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In a very recent review, 1 Plate and Noah 
recommended the theory proposed by McQuarrie2 

to be the most exact kinetic theory on polymer­
analogous reactions of a sufficiently long homopo­
lymer having the nearest-neighbor effects. By the 
polymer-analogous reaction, we mean the reaction 
of the substituent functional groups of a polymer 
with reagents low in molecular weight without any 
change in the degree of polymerization.3 Although 
this theory is almost as exact as that of Boucher,4 
the final equations for expressing the extent of a 
reaction as a function of time appear to differ from 
each other. McQuarrie's equation involves two 
integral terms, while Boucher's one consists of a 
non-integral term and an integral term relating to 
the isolated unreacted units. Thus the properties of 
the McQuarrie equation are difficult to exmine and 
numerical evaluations are difficult to make. We 
have examined McQuarrie's formulation and found 
a procedure by which a simpler equation can be 
obtained from it. The present paper deals with this 
derivation. 

The formulations by the above authors are based 
on the assumption of the nearest-neighbor effects 
for the irreversible reaction of the first-order. In this 
case, three rate constants are sufficient to character­
ize the reaction kinetics. They are k0 , k1, and k2 , i.e., 
the rate constants of unreacted units with zero, one, 
and two reacted nearest-neighbors, respectively. 

McQuarrie defined two kinds of unreacted se­
quences; a) }-clusters: the sequence of }-unreacted 

units flanked by two reacted units, and b) J-tuplet: 
the sequence of }-unreacted units flanked either by 
unreacted or by reacted units. Let Pi be the 
probability of finding a }-cluster in the chain and qi 
be the probability of finding a j-tuplet in this chain. 
Thus the following set of equations at time (t) can be 
obtained, 

N-j 

qj= I (i+l)Pi+j (1) 
i=O 

(2) 

dq1/dt= -k0q3-2k1(q 2 -q3)-k2(q1 -2q2+q3) 

(3) 

dq/dt= -2k1(qj-qj+ 1l-ko[U-2)qj + 2qj+ 1J 

(j~2) (4) 

where N is the maximum length of the sequence of 
unreacted units. These equations comprise the 
McQuarrie formulation. 

The solution of eq 4 for j 2 can be written in the 
following simple form, 5 

qi= exp ( -jk0 t) exp [2(k0 -k1){t-(l -e-k0')/k0 }] 

(5) 

There is no doubt about the validity of eq 1-5. 
McQuarrie derived the expression for the fraction 

of unreacted units (q1) by substituting q2 and q3 

from eq 5 into eq 3 and solving the resultant first­
order linear differential equation. The result is, 
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ql =exp ( -k2t{ 2(k2 -k1)e2(k1 -ko)Jko 

x fe<k2-2k1)t exp (Ae-ko')dt 

+(2k1 -ko -kz)e2(k1 -ko)/ko fe(k2-ko-lk1)t 

x exp (Ae-k0')dt+C] (6) 

where C is the intergration constant and A= 
2(k0 -k1)/k0 . Equation 6 is the function examined 
below. 

Now our problem is to obtgi.in an ~~ession for q1 
other than eq 6 by using eq 1-5. To make the final 
expression as compact as possible, let us change the 
variable (t) by s=exp ( -k0t) and let rJ.=kifk0, and 
f3=k2/k0 . Then, eq 5 can be expressed in a simpler 
form as follows, 

qi=s-i+ 2•- 2 exp [2(r,.- l)(l-s)] (7) 

From eq 1 and 2 with j = I and eq 6, we get, 
N 

q1 -Pi =2qz-q3= I ip; 
i=2 

=(2-s)s2" exp [2(r,.-l)(l-s)] (8) 

This is applicable for j~2. 
By differentiating eq 2 with respect to t at j = I, we 

obtain 

dpifdt=dqifdt-2dq2/dt+dq3/dt (9) 

With the help of eq 1, 3, and 4, eq 9 can be trans­
formed as follows. 

dp1/dt =2k0(q 3 -q4) + 2k1(q2 -2q3 + q4) 
N 

+ki(q1 -2q2 +q3 )=2ko LP; 
i=3 

(10) 

This differential equation is identical to that derived 
by Boucher for the isolated unreacted units. Thus, 
eq 10 leads to, 

P1 =2sP r (l-x)[r,.(l-x)+x]2•-P-1 

xexp [2(r,.-l)(l-x)Jdx 
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(11) 

Equation 7 plus eq 11 given the result we sought and 
is identical with the equation given by Boucher4 and 
others.6 •7 

The properties of eq 11 is still cannot be examined 
as well as those of eq 8, however. For this to be 
possible, eq 11 must be modified by partial in­
tegration as follows, 

p1 =(l-s)2s2•- 1 exp [2(r,.-l)(l-s)J 

+(2r,.-f3- l)sP r x2a-p-2(1-x)2 

x exp [2(r,. -1)(1-x)] dx (12) 

It is certainly at once evident that the second term of 
the right-hand side of eq 12 becomes zero at 
f3=2rJ.- l. Under this condition, it can be shown 
that the resulting binary copolymer satisfies the 
conditions required for the Markov chain of the 
first-order.8 Hence the integral term in eq 12 
represents the extent of deviation from the Markov 
chain of the first-order. Since eq 12 is the solution 
for the isolated unreacted units, the deviation is 
limited to these special unreacted units. This unique 
property of q1 cannot be obtained from eq 6 unless 
transformed to eq 11 or 12. 

It is concluded that eq 8 plus 11 ( or 12) is superior 
to the equation derived by McQuarrie, i.e., eq 6. 
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