Abstract
The dielectric relaxation for form III poly(vinylidene fluoride) prepared by isothermal crystallization was observed at high temperatures. The values of ε′ and ε″ were very large at high temperatures, ε′ underwent almost a tenfold increase when the temperature was raised from 150°C toward the melting point of the sample (198°C). The sharp drop in ε′ beyond the melting point was even more striking. Also, at 100 Hz, ε″ reached a very sharp maximum at about 180°C. The maximum value of ε″ increased with the degree of crystallinity. The activation energy estimated for the high temperature relaxation was about 150 kcal mol−1. The dielectric relaxation, whose strength was about 2.8×104, may be due to the crystalline region. It was also made clear that the relaxation is due to the form III crystallites according to mechanical and DSC measurements. There are two possibilities for the mechanism responsible for the relaxation: (1) the orientational motion of crystallites accompanying the applied ac electric field; (2) the motion of the domain walls of the form III polar crystallites which bring about a hysteresis on the polarization-electric field diagram.
References
- 1
J. B. Lando, H. G. Olf, and A. Peterlin, J. Polym. Sci., A-1, 4, 941 (1966).
- 2
G. Cortili and Zerbi, Spectrochim. Acta, 32A, 2216 (1967).
- 3
R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, Polym. J., 5, 600 (1972).
- 4
E. Fukada, Nature, 211, 1079 (1966).
- 5
K. Nakamura and Y. Wada, J. Polym. Sci., A-2, 9, 161 (1973).
- 6
M. Asahina, H. Kakutani, and K. Wada, Preprints, SPSJ, 18th Symposium on Macromolecules, Tokyo, 1969, p 449.
- 7
J. G. Bergman, Jr, J. H. McFee, and G. Grance, Appl. Phys. Lett., 18, 203 (1971).
- 8
G. Pfister, M. Abkowitz, and R. G. Crystal, J. Appl. Phys., 44, 2064 (1973).
- 9
Tamura, K. Ogasawara, N. Ono, and S. Hagiwara, J. Appl. Phys., 45, 3768 (1974).
- 10
S. Osaki and Y. Ishida, J. Polym. Sci., Polym. Phys. Ed., 13, 1071 (1975).
- 11
R. H. Cole and P. M. Gross, Rev. Sci. Instr., 20, 252 (1949).
- 12
S. Uemura, J. Polym. Sci., A-2, 12, 1177 (1974).
- 13
S. Osaki, S. Uemura, and Y. Ishida, Rep. Prog. Polym. Phys. Jpn., 8, 403 (1970).
- 14
S. Uemura, J. Polym. Sci., A-2, 10, 2155 (1972).
- 15
C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930).
- 16
M. Takayanagi, Mem. Fac. Eng. Kyushu Univ., 23, 41 (1963).
- 17
J. C. Hicks, T. E. Jones, and J. C. Logan, J. Appl. Phys., 49, 6092 (1978).
- 18
M. Uchidoi, T. Iwamoto, K. Iwama, and M. Tamura, Rep. Prog. Polym. Phys. Jpn., 22, 345 (1979).
- 19
K. W. Wagner, Arch. F. Electrotech., 2, 371 (1914).
- 20
K. W. Wagner, Arch. F. Electrotech., 2, 373 (1914).
- 21
K. W. Wagner, Arch. F. Electrotech., 2, 383 (1914).
- 22
Y. Wada, “The Physical Properties of Polymer Solids,” Baifukan, Tokyo, 1971.
- 23
M. Takayanagi and T. Matsuo, J. Macromol. Sci., Phys., B1(3), 407 (1967).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Osaki, S., Ishida, Y. & Yamafuji, K. High-Temperature Dielectric Relaxation of Form III Poly(vinylidene fluoride). Polym J 12, 171–176 (1980). https://doi.org/10.1295/polymj.12.171
Issue Date:
Keywords
- Poly(vinylidene fluoride)
- Dielectric Relaxation
- Relaxation Strength
- Polar Crystal
- Orientational Motion
- Domain Wall
- Polarization-Electric Field Hysteresis
Further reading
-
Peculiarities of dielectric relaxation in poly(vinylidene fluoride) with different thermal history
Journal of Non-Crystalline Solids (2007)
-
Dielectric relaxation in vinylidene fluoride–hexafluoropropylene copolymers
Journal of Applied Polymer Science (2007)
-
High Temperature Dielectric Anisotropy of Poly(vinylidene fluoride) Films at Microwave Frequencies
Polymer Journal (1996)
-
Dielectric anisotropy of stretched poly(ethylene terephthalate) at microwave frequencies
Journal of Applied Physics (1988)
-
The conductivity behavior in lead zirconate titanate polyvinylidene fluoride composites
Journal of Applied Physics (1988)