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ABSTRACT: The theoretical interpretation of the dipole moment and the relaxation time 
measured experimentally on the once-broken poly(r-benzyl L-glutamate) molecule is presented 
in this paper. The rotatory motion of molecule can be separated by using the center-of-mass 
coordinates and the appropriate variables. The diffusion equation is solved by a perturbation 
method, and the relaxation time thus obtained can explain the experimental results. 
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Solution properties of a synthesized once-broken 
rod polypeptide have so far been examined experi­
mentally by Teramoto, et a/.1 ' 2 A molecule of 
poly(r-benzyl L-glutamate) (PBLG) consists of 
two a-helical polypeptide chains of equal length 
jointed in a head-to-head fashion by a flexible 
initiator residue (of a trimethylenediamine). 
Light scattering, osmotic pressure, viscosity, sedi­
mentation constant and helix-coil transition tem­
perature have been measured for the PBLG samples 
of the once-broken type (PBG-B) and the results 
were compared with those of the straight rod of the 
same molecular weight (PBG-A). 

Theoretical studies of the once-broken rod have 
been done by a number of workers. 3- 9 Yu and 
Stockmayer, 5 in their pioneer work, calculated the 
intrinsic viscosity [r;] using the method of Kirk­
wood6 and obtained results which were in pretty 
good agreement with experiments. Hassager7 cor­
rected these results in a free draining case by taking 
the center of mass at the origin of the coordinate 
system in the calculation. He expressed the con­
formation of the molecule in terms of Eulerian 
angles and the angle x between two helical rods 
as a fourth variable. Wilemskl also used this 
coordinate system for calculating the translational 
diffusion coefficient, the sedimentation constant 
and the intrinsic viscosity in the case of a fixed 
X in a X dependent form and averaged over X· 
Taki and Fujita9 have recently calculated the in-

trinsic viscosity by means of a method developed 
by Yamakawa and Fujii10 for the worm-like 
chain model. 

The samples of once-broken rods hitherto 
studied experimentally were polydisperse and pos­
sibly contaminated with unbroken rods; and 
therefore experimental data were far from being 
completely reliable. Teramoto, et al. 11 carried 
out the dielectric measurements on almost com­
pletely monodisperse samples of once-broken 
PBLG and made a substantial improvement on 
the experimental sides. 

The dielectric methods give the dipole moment 
and the relaxation time of the dissolved molecule 
with their molecular weight dependence, both of 
which can be related closely to the molecular con­
formation. The theories referred to above are 
insufficient for treating dielectric behaviors of the 
once-broken rod polypeptides. The coordinate 
systems they adopted are not necessarily convenient 
for the present use. Wilemsky and others did not 
take proper account of the flexibility of the 
molecule. The dynamical treatment accounting 
for the molecular flexibility was given only by Yu 
and Stockmayer, but they failed to use the center­
of-mass coordinate system. The present paper 
takes their point of view and discusses the problem 
by employing an appropriate coordinate system to 
explain the experimental results of Teramoto, et 
a!. 
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The molecule is assumed to be a rigid assembly 
of beads. In the dielectric relaxation, only rota­
tory motion of the molecule is effective and the 
translational motion should be separated off from 
over all motion by taking the origin of coordinate 
system at the center of mass. The rotatory dif­
fusion coefficients can be calculated by taking 
into account the hydrodynamic interaction after 
the Kirkwood procedure. A diffusion equation 
is formulated in the presence of the periodic ele­
ctric field and the intra-molecular dipolar interac­
tion potential, and this equation is different from 
those of Hassager and others, which are described 
by their own variables and have difficulty for treat­
ing this problem. The relaxation time calculated 
in this paper about 30% of that obtained by Yu 
and Stockmayer. 

The first part of this paper is devoted to the equi­
librium dielectric properties of the once-broken 
rod solution and then the dynamical theory is 
discussed to explain the experimental relaxation 
time. 

EQUILIBRIUM PROPERTIES 

Teramoto, et a!. measured the molecular weight 
dependence of the dipole moment (p/ 12 for both 
PBG-A and PBG-B as shown in Figure 1. The 
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Figure 1. Molecular weight dependence of the 
average dipole moment: 0 and e represent the ex­
perimental data for PBG-A and PBG-B, respectively. 
-- and ------ represent the theoretical relations of 
the simple model for the two molecules; --re­
presents our result calculated for PBG-B. 
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dotted-and-dashed line is the theoretical relation 
between (p)112 and the molecular weight for the 
rigid straight rod and data points for PBG-A fol­
low this line which yields an average value of 
4. 7 ±0.2 (D) for dipole moment flh per monomeric 
residue. The dotted line represents the relation 
expected from a model (dipole moment ..; 2 flh X 

(N/2)) which is composed of two rods of equal 
length and equal dipole moment fth(N/2) jointed 
rigidly at 90°. This model is justified from the con­
sideration that in a weak electric field the orienta­
tion of each rod of the once-broken rod molecule 
is uniform and therefore the average angle between 
the two rods is 90°, provided that the dipolar inter­
action between the two rods is ignored.12 

In the calculations to follow, a PBG-B molecule 
is assumed to consists of rods of lengths r and r' 
jointed by a flexible initiator in a head-to-head 
fashion. The average dipole moment of PBG-B 
is calculated by considering the dipolar interaction 
V which is approximated as coulomb interaction 
between the two ends 

V=l/4n:soR (1) 

where R is the distance between two -q charges at 
the ends of the molecule. The coordinates of the 
two rods are specified by the polar coordinates of 
the two rods (r, 0, cfi) and (r', 0', cfi') with respect to 
the cartesian coordinates (x, y, z) with the origin 
at the joint. The dipole moments of the two rods are 

f.l=qr 

p'=qr' (2) 

respectively. In the presence of the electric field 
E in the direction of z axis, the equilibrium distri­
bution function of the molecule Fo(O, cp, 0', cjJ') is 
given, as long as the electric field and l are small, 
by 

Fo(O, ¢, 0', ¢') =( }n: Y exp ( 

X exp { (3) 

The equilibrium polarization is therefore, 

(p)= ¢, 0', cjJ')dQdQ', 

4
1
7r Y (p,cos O+ p,' cos 0')(1-q2/4n:sokTR) 

x{l+ (4) 
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where d.Q=sin OdOd¢, d.Q' =sin O'dO'd¢', and Fo 
is expanded to the first power of the internal 
potential and the interaction with the external 
field respectively. 1/R can be expanded as 

1 N rn n (n-m)! 
-=I: --,,.+1- I: - ----, 

R r (n+m). 

X P n m(cos O)P n m(cos 0') cos m(¢-¢') 

(r'>r) (5) 

Substituting this into eq 4 we obtain 

<P > (tt cos()+ fl I cos () f 

X ( 1- i )d.Qd.Q' 

E { 2 12 [ 1 2 12 ""' -- (tt + 1t ) - Q -(1t + 1t ) -3kT r' 

2 , r ]} 
+3-ttft ;'2 (6) 

where (7) 

for PBG-B molecule we may put r=r' =(N/2)b 
and 

(8) 

For PBG-A molecule, we may put tt=Nph, 
tt'=O and Q=O, 

(9) 

To see the molecular weight dependence of the 
average dipole moment of the molecule, <p/ 12 is 
calculated in the two cases mentioned above by 
using the experimental data; T=300K, s0 =10 
and flh =4.7 (D). The value of <PB)112 are re­
presented by the solid line in Figure 1, where the 
dotted line which represents the simple model 
mentioned above corresponds to the case Q=O in 
eq 8. 

The results for <P.B)112 agree with the experi­
mental plots in medium molecular weight; for 
short helical rods, our approximation of coulomb 
potential is not adequate and for longer ones our 
treatment for the rigid rod will be insufficient be­
cause of the flexibility of the rod. 

The average angle <x> between the two helices 
for PBG-B molecule is also calculated by defining 
<x> through cos <x>=<cos x), 
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<cos x)= cos(¢-¢') +cosO cosO'} 

xd.Qd.Q'=- ; . (10) 

In this calculation the appropriate equilibrium 
distribution function in eq 4 is employed. For 
example, we have 

<x)=94.03° for N=100 ) 

<x)=92.01a for N=200 

<x)=91.30° for N=300 

(11) 

When the degree of polymerization becomes 
higher, the angle <x> approaches 90°. 

RELAXATION TIME 

The dielectric measurements for PBG-A and 
PBG-B molecules give the mean relaxation times 
which have molecular weight (Nw) dependence. 
Figure 2 shows the logarithmic plots of mean re­
laxation times vs. N w· Here the dotted-and­
dashed line represents the theoretical relation for 
rod-like molecule and data points lie on this curve. 
The relaxation times of PBG-B have a molecular 
weight dependence similar to those of PBG-A, 
but they are smaller than those of the latter by a 
factor of 3 or 4 when compared the same mole­
cular weight. For all samples of PBG-B ex­
amined, the relaxation times are larger than those 
for the PBG-A molecules of half their molecular 
weight (shown by the broken line in Figure 2). 
According to the theory of Yu and Stockmayer, 
the longest relaxation time of a once-broken rod 
is half that of a straight rod of equal total length 
at the limit of infinite length, as is shown by the 
dotted line in Figure 2. The observed relaxation 
times of PBG-B are smaller than those of Yu and 
Stockmayer and larger than the dashed line. 

Let the once-broken rod carry 2n+1 hydro­
dynamic elements, each having a friction constant 
C; the elements are evenly spaced at a separation b 
along each rod-like portion and one of these ele­
ments has a universal joint. The total length of 
the molecule is 2nb. Use is made of the same 
coordinates of the molecule as in the previous 
section. Then the diffusion equation is described 
by the four variables (0, ¢, 0', ¢')which are denoted 
as q"(a=1, 2, 3, 4), respectively. The diffusion 
equation in q"-space is written as 
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Figure 2. Logarithmic plots of mean relaxation time 
vs. Nw: -·-and---- represent the Perrin's rela­
tion for PBG-A and that of half length, respectively. 
------ represents the result of Yu and Stockmayer's 
theory; --represents our theoretical relation; the 
upper line for the head-to-tail fashioned and the lower 
for the head-to-head fashioned. The symbols are 
the same as those in Figure 1. 

Yft= f 
-lrfhEa)! (12) 

The cartesian coordinates are transformed into 
qa variables where g is the determinant of the 
covariant components of the metric tensor. E 
is the electric field applied along z axis, and the 
intra-molecular potential V (which is the same as 
in the previous section) is also considered. The 
diffusion tensor is given by 

(13) 

where is the contravariant component of the 
metric tensor, and T refers to the Oseen tensor 
describing hydrodynamic interactions between 
frictional elements. 

Yu and Stockmayer took the coordinate system 
with the origin at the joint of two rods and did 
not consider the potential V. For the first rod, 
they obtained; 
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and 

g00 =1/ao, 

" 2 1 3 2 ao=L: (bl) =--nb 
l=O 3 

oo kT 
D +ro) 

aol, 

r o = _.2!__ .6 .6 Is 
4nr;ao (1-s) 

(14) 

(15) 

where r; is the solvent viscosity and for the second 

rod, D0 ' 0 ' = D00 = The relaxation time 
obtained is 

(16) 

Thus in Yu and Stockmayer's theory, each rod­
like portion is assumed to orient independently. 

(r y,) is just twice (one half) that of the PBG-A 
molecule. 

The relaxation time calculated by Yu and Stock­
mayer includes the effect of the translational 
motion, so that it is conceivable that r ys is larger 
than the experimental value. From this considera­
tion, we are lead to estimate the rotatory relaxa­
tion time by separating the translational motion 
from the overall molecular motion by taking the 
center of mass as the origin of the coordinate 
system. In the course of this study,13 we noticed 
the paper by Hassager, Wilemsky, and others 
mentioned in the Introduction. They took the 
center of mass as the origin, but their coordinates 
are not necessarily adequate for treating the di­
electric properties. 

In our coordinate system, the position vector 
Ri of the i-th element is given as, 

=b{(i-(n/4)) sin 8 cos ¢-(n/4) sin 8' cos ifJ'}e, 

+b{(i-(n/4)) sin 8 sin ¢-(n/4) sin 8' sin ify'}ey 

+b{(i-(n/4)) cos 8-(n/4) cos 8'}ez (17) 

where ri and rem are respectively the vectors of the 
i-th element and the center of mass of the molecule 
from the joint, and e,, ey, ez are the unit vectors of 
the (x, y, z) coordinates. 

By making use of this coordinate system, we can 
calculate the covariant components of the metric 
tensor, as for instance, 

rod 1 BRi BRi roct 2 BRJ BRJ 5 3 2 

B8 -·ae+ 7 ae-·ae=24n b =a 

(18) 
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and 
rou r oRi oRi rod 2 oRJ oRJ 

ao"ao·+ ao"To 
=- }a{cosOcosO' cos(¢-¢')+ sinO sinO'} 

(19) 

Thus g aft'S are the functions of four variables and 
are not diagonal, contrary to the results ofYu and 
Stockmayer which state that =a0 =n3b2/3 and 

=0. It is noticed that the value of goo, or a is 
smaller than or a 0 • Further we have 

g= lgaftl =(4/5)2 {1 -(3/5)2cos2 X} sin2 0 sin20' a4 

(20) 

and 
g -r =(5/4)2 {1 +(3/5)2 cos2 X} sin - 2 0 sin -z 0' a - 4 

(21) 

The contravariant components, g"ft, are also cal­
culated. In particular, 

+cos2 0' sin2 (¢-¢')-cos2 x} J 
= [1 +(! Y {sin2 0' sin\¢-¢')+cos2 x} J 

(22) 

g 00 ' )(! Y [{cosO cosO' cos(¢-¢') 

+sinO sinO'}{ 1 +( )"cos2x} 

-( )"cosxcos(¢-¢')] (23) 

gOf' -coso+( +Y 
X (cos2 x cosO+cos xcosO')} (25) 

where the terms with powers higher than (3/5)3 

are ignored. Next, we must calculate the hydro­
dynamic interactions in eq 13; this is more com­
plicated because g"ft is not diagonal. The rx(3-
component of the Oseen tensor is given by 

Taft= I; I; _1 _I; I; gaa i"[ oR; . oR: 
z, • Snr;Rzs a " oq oq 

( oRz )( oR. )/ 2 J + Rz.-0qa Rzs oq" Rzs (25) 
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where Rz. is the distance between the elements l 
and s. The detailed calculations are given in Ap­
pendix I. The diffusion coefficient D 00 is thus 
obtained by substituting T 00 into eq 13. 

1
5
2 n3(lnn-1)} 

(26) 

where we may put C =3nr;b, which is obtained 
assuming that an a-helical polypeptide is approxi­
mated by a linear array of beads of diameter b 
with separation distance b. Further approxima­
tion is made that g 00 in the parenthesis of 
the second factor, and so we have 

(27) 

/0(1 +ro) (28) 

The second factor (1 +ro) is equal to that of Yu 
and Stockmayer. In the same way, 

(29) 

Other coefficients can be obtained by more tedious 
calculation, but explicit expressions are not given 
here. 

The diffusion operator L in the first term of the 
rhs of eq 12 can then be written as the sum of two 
terms, by putting D = D 00 , 

where 

2 1 a . a o2 

f7 89 =sinO -ajj· smO oO- +sin20 o¢2 ( 31) 

and 

L' = ( )" cos2 )"cfr +F2) 

+-1- I; _ _1 . a ,Jg_ (32) 
D a¢fiV g oqa oq 

A ta a 1a a 
Fr =sinO aj sinO Grao+ sin2 B o<ft Gr o¢ 

ft. __ !._ . O'G _!__L_1 _ _i_ a 
2 -SillO' 00'SJll 2 00' I Sin2 0' 0</J,G2 0</J 1 

Gr =sin2 0' sin"(¢-9') +cos2 X 

G2=sin2 0 sin2 (¢-¢')+cos2 x (33) 
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Here we have used eq 20, 21, and 22, and the last 
term in eq 32 indicates the summation over off­
diagonal terms. 

Equation 12 can be written as 

-ii-=(Lo+L'+W-E)f (34) 

1 1 a..jg Dap av 
g aqa- kT aqP 

E 1 "" 1 a ..jg Dap (35) 
kT 11-Ep 

The usual technique for solving this equation, by 
regarding E as a perturbation, gives, for the solu­
tion periodic in time, 

0', ¢') 

/o=( 
2
exp( -q2/4trsoRkT) 

b1 ,{, 101 b2 101 
/ 1 iwfD+A./'1 +twfD+A./2 

(36) 

(37) 

(38) 

where ¢/01 is thej-th eigenfunction of L 0, in parti­
cular 

¢1 101 =..; 6 (cos O+cos 0') 
8tr 

(39) 

where Q is the same as eq 7. The relaxation 
time is given in comparison with that of Yu and 
Stockmayer, 

1 
A1D 

(46) 

where eqs 16 and 27 are combined. This is a 
much smaller value than r ys· To see the effects of 
the perturbations, the relaxation timer' without the 
introduction of the intramolecular potential W 
can be obtained as 

(47) 

This shows that the effect of the center-of-mass 
coordinate system is essentially important. The 
experimental relaxation times seem more or less 
larger than those calculated here; this may be 
regarded as an effect of the large initiator residue 
of the joint which hinders the free rotation of the 
two rods in the real PBG-B molecule. 

The polarization is given by 

<p(t))= COSO+ 11-' COS O')f1EeiwtdQdQ' 

2!1-2 ( 49 Q ) Eeiwt 
3kT 1-37--;:- -1 +iwr (48) 

(cosO-cosO') 

and 

b " . ;--1 a ..; g 
3 ED 't' 3 LJ 'V g aqP 

a,p 

(40) This value is close to that of eq 8 when w is put to 
0. ((49/37) The slight discrepancy 
comes from the approximate calculation in deriv­
ing eq 48, while the value of eq 8 can be considered 
exact in the case w =0. 

X {(Dap/kT)!l-Eafo}dQdQ' (41) 

The eigenvalues A.1 and A.2 of the operator L 0 +L' 
+ W are given by 

+A2+B1 +B2) (42) 

(43) 

The detailed calculations of A, B and b; are given 
in Appendices II and III. We put p=ft' (b2= 
.b2'(p-p')=O), for the PBG-B molecule syn­
thesized in a head-to-head fashion with arms of 
equal length, and we have 

,.;6 ( 13 Q) (p+p') 
fi=24trkT 3'73-47 iw/D+/.1 

x(cosO+cosO') (44) 

If the PGB-B molecule is considered as head­
to-tail, we may put 11-' =- 11- in eq 38 and the 
eigenvalue A2, the relaxation time r" is given as 

r"= (49) 

(50) 
r 

The two relaxation times rand r" are represented 
as full lines in Figure 2, the upper is r" and the 
lower is r. The dynamical behavior is found to be 
different between the two forms of the once-broken 
rod molecule. This was not discussed in Yu and 
Stockmayer's theory. 

Therefore the necessary eigenvalue is only A1, APPENDIX I 

(45) 
Calculation of yaP 

The terms I and s in eq 25 on the different rods 
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are dropped for their fractional error of O(n - 1), 

so that R 1, is the vector on the either rod. There 
are some relationships as to the first term, (aRzfaO) · 
(aR.;a¢)=0 and (aRzfaO')·(aR.(aif>')=O; as to the 
second term, (Rz.(aRzfaqa))(Rz.(aR.;al)) =0 
when qa=(O, ¢)and qP=(O', ¢')respectively. The 
terms ga" gfi" are of the order of (3/5/ when a, (3 = 
(0, ¢) and a, v=(O', ¢'), and can be ignored. 
Thus we obtain 

Srrr; yeo =(goo/[ri: 1 

b l,s 11-sl 
rod 2 ( -n/4)2 

1 
rod 2 ( -n/4)2 

+ E -iY=:;:r-,- E ll-sl 

X {sinO' cosO cos(¢-if>')- sin0cos0'}2] 

+2 gee ge,ri; 1 

l,s ll-sl 

X {cosO cosO' cos(if>-if>')+ sinO sinO'} 

2 eo 1 ( -n/4)(1-(n/4)) 
+ g g '-" .ll-sl 

l ,8 

X cosO sinO sin(¢-¢') (I.l) 

Substituting the values of l 8, g 00 ', g 89 ' the sum­
mations are calculated for sufficiently large n, 

Srrr; oo oo 3 { 5 oo } b-T =g n (lnn-1) Ug +ff/a (I.2) 

sr {} sin2 (¢-if>')} 
100 I 14 

x {sinO' cosO cos(if>-if>')-sinO cos0'}2 

Here the term ffja can be neglected and we have 

eo b eo 5 3 
T kun (Inn -1) (I.3) 

y 99 is also calculated as 

(1.4) 

under the same approximation. 

APPENDIX II 

Calculation of A1, Az, B1, and B2 
A1 and A2 are the contributions to the eigenvalue 

from the perturbation L', and B1 and B2 are those 
from W. 
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2\ { 1 ( 3 ) 2 
2 1 a sin o a 

A1=C JcosO 2 S cos 

( 3 ) 2 1 a sin 0 a } ' + - cosOdQdQ 
4 sinB ao ao 

(ILl) 

where 

C=..j3j4rr (II.2) 

and G1 is given by eq 33. A 2 is the effect from the 
off-diagonal terms of the diffusion operator: 

c 2 1 ( 1 a sino 00 , a ) , , 
Az=D Jcos 0 sinO -----ae- D ao' cosO dQdQ 

(II.3) 

Similary, 

_ C2 1 ( 1 asinO 80 ,av) Q Q' 
B1-DkTJcosO sin{} ao' cosOd d 

(II.4) 

B2= 

(II.5) 

The intramolecular potential Vis the same as eq 1 
and use is made of the expansion of eq 5 for (1/ R). 
It is noted that A 2 and B1 are the diagonal ele­
ments of the secular equation and A 2 and B2 are 
the off-diagonal elements; the latter comes out to 
have the opposite sign in the eigenvalue A2 con­
trary to in i11. The results are as follows. 

A1=-0A8 l 
A2= -1.25 

B1 = -O.OS(Q/r) 

Bz= -1.53(Q/r) 

where Q is given in eq 7. 

APPENDIX III 

Calculation of b3 
In eq 35, E is in z-direction so that, 

Ep=E¢'=0 

Eo=-EsinfJ, Eo•=-EsinO'. 

(II.6) 

Since E is assumed to be small, we calculate the 
operator E noting that the terms orthogonal to 
cos fJ and cos{}' are dropped in eq 41. 
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c I ,o,o'( 1 a,.,;-g 
bl=:;zDkT)(cose+cose) 'E ,J g -aq"-

xD8ap,sine+- 1 ,u'sine') 
,.,; g aqP 

Yo- V/kT)dQdQ' 

= 4 ,.,;f DkT(;lo-Al -Az- ; )(rt+p,') 

(IIT.1) 

where 

b1'=4 ,.,;-fDkT(Ao-Al-A2 - ;-) (111.2) 

and C is the same as eq 11.2. Ao is the nonper­
turbed eigenvalue and A1, A 2 are given in the 
previous Appendix. Similarly we get 

(11!.3) 

where 

;) (III.4) 
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