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ABSTRACT: The aim of this work is to derive a semiempirical equation for the crack
extension rate of stressed polymers. This is achieved by using the Dugdale model and as
suming that an imaginary crack jerks and transfigures itself into a true crack when a plastic 
strain near the crack-tip reaches a critical value. The overall rate of plastic deformation is 
shown to play an important role in determining the rate of steady crack-extension. Finally, 
the life time is written as a function of the distribution of dislocation density, applied stress, 
the Newton viscosity, temperature, the stress sensitivity (or the activation volume) and some 
material constants. This formulation of the life time can be reduced to the so-called the Hol

Turner's equation and to the equation for the region of low
and high-stress applied, respectively. 
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Equation I Equation I 

The mechanism of the stress cracking with and 
without an environmental agent is a matter of pri
mary concern in practical usages of plastics for 
pipelines, cable sheaths and bottles and so on. 
Environmental stress cracking (ESC) has not been 
thoroughly solved yet to date.1 Fracture me
chanics show empirically that the rate of crack
extension i relates to the stress intensity factor K 
as follows. 2 - 6 

(1) 

where, m and h are material constants affected by 
environments. The empirical eq 1 is powerful 
for life-time prediction and analysis of the fracture 
phenomena. However eq 1 does not necessarily 
indicate a clear mechanism of the growth of stress 
cracking, nor does it show the effect of material 
parameters, for example, molecular weight and 
yielding stress etc. on life-time. For a molecular 
design of high performance materials, it is desirable 
that any theory on crack-growth involves material 
parameters explicitly. Some approaches to this 
analysis were offered by several authors with vari
ous criteria and assumptions. For instances, 
Williams7 or Knauss8 investigated the rate of 
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crack-growth in viscoelastic materials by the 
analysis of stress distribution at the crack-tip. 
On the other hand, the variation of the strain distri
bution in plastic zone at crack-tip was shown for 
three plastics by Ferguson, et a/. 9 Those works 
suggest that an extension of crack can be analyzed 
in terms of a distribution of plastic strain with 
proper assumption of a stress distribution at crack
tip. 

Successful applications of the Dugdale model 
(DM/0 to the fracture of stressed polymers has 
been reported.11- 14 DM is based on the scheme 
in which a crack is preceded and bordered by the 
plastic zone with the traction being equal to the 
yield stress. In fact, one can readily observe the 
localized plastic deformations ahead of the crack
tip by an optical or an electron microscopy.15 

One of the plastic deformations (PD) in polymers 
is the craze which is a highly oriented and void 
structure noted above in all glassy polymers, 16- 18 

and also in crystalline polymers.17 ' 19 Other forms 
of PD are, for example, oblique markings called 
kink bands20- 22 and the formation of fibers in 
oriented crystalline polymers.23 A plastically 
deformed zone ahead of the crack-tip can be mod-
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elled by a continuous array of edge dislocations24 

with time dependent DM after Riedel.25 In this 
sense, a distribution of plastic strain is a distribu
tion of the dislocation density, and which is given 
by Rice26 as follows. 

f- (x) (1+;)} 2;. In y.:={ , 

1/2 

with (2) 

where, y(x, t) is the half thickness of plastic zone, 
or plastic strain parallel to traction, at the time t 
and the distance x from a crack-tip, y(O, t) is one 
half of the crack opening displacement (COD), 
r(t) is the length of plastic zone at time t. We 
think here that the distribution of plastic strain 
moves with the crack tip in the course of time, and 
satisfies eq 2 at any time. The COD and r(t) 
can be written by DM with the half crack-length 
l(t) as13 

COD=2y(O, )zyl(t) In [ 1 +7i:n (3) 

r(t)= {sec( ;;;)-1} )'l(t), 

with !=2 (4) 

is unity for DM, and 

(5) 

for the Kitagawa-Motomura modee7 that takes 
creep behaviour into account with a creep com
pliance ¢(t). In the above equations, c 0 , Sy and 
ay are the craze-initiation critical strain, the 
yield strain and the yield stress, respectively. The 
experimental results are well explained by these 
equations of DM when the applied stress aa in 
eq 4 is replaced by the corrected stress v'lia(t) as 

y 
aa(t) =a(t) =a/1(t)7 -

-vrr 
(6) 

where Y is the finite width correction factor, 28 a0 

is the initial applied stress and G(t) is the time func
tion of the stress relaxation in the case of testing 
under constant strain. 

On the basis of this information, we intend to 
derive an equation for the crack-extension rate in 
stressed polymers by means of a simple geometri-
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cal model as a criterion of crack-growth, and more
over to analyze and predict the factors affecting 
the life time. For this purpose, we treat some 
flaws as inevitably preexistent in real materials, 
and develope an argument in terms of steady crack
extension under creep conditions without mention
ing how an initial crack is generated. (Symbols 
in this article are listed in the appendix.) 

EXPERIMENTAL AND RESULTS 

The test of the environmental stress-cracking 
resistivity (ESCR) of high density polyethylenes 
(HDPE) was carried out by the bent-strip method29 

at 50°C in a 10-% aqueous solution of Nonion 

C9Hl9-<:>-0(CH2CH20)nH, i.e., poly

(oxyethylene) nonylphenyl ether by Nippon Oil & 
Fats Co. Ltd. One can usually see a crack when 
half the crack-length reaches ca. 0.02 em (=h). 
The results on the life time of F50 in hour and some 

Figure 1. Plastic zone profile of a bent strip after 
ESCR test (B), and its enlargement of the arrow-tip 
region (A) where microcracks are observed here and 
there. This sample has code 3 (refer to the table 
inserted in Figure 5) The direction of notch and 
bending stress are vertical. 
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Figure 2. Plastic zone profile of a bent strip after 
ESCR test (A), and its enlargement of arrow-tip 
region (B) where the initiation of a crack is observed. 
The direction of notch and bending stress are vertical. 
Sample code, 2B. 

Figure 3. Crack and plastic zone profile of a bent 
strip after ESCR test (A) and its clove surface at the 
temperature of liquid nitrogen cooling (B) where 
cleavage facets and glide planes in the initiation
region, and elongated dimples in the propagation
region of ductile rupture are observed. Sample code, B. 
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Figure 4. Crack and plastic zone (B) and its enlarge
ment of crack-tip (A) where preceded and bordered 
zone of plastic deformation can be clearly observed. 
Sample code, 2E. 

characteristics are listed in the table inserted in 
Figure 5. The yield strength and strain of HDPE 
used here are ca. 250-280 kg/cm2 and ca. 13-
16%, respectively at the tensile speed of 50 mmj 
min. 

The profile of ESC and the fractured surface of 
HDPE were observed by the scanning electron 
microscope (SEM) of Model JSM-T20 by JEOL 
Ltd. The fractographs are shown in Figures 1-4. 
The plastic zone (PZ) followed by many micro
cracks and the starting of a macrocrack could be 
observed respectively in Figures 1 and 2, although 
the macrocracks grown were not observed in both 
figures. Figure 3A is a profile of preceded PZ and 
a crack extended at right angles with the notch of 
the bent strip, and Figure 3B is a fractography of 
the crack shown in Figure 3A clove in two at the 
temperature of liquid nitrogen cooling. PZ at 
crack-tip and crack-border can be observed clearly 
in Figure 4, whereby we can envisage a model of 
crack-extension as shown in Figure 7. 

The length of PZ, r and the half crack-length, 
I were obtained from measuring ESC profiles with 
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Figure 5. The ratio of plastic-zone length (r) to crack 
length (/) vs. 1/w after the bent-strip test of ESCR,20 

where w is the half width of the strip being equal to 
0.635 em. The unit of F 50 is in hour. 

the aid of SEM observation. The plot of rjl vs. 
l(w (w=halfwidth of the strip=0.635 em) is shown 
in Figure 5 which indicates that r(l decreases with 
increasing l(w, and r is approximately proportional 
to / 1-a with a positive constant, o=-dln(r/l)/ 
dIn (ljw), less than or equal to. ca. unity. 

The relaxation of the bending stress of the bent 
strip unnotched in air and in Nonion NS210® 

was carried out at 20°C by a tensile tester (Tensilon 
UTM-III-100 by Toyo Baldwin Co. Ltd.) with 
compression untill the gap was equal to the width 
of the bent-strip holder (1.20 em). After the initial 
region of the relaxation stress was continuously 
measured under the fixed gap, the strip was set in 
the sample holder by sliding it from the gap of the 
tester to expose it to the environment at 20°C or 
50°C. In the subsequent measurement of stress, 
the bent strip was reset in the tester by sliding it 
gently from the holder; these operations were 
repeated with one strip at 20°C and various strips at 
50°C. The stress relaxation curve is depicted in 
Figure 6 which shows that a(t)ja0 decreases with 
time and approaches asymptotically at about 0.2-
0.4 within ca. 2h in air at 20°C, or in a very short time 
at 50°C compared with the life time of the ESCR. 
The value of a(too)/a 0 at 50°C with and without 
liquid environment is lower than that at 20°C in the 
air. This fact indicates that the internal stress is 
apt to relax drastically with an increase in tempera
ture. This is justified by the definition of the 
internal stress as is the stress at [da(t)/dt]=O in the 
stress relaxation. 49 

Those experimental results will be used in order 
to simplify the mathematical treatments of this 
work. 

THEORETICAL 

A Model of Crack-Extension 
A model of crack-extension is shown in Figure 7 
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Figure 6. The stress relaxation curve of the bent strips unnotched, where initial bending stress 
a0 is.ca.15 kg/cm2• 
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y 

i(t +ht)=i(t) +td 

Figure 7. A modified Dugdale model of a crack-extension with an imaginary crack (dashed line) 
to jerk along the dash-dot-dashed line. The thick solid line is the border of a crack. 

X 
T 

Figure 8. Distribution curves of plastic strain (y/y0 

with y 0 as a COD) along plastic zone (x/r with x as a 
distance from crack-tip), where solid line is eq 7 and 
dashed line is eq 2 proposed by Rice. 26 

and assumes that the plastic zone (PZ) preexists 
ahead of the crack. We propose eq 7 instead of 
eq 2 for the strain distribution of PZ, or a distri
bution of the dislocation density after Riedel25 ; 

y(x, t)=y(O, t)(1-:;y with n>O. 

(7) 

Equation 7 is simpler, and is a close approxima
tion to the complicated eq 2, especially in the 
case of n=2, as shown in Figure 8. Equation 7 
can also represent a generalized profile for the 
distribution of the dislocation density along PZ 
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by varying the shape parameter n of the distribu
tion. 

In the course of time, r(t) changes to r(t+Llt) 
as 

dr 
r(t+Llt)=r(t)+ diLlt=r(t)+Llr (8) 

This change brings about a thickening of PZ, 
y*(Lll, t+Llt) and growth of COD, 2y*(O, t+Llt) 
which should be respectively written using eq 
7 and 3 as 

{ 
LJ[ ) n 

Y*(Lll t+Llt)=y*(O t+Llt) 1---·- - .L 
' ' r(t+Llt) J 

(9) 

and 

* (4"y)*. { r(t+Llt)} y (0, t+Llt)= -- l (t-1-Llt)Jn 1+--:.-- -
7r [-r-(t+Llt) 

(10) 

with 

l*(t+Llt)=l(t+Llt)=l(t)+ Llt=l(t)+Lll (11) 

where l*(t+Llt) is the length of an imaginary crack 
assumed to have already extended to l(t+Llt). 
The introduction of y*(Lll, t+Llt) and l*(t+Llt) is 
intended for the implicit consideration of all kinds 
of time dependent plastic deformation induced by 
applied stress. Since the imaginary expansion of 
PZ and COD given by eq 9 and 10 might be 
unstable and transient, we have set up a model 
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such that a crack and PZ jerks and proceeds a dis
tance Lll for a time Lit at a critical increment of 
plastic strain in PZ. 

A criterion for the crack-extension is thus for
mulated by a geometrical approximation of y(Lll, 
t+Llt)=y*(O, t+Llt), and by the constant strain of 
PZ as 

y(Lll, t+Llt)-y(Lll, t) 

y(Lll, t) 

y*(O, t+Llt)-y(Lll, t) 

y(Lll, t) 
Llu (12) 

where Llu is the increment of overall plastic strain 
of PZ, and can be rewritten as 

So eq 15 may be reformed as 

(18) 

hence, we obtain 

d/ u ur(t) 
------

dt (n/r)+(l/l) n+{r(t)/l(t)} 
(19) 

=ul(t) for (20) 

(ii) For the large crack, l(t)>l1 
Since the relation (r/1)<1 for l(t)>l1 is given by 

Figure 5, we may approximate as 

ln{1 +[r(t+Llt)/l(t+Llt)]} r(t+Llt)l(t) 
= ln{l +[r(t)/l(t)]} l(t+Llt)r(t) 

(21) 

Llu=uLlt 0 3) and reform eq 15 with eq 21 and 8, 

with u as a constant for the overall strain rate of the 
plastic deformation related to, for instance, the 
product of the dislocation velocity, the Burger's 
vector and the dislocation density (the number of 
dislocations per unit volume).30 Later on, u will 
be discussed. 

Crack-Extension Velocity 
One obtains eq 14 from eq 12 and 7, 

y*(O, t+Llt) 
1+Llu 

y(Lll, t) 
y*(O, t+Llt) {1 ____ 

y(O, t) r(t) 

(14) 

and rearrangement of eq 14 with eq 3 and 10 as 

1 L1 __ l(t+Llt)ln {1+[r(t+Llt)/l(t+L1QJl__ 
+ u- l(t) In {1 +[r(t)/l(t)]} 

{ 
LJ[ )-n 

X 1- r(t) f (15) 

wherewith we can easily derive an equation for 
crack-extension velocity. 

(i) For the small crack, l(t):::;;,/1 
The lower limit of l(t) measurable by the eye, 

11 is ca. 0.02 em. The relation (r/1)?::. 1 is shown 
for the region t:::;;,/1 in Figure 5. Then we may ap
proximate as follows. 

In {1 +[r(t+Llt)/l(t+Llt)]} =1 (16) 
In {1 +[r(t)/l(t)]} 

and 

l(t+Llt) -1 
l(t) - + l(t) 

(17) 
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(22) 

where Llr is the increment of the PZ length, and 
given in terms of eq 4-6 as 

(23) 

with 

(24) 

and 

A(t )=fi(t)¢(t). (25) 

In this case, crack-extension velocity can be written 
as 

d/ ur(t) 
dt=n+([)A(t)Y2 

u([)A(t)Y2l(t) 

n+([)A(t)Y2 
(26) 

u 
=-r(t) for ([)A(t)Y 21;.n. (27) 

n 

The characteristic of eq 19, 20 and eq 26, 27 is 
that the crack-extension rate is proportional to the 
velocity of the plastic deformation, which is in 
agreement with the empirical result of Nicholson 
for stainless steel. 31 

DISCUSSION 

Here, let's touch upon u, A(t) and Y before de-
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scribing some applications of theory to practical 
problems. Assuming that plastic deformation 
process is a single rate process of thermal activa
tion, overall strain rate u can be written as32 

zi=il 0 exp ( -QfkT) exp (Bae) (28) 

where, Q, k, T, ae and B are the true activation 
energy, Boltzmann's constant, the absolute tem
perature, the effective stress, that is, ae =a-ai, 
with the applied stress (a) and the internal stress 
(ai), and B=b*B, respectively. The parameter 
b* relates to the stress sensitivity of plastic de
formations, s, as follows33 

s=( (29) 

where, v* is called the shear activation volume 
defined as 

(30) 

with Q. as the apparent activation energy. The 
parameter B, i.e., r?J(t=) is equal to unity for the case 
of constant stress and 8=0.2-0.4 for the case of 
constant strain as shown in Figure 6. The order of 

32 d h I . 34 magnitude of v* for HDPE an ot er p ashes 
is reported as ca. 1-10 nm3 which is 2 to 20 
times the statistical segment-volume of polymers. 34 

Though the physical meaning of v* is not necess
arily clarified, v* can be interpreted simply as the 
volume difference between the activated and the 
normal state of the mobile entity, 35 or as the quan
tity related to the work needed to change the 
volume of the system due to the bond breaking 
and/or atomic rearrangement process.36 So 
there is a possibility that environmental reagents 
affect the materials through v* or the stress sensi
tivity, s as well as the activation energy, Q. 

The overall strain-rate constant il0 is written in 
this paper as a summation of the term cP*(t)=(d¢*/ 
dt) due to a creep compliance ¢*(t) and the term 
t(t) arising from the compliance of other plastic 
deformations including the formation and growth 
of voids. 
With 

(31) 

and the creep function J(t), i.e., 
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(32) 

we have 

d¢* 1 j= ( t ) u =--+t(t)=- - +- exp -- - +t(t) 
0 dt 1}0 7:' 7:' 

(33) 

where, u(t), a0 , j 0 , r; 0, and r' are the overall strain at 
the time t, the constant (or initial) applied stress, 
an instantaneous creep compliance, the Newton 
viscosity and a retardation time, respectively. 
The termj= is equal to J(oo), and the equillibrium 
creep compliance is given by the sum ofjo andj=. 

Since the strain rate in steady state creep is con
stant as indicated by many experiments, we may 
introduce here the following replacement. 

j=_ exp (--t_-) +t(t)=!'__ 
r:' 1:' 1Jo 

(34) 

where p is a constant independent on time. 
Hence, from eq 33 and 34 one has 

. 1 p G 
llo=--+--= 

1Jo 1Jo 1Jo 
(in the dimension of Time - 1) 

(35) 

with G=1 +p=material constant at a given tem
perature, stress and environments. The elasticity 
of a material may be included by the parameter 
G, and cP*(t) is substantially incorpolated into flo 

through r;0 and G. 
The time function A(t)=f92(t)¢(t) given by the 

eq 25 depends strongly upon the test method 
because of the stress relaxation term r?J(t) = 1 for 
the test under constant stress, and the creep com
pliance ¢(t)=1 for constant strain. As shown in 
eq 33, the effect of creep was taken into account 
through ¢*. The creep compliance ¢(t) is then 
written simply as the constant ¢ 0 for the initial 
state of creep, and otherwise as a constant¢. On 
the other hand, r?J(t) may be certainly written as 
exp ( -tfr) with a relaxation time 1: for the initial 
state of stress relaxation, and as nearly constant for 
a more advanced state as shown in Figure 6. The 
aspect of stress relaxation in Figure 6 is consistent 
with the published data of Kubat, et al. 37 So 
A(t) is given with c=2/r as 

A(t)=¢0 exp ( -ct) (36) 

at an early state of deformation, or for small l(t), 
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and as 

at later state, or for large l(t). 

Next, the finite width correction factor Y, 
recommended for use, is usually formulated as 

4 ( 1 )i -w- =1.99-0.4l(l/w)+18.7(//w)2 

-38.48(//w)3 +53.85(1/w/ (38) 

with Y0=2 for the single-edge-cracked plate in 
tension, and for the bending deformation. 28 In the 
ideal case of a through linear crack, we can correct 
the effect of cross sectional change by the factor, 

8 
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Figure 9. Finite width correction factor ( Y) vs. the 
ratio of crack length to half width of the strip (1/w), 
where the solid line is eq 38 for the single-edge-cracked 
plate in tension proposed by Brown and Srawley, 2s 
and the dash-dot-dashed line is eq 40 with a=2.107, 
j9=1.059 and l)=0.6462. 
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Y=w/(w-1)=1/{1-(ljw)} (39) 

Avoiding divergency of eq 39 when I reaches half 
the width of a specimen w, a modified form of eq 
39, i.e., 

Y=a:/{(3-(lfwYJ with a, (3 and v>O (40) 

is used for the real crack instead of eq 38 in this arti
cle. Though a closed form of eq 40 is not con
sistent enough with the power-series form of eq 38 
as shown in Figure 9, both of these are nearly equal 
to Y 0 =a:/f3=2 for ljw::;.0.1 (cf, l/w=0.03 for l=l1 
=0.02 em), and drastically increases in the region 
of 

Time Dependence of Crack-Length 
(i) For the small crack, 
Rearranging eq 19 with eq 4-6 and 

one has 

dl u([/0A(t)l(t) 

dt n+@0A(t) · 

(41) 

(42) 

Integrating eq 42 with A(t)=variable as given in 
eq 36 and Y=Y0 =constant, i.e., 

\ 1 d/ \t u<[/0A(t)dt u \Aitl ([/ 0 

J10--l=Jo n+i[)oA(t) L<o 1 -,;-+@0A dA 

(43) 

we have 

In (J-)- u-ln ·{-- n+¢o([jo -- ·} (44) 
10 - c n+¢0([/0 exp ( -ct) 

or 

(45) 

then 

t-In - --- 1- --_ {(-/_0 )c/u n [ ( f0 )cluJ} -lie 

l ¢o([jo l 
(46) 

or, for t<{_lfc=-r/2, from eq 45 

1 ( n ) r ( lo )c/u} 
lJ;o([/o +1 ll- --( (47) 

where, lo is the half length of an initial crack arising 
from a preexistent flaw. Especially for (rfl))> 
n=2, we can readily integrate eq 20 with eq 33 and 
28, that is, with the time dependent u(t), 
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;,-) 

+t(t) }dt (48) 

Here, assuming that 

t(t)=ro(a0)tz-1 with z> 1 (49) 

we obtain 

( l) exp(Ba.) { z In - - = -- ---- ·- (rot /z)+(t/r;o) 
lo exp (Q/kT) 

(50) 

which provides us with the l(t) vs. t relation of the 
initial behaviour of plastic deformation. 

(ii) For the large crack, l(t)> /1 
Integrating eq 26 with 
A(t) =¢02 =A =constant, and Y =variable as 

given by eq 40, i.e., 

itJ.a> dt = __17_::1::_2 ___ dl )
t )! I .:IWY2 

t 1 z1 lY 
(51) 

and using (ltfw)<(1, we have 

or 

a(t)=ao exp (itt) (57) 

where twice a(t) is the separation of a crack at 
its starting point and time t as shown in Figure 7, 
and a 0 is equal to a(O). Therefore, the slope on the 
plot of In (a/ao) vs. twill provide us the information 
on the dislocation velocity through it. 

An Interpretation of the Empirical Equation of 
Crack-Extension 
By an expanded modification of eq 4, we now 

write r(t) as 

2 ( v'T)2v• 2 ( K )2m 
= (58) 

with K=aav'T as the stress intensity factor. Since 
the rate of crack-extension can be plainly given by 
eq 27 for large l(t), one has 

dl n 2itK2 m 

-df = (59) 

with eq 58. Let's compare eq 1 with eq 59, and 
then we have the relation 

h=( (60) 

2nf9l" nl 2" 
--2 -v + 2- 2 2v-· 

a l.iW a l.iW 

which provides a physical meaning to the propor
(52) tiona! constant h in eq 1. If the empirical rule of 

Kitagawa, et al., 38 for the fatigue crack-growth, 

(53) 

which is equivalent to the result obtained from eq 
27 instead of eq 26. 

Time Dependence of COD 
We can derive the following differential equation 

from eq 12 and 13, 

t) (54) 

and we obtain y(Lll, t) by integrating eq 54 with 
constant it, i. e., 

y(Lll, t)=y(Lll, 0) exp (itt) (55) 

which is applicable for all Lll. Then we have 

y(O, t)=y(O, 0) exp (itt) (56) 
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(61) 

were valid for our present case, we could rewrite 
eq 60 as 

h= _n_ O'yln P { ( 
2it )ln q }1/ln(qay) 

8n 
(62) 

with positive constants p and q. 

Dependence of Life Time on Applied Stress 
We obtain the following equation from eq 53, 

24, 28, and 35 by neglecting the correction term due 
to the finite width, 

t=A(!;.)(_c_c_)(I]_Y_)2
( "f)o_)ex_p (Q/kT)ln(j__)+t1 

A sy O'o G exp (Ba.) !1 

(63) 

where, A =(8/n)(f'/a)2=2/3. Furthermore from 
eq 63, one has an approximate equation for the 
life time of t=tb at a half crack length of l=lb 
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such as CONCLUDING REMARKS 

tb=C(aofay)-1 exp (QfkT) exp (-Ba.) 

=C(aofay)-1 exp (Q/kT) 

(64) In this work, we assumed the single rate process 
for the overall strain rate of plastic deformations 
and ignored the effect of anealing, recrystallization 

(65) and other structural change. The formulated 

=C exp (Q/kT) exp ( -Dao) 

at high stress (66) 

where, /=2 for the Dugdale model, and Cis given 
as 

with /0 in place of h in eq 63 for simplicity. As 
is obvious from eq 64 and 66, the relation 

exp (Dao)=(aofayl exp (Ba.) (68) 

is valid for finite a.. Thus, the material constant 
Dis given as 

( O"i) ( 1 1 ) D=B 1--- +f -- -
O"o O"y ao 

(69) 

considering (a0/ay) to be sufficiently small. In the 
case of constant stress, B is equal to the stress 
sensitivity or (v*fkT) given in the eq 29. 

Approximate eq 65 and 66 imply that the ap
plied stress dependence of life time changes 
markedly in the vicinity of a characteristic stress 
a c. From the slope of eq 65 which equals that of 
eq 66 at ao=ac, we have 

f a=-
c D 

which is reformed with eq 69 as 

2f+Bai 
ac= 

(70) 

(71) 

where B is nearly constant or decreases with the 
increasing temperature. 50 So eq 71 shows that 
(dac/dT)<O, observed by many workers,39 is due 
to negative terms of (daddT) and (day/dT). 

The pre-exponential factor C in eq 64-66 is 
proportional to (r;0/G) as shown in eq 67, and has 
the dimension of time as seen from eq 35. It 
should be noted that the eq 65 and 66 are nothing 
else but the so-called Holland-Turner's equation40 

and the Zhurkov-Narsulaev's equation,41 re-
spectively. 
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results thus need some rectifications in their appli
cation to cases of the structural change, and/or 
to temperature regions of multiple rate process. 
Nevertheless, eq 63-66 provide us a clue for show
ing some material parameters affecting life time. 
For example, we can reckon the effect of mole
cular weight, M through the term of r; 0 oc M"' with 
m=3.4, the effect of a distribution of dislocation 
density through the parameter n, and a stress 
relaxation effect through the parameter A, and that 
of yield stress, ay. 

The effect of environmental reagents on crazing 
and cracking of stressed polymers have been re
ported by several authors as cavitation by stress-
aided solvation,42 a reduction of the critical strain 
of craze-initiation,43 a dilation by solvation,44 and 
a reduction of the cohesive energy which is control
led by the flow rate of liquids through the crack 
and craze.2 ' 45 - 47 The present author also takes 
an interest in a mechanism of the environmental 
stress cracking of polymers, and has made an effort 
to find how to improve the life time of stressed 
polymers. The effect of the reagents remains 
unknown in this work since we did not explicitly 
consider the environmental effects in our model. 
However, from eq 27, 28, and 63, we can speculate 
as follows; the environmental stress may enhance 
predominantly the plastic deformation rate through 
the increase of the activation volume as well as a 
reduction of the true activation energy. The 
activation volume of polycarbonate with kerosene 
is actually larger than that without kerosene over 
a wide range of temperature, although the true 
activation energy does not change in this case.48 

A part of this paper was presented at the 14th 
Symposium on "Strength, Fracture and Fatigue of 
Materials" at Kyoto, July 21-22, 1977, held by the 
Society of Materials Science, Japan. 
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APPENDIX 

List of Symbols 
a(t) , COD of crack-starting point at time t 
ao , a(t) at initial state=a(O) 
A , parameter=(8/n)(,B/a)2 

b* , stress sensitivity= (a In itjaa .) 
B , material constant=b*O=(v*O/kT) 
c , parameter related to relaxation time=2/r 
C , material constant=A(n/J.)(e0 /ev)(7J0/G) In (lb//0) 

COD , crack-opening displacement 
D , material constant 

f 

G 

lz 
J(t) 

io 

K 
l, l(t) 
l*(t) 

m 
M 
n 

p 
q 

Q 

""B[l-(a.dao)] +f[ay - 1-ao -l] 

, parameter as to applied stress dependence 
of life time=2 for the Dugdale model 

, material constant as to the elastic modulus 
=(l+p) 

, proportional constant of i to K 2m in eq 1 
, creep function at timet 
, instantaneous creep compliance 
, creep compliance at infinite time 
, Boltzmann's constant 
, stress intencity factor 
, half crack-length at time t 

, l(t) of imaginary crack 
, half crack-length at time tb 
, half crack-length of preexisted flaw 
, lower limit of l recognizable by eye 

, rate of crack-extension 
, exponent of K in eq 1 
, molecular weight 
, shape parameter for the distribution of 

plastic strain or dislocation density in 
plastic zone 

, parameter related to h as shown in eq 61 
, parameter related to h as shown in eq 61 
, true activation energy for overall strain 

rate it 
Q. , apparent activation energy for it 
r, r(t) , length of plastic zone at time t 
s , stress sensitivity=b* 

, time 
tb , time to failure 
t = , infinite time 
T , temperature 
u , overall strain of plastic deformation 
it , overall strain rate of plastic deformation 
ito , rate constant related to it as shown in eq 28 
v* , shear activation volume 
w , half width of specimen 
x , distance from crack-tip 
y(x, t) , half thickness of plastic zone at time t 

and distance x 
y* (x, t), y(x, t) due to imaginary crack 
Y , finite width correction factor 
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, constant as to Y at l=O 
z , exponent of t for t(t) as shown in eq 49 
a , parameter for Yin this work 
.S , parameter for Yin this work 
t(t) , strain rate component due to growth of voids 
ro , rate constant for tU) 
o , constant=-[dln (r/1)/dln (lfw)] 
e0 , critical strain of craze-initiation 
ey , yield strain 
1;: , parameter, unity for the Dugdale model, and 

(ev/ec)¢(1) for the Kitagawa-Motomura model 
7Jo , Newton viscosity 
0 , degree of stress relaxation at equillibrium 

6i(t) , time function of stress relaxation, 
a(t)/ao"='exp ( -t/r) 

J. , A(t) at equillibrium state=A(t=) 
A(t) , time function=62(t)¢(t) 
1.1 , parameter for Y in this work 

, function=[1-(x/r)]ll2 
p , material constant related to elastic modulus 
a.(t) , applied stress uncorrected at time t 
ay , yield stress 
a(t) , corrected stress=a06i(t)Y/.V;rat timet 
a; , internal stress, level of a; is given as a(t) at 

[da(t)/d In t]=O after Li49 , viz., Oa0 or a(t=)· 
a0 , initial stress applied=a(O) 
a0 , effective stress=a(t)-ai, or 

a0-a; for constant a0 

a c , characteristic stress given by eq 71 
r , relaxation time 
r' , retardation time 
(]! , material constant=(rr/8)(ev/ec)(a0/av)2 

(/lo , material constant= Y02(]1 

rp(t) , creep compliance of the Kitagawa-Moto-
mura model 

<Po , ¢(t) at initial state=¢(0) 
¢ , constant for rp(t) at t *0 
¢*, rp*(t), creep compliance in this work 

if;*(t) , one component of ito due to (d¢*/dt) 
w , exponent in relation of 7JoccM"' 
L1 , symbol of increment 
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