Stiff-Chain Behavior of Poly(isophthaloyl-trans-2,5-dimethylpiperazine) in Dilute Solution

Abstract

For narrow-distribution fractions of poly(isophthaloyl-trans-2,5-dimethylpiperazine) (PIDP) with weight-average molecular weights Mw from 3.7×103 to 2.4×106 g mol−1, z-average mean-square radii of gyration 〈S2z and intrinsic viscosities [η] in trifluoroethanol (TFE) and m-cresol were measured at 25°C. From the [η] data for Mw<105 g mol−1, which exhibited the expected stiff-chain behavior, the persistence lengths of PIDP in m-cresol and TFE were determined to be 4.9±0.3 nm and 3.1±0.2 nm, respectively, using Yamakawa–Fujii’s theory for unperturbed wormlike cylinders and assuming the ML and d values estimated previously by Motowoka et al. for poly(phthaloyl-trans-2,5-dimethylpiperazine) and poly-(terephthaloyl-trans-2,5-dimethylpiperazine) in various solvents including m-cresol and TFE. Here ML is the molar mass per unit contour length and d is the diameter of the cylinder. Double-logarithmic plots of ‹S2z1/2 and [η] against Mw in the region of higher Mw exhibited features usually observed with flexible polymers in good solvents. This result can be explained by the fact that, though semiflexible, the PIDP chain in solution suffers excluded-volume effects if its length exceeds a certain value. In terms of the number of Kuhn’s statistical segments, this critical chain length for PIDP is about 50 in TFE and 150 in m-cresol.

References

  1. 1

    M. Motowoka, T. Norisuye, and H. Fujita, Polym. J., 9, 613 (1977).

  2. 2

    M. Motowoka, H. Fujita, and T. Norisuye, Polym. J., 10, 331 (1978).

  3. 3

    M. Katz, J. Polym. Sci., 40, 337 (1959).

  4. 4

    P. W. Morgan and S. L. Kwolek, J. Polym. Sci., A, 2, 181 (1964).

  5. 5

    G. C. Berry, J. Chem. Phys., 44, 4550 (1966).

  6. 6

    Y. Einaga, Y. Miyaki, and H. Fujita, J. Polym. Sci., Polym. Phys. Ed., 17, 2103 (1979).

  7. 7

    Y. Einaga, Y. Miyaki, and H. Fujita, J. Soc. Rheol. Jpn., 5, 188 (1977).

  8. 8

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Row, New York, N.Y., 1971.

    Google Scholar 

  9. 9

    H. Yamakawa and M. Fujii, Macromolecules, 7, 128 (1974).

  10. 10

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  11. 11

    H. Murakami, T. Norisuye, and H. Fujita, Macromolecules, 13, 345 (1980).

  12. 12

    P. J. Flory, J. Chem. Phys., 17, 303 (1949).

  13. 13

    P. De Gennes, “Scaling Concepts in Polymer Physics,” Cornell university Press, Ithaca, N.Y., 1979.

    Google Scholar 

  14. 14

    Y. Miyaki, Y. Einaga, and H. Fujita, Macromolecules, 10, 1356 (1977).

  15. 15

    F. T. Wall and J. J. Erpenbeck, J. Chem. Phys., 30, 634 (1959).

  16. 16

    K. Suzuki, Bull. Chem. Soc. Jpn., 41, 538 (1964).

  17. 17

    F. T. Wall and F. T. Hioe, J. Phys. Chem., 74, 4416 (1970).

  18. 18

    P. C. Jurs and J. E. Reissner, J. Chem. Phys., 55, 4948 (1971).

  19. 19

    T. Norisuye, K. Kawahara, and H. Fujita, J. Polym. Sci., B, 6, 849 (1968).

  20. 20

    M. Kurata and H. Yamakawa, J. Chem. Phys., 29, 311 (1958).

  21. 21

    H. Yamakawa and G. Tanaka, J. Chem. Phys., 55, 3188 (1971).

  22. 22

    J. Shimada and H. Yamakawa, J. Polym. Sci., Polym. Phys. Ed., 16, 1927 (1978).

  23. 23

    G. Weil and J. Des Cloizeaux, J. Phys. (Paris), 40, 99 (1979).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sadanobu, J., Norisuye, T. & Fujita, H. Stiff-Chain Behavior of Poly(isophthaloyl-trans-2,5-dimethylpiperazine) in Dilute Solution. Polym J 13, 75–84 (1981). https://doi.org/10.1295/polymj.13.75

Download citation

Keywords

  • Poly(isophthaloyl-trans-2,5-dimethylpiperazine)
  • Wormlike Chain
  • Persistence Length
  • Dilute Solution
  • Light Scattering
  • Mean-Square Radius of Gyration
  • Intrinsic Viscosity
  • Excluded-Volume Effect
  • Expansion Factor

Further reading

Search