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ABSTRACT: The nonlinear viscoelasticity of concentrated solutions of rod-like polymers in 
the isotropic phase was studied theoretically based on the molecular diffusion equation of Doi­
Edwards. Rheological functions were calculated for both shear and elongational flows in a steady, 
and transient state. The viscoelastic properties of this system were found to be very similar to those 
of flexible polymers despite the difference in molecular shape and the mechanism of Brownian 
motion: e.g., shear thinning, normal stresses, and stress overshoot were predicted for rod-like 
polymers. 
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The viscoelastic properties of concentrated so­
lution of rod-like polymers are very important from 
the stand point of industrial application. 1 In the 
past ten years, several experimental and theoretical 
studies have been reported.2 - 6 

Though the transient flow and elongational flow 
are important in fiber or film formation processes, 
the studies so far carried out are mostly concerned 
with the linear viscoelasticity, or the steady-state 
simple shear flow. In this paper, we study theoreti­
cally the nonlinear viscoelasticity of this system 
under simple shear and elongational flows in both 
the steady state, and the transient state. We show 
that the viscoelastic properties of this system are 
qualitatively very similar to those of flexible 
polymers. 

The Brownian motion of rigid rod-like polymers 
in a concentrated solution in the isotropic phase has 
been discussed by Doi7 and Doi-Edwards,8•9 and 
the formula for calculating the stress tensor for a 
given velocity gradient is presented in ref 9. 

According to Doi-Edwards,9 given the history of 
the velocity gradient, the stress at time t can be 
calculated as follows. 

Let u be the unit vector parallel to a rod and 
f(u; t) be its orientatiorial-distribution function at 
time t. The distribution function f satisfies the 
following diffusion equation. 

af a (- af) a 
-=-· D,- - -·{[K·U-(U·K·u)u]f} 
at au au au 

(1) 

where K is the transpose of a velocity gradient tensor 
and 15,(u; (j]) the rotational-diffusion coefficient 
give by 

i5,(u; UJ)=D,[: I dQ'j(u'; t) sin (u, u')J 2 
(2) 

in which D, is the diffusion coefficient when the rods 
are distributed isotropically, and (u, u') indicates 
the angle between u and u '. The stress tensor a is 
calclated by9 

a=3ck8 T<uu)+Pl (3) 

here c is the number of rods per unit volume, k 8 the 
Boltzmann constant, T the absolute temperature, P 
the hydrostatic pressure, uu indicates the diadic 
product of u and u, and 1 the unit tensor. The 
average is taken over the orientational-distribution 
function determined from eq I. 

Since 15, depends on u, solving the diffusion 
equation I is a difficult task even with the aid of 
computer. Therefore as in ref9 15, has been replaced 
by an effective diffusion coefficient D, defined by 

D,=D,[: IIdQdQ'j(u; t)f(u'; t) sin (u, u')T 2 
(2') 
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which depends on f but not on u. 

ELONGATIONAL FLOW 

First we discuss the elongational flow, the velocity 
gradient tensor of which is given by 

[
-1 

K(t)= 

0 
-1 

0 

OJ i(t) 0 -
2 2 

(4) 

where i(t) is the elongational rate. Since this flow 
has uniaxial symmetry, the diffusion equation 1 is 
written, in terms of the polar coordinate 

as follows. 

x 1 = r sin (} cos cp 

x 2 = r sin (} sin cp 

x 3 =r cos(} 

(5) 

We express the result by the Trouton viscosity, 
defined by 

(13) 

From eq 3, 11, and 13, the steady-state Trouton 
viscosity I]( i) is given by 

[
3f

1 
( 2 exp (a(2/2)d( 

1
] 

_ . 3ck8 T 0 
yt(s) = 20D,rx _f...,.c.-1 ____ _ 

0 
exp ( a(2 /2)d( 

In particular, when i=O 

3ck8 T 
1](0)=--

10D, 

(14) 

(15) 

This is three times larger than the shear viscosity at 
the zero shear rate (see eq 44). For small value of rx, 
eq 14 can be expanded into power series of a as 

of _ a [ (of )] -=D- (1-(2) --au 
at 'a( o( 

(6) l](i)/1](0) =_!__(a +-1-a2 __ 1_a3 __ 1_a4 + ... ) 
!1. 21 315 2077 

in which 

3i 
a=-

215, 
(7) 

and (=cos B. Since D, depends onf(u; t), a is not 
proportional to rx, but consistently determined from 
eq2' and 7 as 

(16) 

In this case, eq 8 may also be expanded into a power 
series of a as 

(17) 

Equations 16 and 17 clearly determine the rx 

a={: f fdQdQ'f(u; t)f(u'; t) sin (u, u')T 2 (8) ( = 3ij2D,) dependence of 1](8). 

with 

(9) 

Steady-State Elongational Flow 
In the steady state, the diffusion equation 6 

becomes 

(10) 

This equation can easily be solved as 

(11) 

where C is a normalization factor. 

(12) 
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For larges value of rx, we use the asymptotic 
expansion 

- - .. ·) 
!1. !1. !1.2 !1.3 

(18) 

and eq 8 becomes 

2.26)7: (19) 

The derivation of eq 18 and 19 is given in Appendix. 
In Figure 1, l](i) is plotted against rx. The Trouton 

viscosity decreases almost monotonically with the 
elongational rate. Actually, the curve has a very 
weak peak at as can be seen from eq 16, but 
this peak is negligible in the doubly logarithmic plot. 

Stress Growth in the Start of Elongational Flow 
Next, we consider the stress growth when an 

elongational flow starts at t = 0. The development of 
the elongational rate may be represented by 
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i(t)= {
0 

i( =constant) 

1.0f-------

§ 

. .., 
iC-

10-1 

for t<O 

for t>O 

1Ql 

(20) 

Figure 1. Normalized Trouton viscosities if(li) are 
plotted against rx=3ij2D,. 

Since the orientational-distribution function does 
not depend on cp, it can be expanded into the 
Legendre polynomials 

f(8, cp) = I a1(t)P1(cos8)/4n (21) 
1=0 

Because of the symmetry of the elongational flow, 
terms with odd l do not appear. Substituting eq 21 in­

to eq 6, we have 

da1 {[ 1 1 J -dt=-D,exl(l+1) -ex_ a (22) 
(21 + 3)(21-1) I 

+ a - a 
1+2 1-1 } 

(21+5)(21-1) !+ 2 (21-3)(21-1) l- 2 

From eq 21, eq 8 becomes 

{ "' 2n-1 [(2n-3)!!]2 }2 
&=ex 1-2 I la2.1 2 

n= 1 (2n + 2)(4n+ 1) (2n)!! 

(23) 

From the normalization condition 

(24) 

a0 is determined as 

(25) 

Equation 22 was solved numerically by truncating a1 

was taken as 12-16). 
We define the stress-growth function r;+(i; t) as 

The function r;+(i; t) is related to a2 as 

(27) 

The calculation results are shown in Figure 2. The 
stress grows monotonically and reaches a steady­
state value. 

The same results are shown in Figure 3, where the 
stress a33 (i; t) is plotted against the elongational 
ratio 

(28) 

In Figure 3, the value of A. at which the stress reaches 
a steady-state value is almost independent of i. 

The curve denoted by oo indicates the case in 
which ex is infinity. This curve is calculated as 
follows. If ex= oo, the effect of the rotational 
Brownian motion is negligible, and the orientation 
vector u of the rods changes according to the 
macroscopic flow. Suppose that the material point r 
at timet= 0 is transformed to a point E·r at timet by 
the macroscopic deformation. The orientation vector 

0( = 1 

§ 10 
IC" -
.... 

Figure 2. Growth of the Trouton viscosity when an 
elongational flow is started at t=O with elongational 
rate rx. 

1--., 
.X 
u 

"" - 0.8 :=: 

i 0·6 
b:::: 

I 0.4 

0< =CO ------j 

9 10 

(26) Figure 3. Plots of the stresses o-33(i; t)-o-11 (£; t) 
against the elongational ratio il=e''. 
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u of the rod then changes to 

E·u 
u'=--

IE·ul 
(29) 

Since the rods are in isotropic distribution at t=O, 
the stress tensor is calculated by 

U 00 =3ck8 T/(E·u)(E·u)) +Pl (30) 
\ IE·ul2 o 

where ( · · · ) 0 indicates the average throughout the 
isotropic orientation 

In the 

( ... )o=_!__fdQ· .. 
4n 

uniaxial elongation, E 
Cartesian coordinates as 

[r112 0 
E= 0 A. -112 

0 0 

(31) 

IS represented in 

(32) 

From eq 30 and 32, the stress for IX= oo is calculated 
as 

(A.>O) (33) 

SIMPLE SHEAR FLOW 

In the simple shear flow, the velocity-gradient 
tensor K(t) is given in Cartesian coordinates as 

of -
-= -D L f -K(t)T at r 

(36) 

in which 

(37) 

and 

a a 
T=cos2e coscp-+cote--3 sinli cose coscp acp acp 

(38) 

In this flow, there are three independent com­
ponents of the stress tensor: Shear stress 0"12 , the first 
normal stress difference N 1 = O" 11 - O" 22 and the 
second normal stress difference N2 = 0"22 - 0"33 . 

The steady state of this flow was analysed by Doi­
Edwards,9 and the results are replotted in Figure 4. 

1.00!-------

0.10 

K/Dr 
100 

Figure 4. Normalized viscosity 1/(K), the first normal 
stress coefficient 'l'1(K) and the second normal stress 
coefficient 'l' 2 ( K) (after ref 2). 

K(t)= [ 

K(t) 

0 

Here the viscosity ry(K), the first and the second 
normal stress coefficients '1'1 (K) and 'I'2(K) are 

(34) defined by 
0 

where K(t) is the shear rate. If we choose the polar 
coordinates as 

0"12 =IJ(K)K 

N! = P!(K)K2 

Nz= 'l'z(K)Kz 

(39) 

x 1 =r sine coscp 

X2=r Cose (35) Small Applitude Oscillation 

x 3 = r sine sincp 

(which is different from that in the preceding 
section), the diffusion equation becomes 

886 

Consider a small amplitude oscillation 

K(t) = Ko Re eiwt (40) 

For small K0 , the shear stress is perturbed linearly in 
K0 , but the normal stress differences are quadratic in 
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Ko. 

The following quantltles are taken into con­
sideration: the complex viscosity IJ*(w), the complex 
normal stress coefficients 'Pf(w) and 'Pj(w) and 
these are defined by 

a(t) = Re [IJ*(w)K0 eiro<J 

N1(t)= P1(w)K6+Re ['Pf(w)K6 e2 irot] 

N 2(t)= e2 iro<J 

(41) 

To calculate the functions defined by eq 41, we 
expand the distribution function f into the power 
series of K(t) 

J= L Re [1+KoVt1 eiro'+K6(t/tio)+e2irott/tio))+ ···] 

(42) 

and use the usual perturbation method with respect 
to K0 . As result, we obtain 

1 
IJ*(w)/1](0)=--. -

1 +lWTr 

1 
P1(w)j'P 1(0) = = 2[1 +(wrr)2] (43) 

1 
'l'f(w)/'l'1 (O) = 'Pi(w)j'P z(O) = 2(1 + iwrr)(1 + 2iwrr) 

in which Tr = 1/6 Dr and 1](0), 'l'1 (0), and 'l'z(O) are 
the material functions for the steady flow at zero­
shear rate9 

ck8 T 
1[1 (0)--

1 - 30D' 
r 

ck8 T 
'Pz(O)=- 105D 

r 

(44) 

These variables may be split into real and imaginary 
parts: 

IJ*(w) = IJ'(w)- il]"(w) 

'Pf(w)= 'l'{(w)-i'l'{'(w) (45) 

'l'i(w)= 

These real and imaginary parts and the absolute 
value of the complex viscosity are shown in Figure 
5. 

In flexible polymers, there is a useful empirical 
relation, called the Cox-Mertz rule, which states 
that the magnitude of the complex viscosity is 
comparable with the steady-state viscosity at equal 
values of frequency and shear rate, i.e., 
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0-1 
· '-r((w)/ rJ(O) 

o.o1 L---------'o.'--1 

K or w 

Figure 5. Plots of ry'(w), ry"(w), and ry*(w) against w. 
The steady state viscosity ry(K) is also plotted. 

(46) 

In Figure 5, IJ*(w) and IJ(w) are compared at the 
same value of K and w. Though they do not match 
perfectly, there is considerable correlation between 
them. 

Transient Flows 
For the transient flow, a numerical calculation is 

needed to solve the diffusion equation 36. The 
method for this is discussed in the subsection of this 
paper. 

We expand f into the spherical harmonics 
Yzm(B, cp) as9 

f(B, cp; t)= I I II, m>bzm 
l=Om=O 

with 

{ 

Yim(B, cp) for m=O 

ll,m>= J1
2 [Y,m(B, cp)+<-rYi.-m(B, cp)] 

for 

Substituting eq 46 into eq 35, we have 

dblm 
-= -DJ(l+ 1)Xbzm 
dt 

I' 

(47) 

(48) 

- K(t) I I (I, ml f II', m')bl'm' 
1'=0 m'=O 

(49) 
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Where 

15 [ 4 If J- 2 
X= D: = ---;: dQdQ'f(u; t)f(u'; t) sin (u, u') 

[ 
ro 

2
" (2n-1)[(2n-3)!!]2 

2]-
2 

= 1-8n I I -- I b2n m I 
n=l m=O 2n+2 (2n)!! · 

(50) 

The explicit form of the matrix element 
<t. ml f If', m') is listed in ref 9. From the normali­
zation condition 

ff(u, t)dQ=l (51) 

b00 is determined as 

(52) 

Equation 49 was solved numerically by truncating 
b1m with lsi*(!* was taken as 12-16). The three 
stress components are related to b2 m as 

(53) 

Stress Growth in the Starts of Steady-State Flow 
Suppose that a shear flow with a constant shear 

rate K starts at time t=O, i.e., 

K(t)= {
0 

K( = constant) 

for t<O 

for t>O 
(54) 

We discuss the steady stress in terms of the stress­
growth functions: 

an(t)=Y/+(K; t)K 

a 11 (t)-a2z(t)= Pt(K; t)K2 (55) 

a22(t)-a33(t)= 'P{(K; t)K2 

These functions are obtained by solving eq 49 
numerically with initial condition b1m = 0 (l # 0) at 
t=O. The growth of the shear stress is shown in 
Figure 6, where the function is normalized by the 
steady-state value shown in Figure 4. 

The behaviour of the stress-growth curves is 
sensitive to the magnitude of K. When K is small, the 
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[),.t 

Figure 6. Shear stress when the shear flow starts at 
t=O with constant shear rate K. 

1-

u 

"" 0-1 

0 
0 2 4 6 8 10 

Kt 

Figure 7. Plots of the shear stress component against 
shear strain. 

stress increases monotonically with time, whereas 
when K is large enough, it shows a maximum before 
reaching the steady-state value. These phenomena 
are known in flexible polymers as the "stress 
overshoot." Figure 7 shows another plot of the 
results in Figure 6. Here the shear stress a w is 
plotted against the shear strain y ( = Kt). Let t* be the 
time at which the shear stress takes on a maximum. 
As observed in Figure 7, the product of Kandt* is­
nearly independent of K and D,. 

When K/D, is infinity, the stress tensor is given by 
eq 30. The deformation tensor E is now represented 
by 

E= 

y 
1 
0 

From eq 28, the shear stress a12 becomes 

(56) 
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:!:: 

.,. 

Dr! 

Figure 8. First normal stress coefficient when a shear 
flow starts at t = 0 with shear rate K. 

Figure 9. Second normal stress coefficient when the 
shear flow starts at t = 0 with shear rate K. 

which is shown in the curve denoted by oo in Figure 
9. Note that the curve has a maximum at a certain 
strain because the stress first increases with strain, 
but decreases as the rods align in the direction of the 
x1 axis for a large deformation. 

In the present model, the stress overshoot is 
qualitatively explained as follows: if K/ D, the 
above stress peak still survives, but if I, the 
peak is smeared out by the Brownian motion of the 
rods. This also explains the fact that Kt* is almost 
independent of K and D,. Figures 8 and 9 show the 
stress growth of first and second normal stress 
differences respectively. The stress overshoot is not 
so pronounced as in the shear stress. 

Stress Relaxation Following Cessation of the Steady 

Flow 
When the steady flow is suddenly stopped at time 

t=O, the stress decays with time. The development 
of shear rate is 
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? ;.· 
\C 

Dr! 

Figure 10. Relaxation function F2-(K; t) when the 
shear flow, with shear rate K, is stopped at t=O. 

{
K ( = constant) 

K(t)= O 
for t<O 

for t>O 

We introduce the stress-relaxation functions: 

O"n(t)=IJ-(K; t)K 

O"u(t)-0"22(t)= '1'1-(K; t)K2 

0"22(t)-0"33(t)= 'Pz(K; t)K2 

In this case, eq 49 becomes 

dblm 
-= -D,l(l+1)Xbzm 
dt 

(58) 

(59) 

(60) 

Let b?m(K) be the value of b1m in the steady state. The 
solution of eq 60 then takes on the form: 

(61) 

where the function F1- depends on I but not on m. 
Thus the relaxation curves 1'/-, '1'1, and '1'2 have the 
same time-dependence: 

1] -(K; t)/I](K) = 'Jll (K; t)j'Jl 1 (K) 

= 'P2(K; t)j'Jl2(K)=Fz(K; t) (62) 

When K is small enough, i.e., 1, the 
relaxation function is approximated as 

r(K; t);::;; exp (- 6D,t) (63) 

because, in this case, X;::;; I. For large values of K, 

eq 60 was solved numerically with initial condition 
b1m=b?m(K) at t=O. As shown in Figure 10, the 
initial decay occurs faster for large K than for small 
K. This is because, as K increases, the effective 
diffusion coefficient D, increases. 
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APPENDIX 

Equation 13 can be rewritten as 

l](e)/17(0) 

= 2
1a { ! [ (f: exp (- &(1- ( 2)/2)d() -l -1 J -1} 

(A 1) 

For 1, exp [ -&(1-(2)/2] has a very sharp 
peak at (:::::; 1. Replacing ( by 1-s, the integral 
in eq A 1 becomes 

I: exp [- i'l(1- ( 2)/2]d( =I: exp [- i'ls + &s2 /2]ds 

(A2) 

Since the integrand of the right-hand side has a very 
sharp peak at s 0, the integral is evaluated as I: exp [ -i'ls+&s2/2]ds 

1 00 1 f 00 (e) =-I-
fl n=O n! 0 2fl 

1 oo (2n + 1 )! 1 --"--
- iX n:-O (2n)!! an+! 

(A3) 

Then from eq A 1 and A 3, we obtain eq 18. The 
relation between a and & can be calculated as 
follows. Because the distribution functionf(u) has a 
very sharp peak around the polar axis of (} = 0, 
sin (u, u') can be replaced as 

890 

sin (u; u'):::::;(u, u'):::::;j82 +8'2 -288' cos (cp-cp') 

(A4) 
Therefore from eq 8 and A 4 we obtain 

with 

x J e + 112 - cos qJ 

=2.6010 
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