball sits in a polystyrene (S) box stuffed the gap with poly butadiene (B) blocks, and the other a 
"three-layer-lamellar" morphology in which three phases alternate in the manner 
... SBP. PBS. SBP .... In the temperature dispersion of the moduli, the former shows only two 
transitions due to the glass transitions of B and S phases, while the latter shows three transitions due 
to those of all three phases. The finite-element-method analysis discribes well or at least 
semiquantitatively the features of such three phase systems having particular morphologies. 
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Because of the recent sophistication taken on by 
high-performance electronic computers, the finite
element method1 •2 is becoming increasingly a more 
powerful tool in continuum mechanics. The finite
element method has been applied to stress-strain 
analysis within a body of complex shape made from 
glasses and metals. The method has also been 
applied to the large elastic-deformation behavior of 
vulcanized rubbers.3.4 Here we would like to apply 
this method to analyses of linear viscoelastic 
responses of microphase-separated polymeric alloys 
having regular domain morphologies. The systems 
we are specifically interested in are of a poly(styrene
b-butadiene-b-4-vinylpyridine) (SBP) three-block 
polymer that has with nearly a I : I : 1.5 com
position.5·6 An SBP film cast from CHCI3 exhibits a 
unique "baH-in-a-box" morphology, in which a 
poly(4-vinylpyridine) ball sits in a polystyrene box 
stuffed with soft polybutadiene blocks,5 while an 

SBP film cast from butyraldehyde (BA)/CHCI3 

(9: I) mixture exhibits a "three-layer lamellar" 
morphology in which three phases alternate in the 
manner· · SBP ·PBS· · SBP · · .6 Figure I shows the 
morphologies of such SBP films. 

* To whom correspondence should be addressed. 

When the finite-element method is applied to a 
viscoelastic body instead of an elastic body, it has to 
be modified so that the past memory can be 
incorporated so as to describe present stress level. 
First, we shall discuss this modification of the finite
element method. Then we apply the modified 
method to the analysis of the viscoelastic properties 
of SBP films under a sinusoidal shear deformation 
with a small amplitude. 

APPLICATION OF METHOD TO 
A LINEAR VISCOELASTIC BODY 

Constitutive Equation 
Before constructing a concrete formulae for a 

finite-element method analysis, a knowledge of the 
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SBP cast from CHCI3 

SBP cast from BA/CHCI3 

Figure I. Electron micrographs of SBP-1 specimens 
cast from CHCI3 and butylaldehyde (BA)/CHCI3 (9: I 
v/v) mixture. 

constitutive equation of the material to be treated is 
necessary. For a linear viscoelastic body, the stress 
tensor u(t) is represented as a convolution of the 
relative strain tensor l(t; t'),1 

u(t)= f_oo Jl'(t-t')[l(t; t')-E]dt' (1) 

where E is a unit tensor. The response function 11' 
and the relative strain tensor l(t; t') are related to 
the relaxation function ¢ and the displacement 
tensor r(t) as follows. 

Jl'(t) = - d¢(t) 
dt 

For a small deformation eq 3 is reduced to eq 4: 

(2) 

(3) 

l(t; t')= [a(t)+a(t)+]- [a(t')+a(t')+] +E (4) 
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The tensor a(t)=r(t)-E is a small displacement 
tensor. 

For a sinusoidal shear deformation of a con
tinuum (single-phase) viscoelastic body, the stress 
and strain tensors can be treated as two dimensional 
quantities with a single response function Jl'(t- t'), 
as long as the amplitude of deformation remains 
small. For the sake of convenience, the stress tensor 
u(t) and the strain tensor t(t) are represented as eq 5 
and 6 

t1 xx(t) 
u(t) uyy(t) (5) 

uxy(t) 

sxJt) 
t(t) Byy(t) (6) 

Bxy(t) 

with txx etc. the components of the small strain 
tensor a(t) + a(t) +. The relative strain tensor l(t; t') 
is then represented by the components of as 
follows. 

l(t; t') = 
2sxJ t) - 2sxx(t') + 1 
2syy(t)- 2syy(t') + 1 
Bxy(t)- Bxy(t') 

(7) 

The constitutive equation (1) is now rewritten as 

u(t)= J: Jl'(t')dt'Qt(t)-Qf _
1

00
Jl'(t-t')t(t')dt' (8) 

where Q is a matrix given by 

Q = 
2 0 0 
0 2 0 
0 0 

(9) 

Mechanical Characteristics of an Element1.2 
When the finite-element method is used to analyze 

the mechanical behavior of a body, the body is 
replaced by a "total structure" consisting of a finite 
number of elements with definite shape. The 
mechanical behavior of the body is then analyzed in 
relation to the displacements of nodes representing 
the elements and forces acting thereon. Triangular 
elements are suitable for treating two-dimensional 
problems. For example, a "toral structure" is 
divided into triangles to yield N nodes, such as 
shown in Figure 2. The nodes are numbered from 
one toN, and three nodes i,j, k 
belong to the m-th element. If a uniform linear 
deformation is assumed within each element, the 
strain tm in this element is related to the displace-

Polymer 1., Vol. 13, No.2, 1981 



Finite-Element Method Analysis of ABC Three-Block Polymer Systems 

y 
total 

structure 

virtual displacement is used. A virtual work 15 W* 
caused by a virtual displacement 15::', and a virtual 
strain e::', = Bm!5! is given as 

bW* =b::', + Fm(t) 

=hI fe::-,+um(t)dxdy (13) 

Here, h is the thickness of the element, and the 
integration is carried out over the surface of this 
element. From eq 12 and 13, mechanical character-
istics of the m th element is obtained as the relation 

Figure 2. Schmematic diagram of a "total structure" between 15m and F m as follows. 
divided into triangular elements. 

uJt) 

b; 0 bj 0 bk 0 
V;(t) 

1 up) 
em(t)=- 0 C; 0 ci 0 ck vit) 

b; ci bj ck bk C; uit) 
vk(t) 

(10) 

where is the area of the m th element, up(t) and 
vP(t) are displacements of the p th node at time t in 
the x- andy- directions, respectively, and bP and cP 
are related to the coordinates of nodes (xP, yP)+ 
(p=i,j, k) as follows. 

[f a) It-/it J 
X lit .U:U(t') dt' f5m(t)- _ 

00 
.u:U(t- t')bm(t') dt' 

(14) 

In this eq 14 bt denotes a small time interval. Only 
the past displacements 15m (I') (t' < t) contribute to 
Rm(t) if the range of integral is limited as in eq 14. 

Mechanical Characteristics of the "Total Structure" 
In eq 14 the m th element is represented by the 

three nodes, and therefore F m(t), 15m(t), Rm(t), and 
Km are six-dimensional representations. After re
writing the six-dimensional matrices for the N 
nodes, which are given by 2N-dimensional repre-
sentations, eq 14 is summed up for all the elements 
to give the relation between the force F and the b;= Yi- Yk 

bi=yk-Yi 

bk=Y;-Yi 

( 11) displacement 15 of all the N nodes, 

The above assumption is reasonable when the 
deformation is small and the material in this element 
is uniform and isotropic. From eq 8 and 10, urn is 
related to 15m as 

Gm(t)= I: .U:U(t')dt' QBmbm(t) 

-QBm f_oo .u:U(t-t')bm(t')dt' (12) 

Here ,u;, denotes the response function of the 
material in the m th element. 

In order to obtain the relation between the force 
F m(t) acting on the m th element and the displace
ments of the three nodes 15m(t), the principle of 
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F(t) =K!5(t)- R(t) (15) 

When the displacement of the boundary of the 
"total structure," i.e., the boundary condition is 
given, the force F(t) is obtained by solving eq 15. To 
do this we first classify the N nodes into two classes 
A and B, which include, respectively, those within 
the "total structure" and those on the boundary. We 
rearrange the components in the tensors in eq 15 so 
that the components of class A appear in the upper 
rows of the columns, while the components of class 
B in the lower half of the columns: 

IFA(t)l = IKAAKABI 
FB(t) XSAXSB lbA(t)l - IRA(t) I 

bB(t) RB(t) 
(16) 

Further, we assume that forces acting on an A-class 
node are balanced during the deformation, so that 
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FA(t) equals zero. The upper row of eq 16 is then 
rewritten as follows: 

6A(t)= -(KAA)-1 KAB6B(t)+(KAA)-l RA(t) 

= -Z68(t)+C(t) (17) 

From eq 16 and 17, F8(t) is related only to the 
displacements of the B-class nodes as 

F 8(t) = [J(BB _J(BA Z]68(t) + [J(BA C(t)- R8(t)] 

(18) 

Once there is a displacement of the boundary b8 , 

i.e., the boundary condition is determined, eq 17 and 
18 are solved to give 6A(t) and F8(t). If an elastic 
body such as that of metals is to be analyzed, C(t) in 
eq 17 and P(t) in eq 18, both representing the 
contribution of the stresses of the past deformation 
history, are equal to zero, and it is not necessary to 
obtain 6A(t). If a viscoelastic body is to be analyzed, 
however, 6A(t') and 68 (t') (t' <t) must be obtained 
to calculate Rm(t) in eq 14. 

COMPARISON OF CALCULATIONS 
WITH EXPERIMENTS 

Models and Calculations 
The reduction of a three-dimensional problem to 

a two-dimensional one, as was done just above, may 
be justified in dealing with the small-amplitude 

a s 
three -layer-lamellar 

sinusoidal shearing deformation of a continuum 
single-phase body. However, for the multiphase 
system which we are examinig, this reduction is 
highly problematic. We were able to note down, 
instead of the 2N-dimensional representation of 
eq 16, a more general formula involving two 
material functions corresponding to the shear and 
bulk moduli or the Young's modulus and the 
Poisson's ratio for an isotropic elastic body. 
However, in such a formulation class A and class B 
components in the deformation tensor could not be 
adequately resolved. Presumably the volume change 
of an element due to deformation must be de
termined by an additional boundary condition such 
as the balance between the internal and external 
hydrostatic pressures. The extension of such a 
treatment to a viscoelastic multiphase system 
certainly creates further complication, which at the 
moment we do not know how to resolve, and also 
there is the difficulty arising from the shortage in the 
computer capacity. 

For two-phase systems, which in most cases 
consist of hard inclusion phases and soft matrix 
phases, several theories have been developed for the 
dynamic mechanical properties8 •9 on the bases of 
equivalent mechanical models and of the averaging 
procedure of Bruggemann10 and KemerY In some 
of these theories, two phases were assumed to be 
incompressible, while in others, the viscoelastic 

l@f=1 bali-in-a-box 

Figure 3. Schematic diagram of "total structures" representing two typical "ball-in-a-box" and "three
layer-lamellar" morphologies of SBP specimens. 
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Poisson's ratios were assumed as real constants. 
Particularly, the averaging-process theories are 
based on the following two assumptions: the two 
phases assume a regular morphology which is 
mostly a viscoelastic sphere in another viscoelastic 
matrix, and the two-phase system is considered to 
have the macroscopic mechanical properties of a 
homogeneous isotropic material, which approach 
those of the matrix phase as the distance from the 
dispersed sphere becomes large.8 •9 Such an analysis 
certainly remedies any complications arising from, 
say, the difference between the Poisson's ratios of 
the two phases, However, the averaging procedure 
is not applicable to our SBP three-phase systems. 
Therefore, we have arbitrarily assumed that (i) the 
effects of volume change in any elements during the 
sinusoidal shear-deformation of the total structure 
may be neglected, since the volume change itself 
must be small as long as the amplitude of oscillation 
remains small, and that (ii) each element in each 
phase may be replaced by a uniform, isotropic entity 
characterized by a single response function similar 
to that of the corresponding homopolymer. Thus 
the two typical "ball-in-a-box" and "three-layer
lamellar" morphologies of a poly(styrene-b
butadiene-b-4-vinylpyridine) three-block polymer 
(SBP)5 •6 were represented by two models of simple 
geometry such as shown in Figure 3. Molecular 
weights M" of each block of the SBP polymer were 
20200 (S), 22000 (B), and 32300 (P).5 •6 The period of 
oscillating displacement was equally divided into 36 
intervals, and eq 17 and 18 were solved numerically 
so that the forces were balanced at each node. For 
the calculation of Rm(t) in eq 14, bt was put equal to 
the interval that was 1/36 of a period. The range of 
numerical integration was limited only to the past 
three periods, because of the limitation of the 
computer capacity. When the oscillating stresses 
reached a stationary level usually achieved after 
several cycles, the data were taken out and analyzed 
to evaluate G' and G". 

Response Functions 
The master curves of the dynamic modulus G'(w) 

ofmonodisperse polystyrenes (PS) reduced to 160°C 
are shown in Figure 4. Solid lines in the lower and 
higher frequency ranges in Figure 4 are the data 
reported by Onogi et a!Y and Soen et a/.,13 

respectively. The broken lines in the transition 
region were obtained by interpolation between the 
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Figure 4. Master curves of dynamic modulus G' of 
polystyrenes reduced to 160oc. 

two solid lines. The reported values of 103M" of L5, 
Ll5, Ll4, and Ll2 by Onogi eta!. were 330, 220, 28, 
and 13, respectively. The data by Soen et a!. 
obtained for a sample with Mn= 180000 at IOOoC 
were reduced to 160°C by the WLF relation: 14 

(19) 

When the frequency is high or the temperature is 
low, the dynamic behavior of PS is assumed to be 
independent of molecular weight. 

From the master curves shown in Figure 4, the 
response functions 11' and the relaxation spectra H 
are obtained by the first-order approximation, 
respectively, as 

1 [dG'(w)J tl(t)=- --
t dlnw ro=l/t 

(20) 

[ dG'(w)J I H(T)= -- =tjl'(t) 
d In w w= 1/< t=• 

(21) 

The results are shown in Figure 5. The response 
functions are approximately a single-relaxation
time type in a range t < 10- 9 s, and assumed to be 
zero in a range t > I 04 s at 160°C. In the latter 
calculations, the temperature dependence of 11' is 
assumed as follows. The shift factor aT is assumed as 
in eq 19 when T> T8, and to be unity when T?, Tg. 

Jl'(t) IT= ;T Jl'(t/aT) I Tg (22) 

Frequency-Dispersion Behavior of PS 
In order to determine the accuracy of the 

calculation, the frequency-dispersion behavior ofPS 
at 160°C was calculated and compared with the 
measured results by Onogi et a/. 12 For L5 and Ll5 
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Figure 5. Response functions and relaxation spectra of 
polystyrenes L5, LIS, Ll4, and Ll2, reduced to 160°C. 
These curves were calculated from the G' master curves 
shown in Figure 4. 
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Figure 6. Comparison between calculated and ob
served8 frequency-dispersion behavior of a polystyrene 
(M.=330000) at 160oC. 
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the calculations were done without difficulty. For 
Ll4 and L12, however, there were large numerical 
errors involved: KAA in eq 16 did not become 
positive as numerical error accumulated, and 
(KAA)- 1 had a large error, since (KAA)- 1 was 
obtained by Cholesky's method for symmetric 
positive materices. 

The calculated and experimental results for L5 
agree well with each other as shown in Figure 6. In 
these temperature and frequency ranges, the error 
caused by limiting the range of integration in eq 14 
after the past three periods of oscillation is not so 
large and the calculation can be carried out without 
much difficulty. 

Temperature-Dispersion Behavior of SBP Films 
The temperature-dispersion behavior of the SBP 

films was simulated and compared with experimen
tal results of Arai et a/.6 For the calculation the 
response function of PS homopolymers were used 
for polystyrene (S), polybutadiene (B), and poly(4-
vinylpyridine) (P) domains by employing adequate 
Tg values for each. To distinguish the three phases 
we employed temperatures at which frozen micro
Brownian motions of the main chains begin to be 
librated as the Tg values in the WLF equation 19. 
The temperatures for S, B, P noted as Tg(S), Tg(B), 
and Tg(P) are 343, 166, and 393 K, respectively. 
These values are somewhat lower than the com
monly known Tg values of these polymers, which are 
the temperatures at which loss moduli G" and/or 
tan b exhibit peaks in the temperature-dispersion 
curves. 

As remarked in the previous section, calculation 
of the low-molecular-weight PS, L14, and L12, 
involved a large error so that the response function 
for L5 was used for P and that of Ll5 for the S and 
B phases in the calculations. In a film of "three
layer-lamellar" morphology each of the lamellae on 
the average run parallel to the film surface. For the 
calculation of the response to a sinusoidal shear 
strain, we assumed that the lamellae lie per
pendicular to the plane of shear as shown in Figure 
3. In an actual measurement, the complex tensile 
modulus E* was obtained instead of the complex 
shear modulus G*. However, a small shear defor
mation can be decomposed into a tension and 
compression with the principal axis making a 45° 
angle with the plane of the shear. This situation 
justifies our approximate model in which lamellae 
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Figure 7. Comparison between the calculated and 
observed6 temperature-dispersion behavior of an SBP
specimen of the "baH-in-a-box" morphology at 110Hz. 

lie perpendicularly to the plane of shear. The 
contribution of higher harmonics to the calculated 
shear stress was very small, i.e., the ratio of the 
amplitudes to the fundamental harmonics was less 
than 10-4 . Therefore we may say that the "total 
structure" exhibits a linear viscoelastic behavior 
under the sinusoidal shear strain examined here. 

In Figures 7 and 8, the calculated and observed 
results of the temperature dispersion at II 0 Hz of 
two films with the "ball-in-a-box" and "three-layer
lamellar" morphologies are compared, respectively. 
The observed complex tensile moduli E* = E' + iE" 
were reduced to complex shear moduli 
G*=G' +iG" by simply assuming G*=E*/3, i.e., 
the incompressibility and the linearity of the whole 
SBP system. The observed results are shown by solid 
curves, which exhibit the following features: The 
"ball-in-a-box" morphology shows only two tran
sition peaks, presumably due to the glass transition 
of B and S phases, while the "three-layer-lamellar" 
morphology three transitions for all three phases. 
The calculated curves, especially that of G' simu-
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Figure 8. Comparison between claculated and ob
served temperature-dispersion behavior of an SBP
specimen of the "three-layer-lame11ar" morphology at 
110Hz. 

lated these features very well. However, the drops 
of G" and tan b between the transition peaks are very 
much larger in the calculated curves than in the 
observed ones. The calculation underestimates the 
mechanical loss considerably below the actual 
levels. This underestimation is presumably due to 
the neglect of part memories prior to the three 
periods in integrating eq 14, and also to the 
assumption that 11' is independent of Tbelow the Tg. 

Now returning to the problem of how only two 
transitions are activated in the "ball-in-a-box" 
morphology, while all three are activated in the 
"three-layer-lamellar" morphology. We examined 
the displacements of the domain boundaries of the 
models during one cycle of the sinusoidal shear 
deformation at four different temperatures. The 
results are shown in Figures 9 and 10 for the two 
morphologies. Below Tg (B) (- 135oC) every phase 
deforms elastically and so do the whole models. As 
the temperature is raised above Tg(B), the difference 
becomes apparent: In the "ball-in-a-box" model, 
the P-sphere simply undergoes a rotatory oscil-
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(a) - 135°C < T.(B) < T.(S) < T.(P), period= T 

rJDIU!DI 
t=O t=ST/36 t=T/4 t=13TI36 

1 

t=31TI36 t=3TI4 t=23T/36 t =T/2 

(b) T8(B) < 65°C < r.(s) < r.(P) 

rJDlt::JDI 
t=O t=ST/36 t=T/4 t=13TI36 

1 f 

\0\U\Qrrl 
t=31TI36 t=3TI4 t=23TI36 t=T/2 

(c) T.(B)< T.(S) < 105oC < T.(P), period= T 

l=O t=ST/36 t=T/4 t =13TI36 

t =31TI36 t =3T/4 t =23TI36 t= T/2 

(d) T.(B) < T,(S) < T.(P) < 145oC 

t=O t=ST/36 t=T/4 t=13T/36 

t=31T/36 t=3T14 t=23T/36 t=T/2 

Figure 9. Schematic diagram, representing simulated deformation modes of phase-separated domains in 
the "ball-in-a-box" morphology at (a) -135, (b) 65, (c) 105, and (d) 145°C. The frequency of the sinusoidal 
deformation was II 0 Hz. 
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(a) - 135°C < T.(B) < T.(S) < T.(P), period= T 

t=O t=5T/36 t=T/4 t=13T/36 

1 nunu 
t=31TI36 t=3T/4 t=23T/36 t=T/2 

unnn 
t=O t=5T/36 t=T/4 t=13T/36 

1 

t =31TI36 t =3T/4 t =23T/36 t = T/2 

(c) T.(B)<T.(S)<l05°C<T.(P), period=T 

t=O t=5T/36 t=T/4 t=13T/36 

1 

t=31T/36 t=3T/4 t=23T/36 t=T/2 

(d) T.(B) < T.(S) < T.(P) < 145°C 

uno a 
t=O t=5T/36 t=T/4 t=13T/36 

t=31T/36 t=3T/4 t=23T/36 t=T/2 

Figure 10. Schematic diagram representing simulated deformation modes of phase-separated domains in 
the "three-layer-lamella" morphology at (a) -135, (b) 65, (c) 105, and (d) 145°C. The frequency of the 
sinusoidal deformation was II 0 Hz. 
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lational motion and swings back and forth in the 
softened B-sphere, thereby not contributing much to 
the dispersion. On the other hand, in the "three
layer-lamellar" model, the hard P lamella is still 
forced to deform even above Tg(S), and this 
contributes to the dispersion in the Tg(P) region. If 
the lamellae are laid parallel to the plane of shear, 
the hard P lamella simply swings back and forth and 
does not contribute to the dispersion. Thus the 
finite-element method is capable of predicting, at 
least semiquantitatively, the dynamic viscoelastic 
behavior of microphase-separated three-block po
lymer systems if the morphology and the mechanical 
properties of each component are understood. 

Nonlinearity of Phase-Separated Systems 
As remarked in the previous sections, phase

separated SBP's under a small deformation show 
linear behavior. On the other hand, in decane or 
tetradecane solutions of a polystyrene-poly
butadiene block copolymer (SB), S blocks are 
precipitated to form micelle structures. 15 •16 Such 
solutions usually show a nonlinear dynamic be
havior even under a small-amplitude deformation: 
Lissajou's patterns are not elliptical and higher odd 
harmonics appear in the shear stress. This can be 
understood, at least semiquantitatively, as the 
behavior of a Bingham model connected in series 
with a Hookean spring.16 However, in view of the 
fact that the "three-phase structure" models do not 
show any nonlinearity in any temperature ranges as 
far as the small-amplitude deformation behavior is 
concerned, the multiphase structure itself is not 
responsible but a slippage of the micelles regularly 
arranged for the most part in a macrolattice 
structure appears to be responsible for such non
linear behavior under the small-amplitude 
deformation. 
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