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ABSTRACT: Experimental viscosity of two component poly blends is correlated to a 
mathematical model by introducing a frictional correction factor at the interfaces between two 
unlike adjacent compositions. It is found that the phase structure as well as the elastic be
havior of the compositions can greatly affect the viscosity of the system and make the estima
tion more complicated. Fair agreement between theory and experiment is found, however, for 
less compatible systems, such as the PPIPS and PEIPS systems. A lesser degree of acceptance 
is shown for systems containing an elastic component, such as PVC/ABS and PSIPB systems. 
The confused phase structure of the systems as evaluated by the electron microscopic obser
vation often causes an increase in viscosity of the systems and thus a deviation from the 
theoretical calculation. 
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In recent years, an increasing number of com
mercial products have appeared on the market, 
made of more than one polymeric material. Con
sequently considerable interest has been aroused 
toward understanding the fundamental nature of 
the flow properties of polymer blend systems. 
Useful mixtures were developed, however, in an 
empirical manner, largely due to the lack of suit
able models to represent the effect of the com
position on their viscosity. A composition trian
gle versus property is a convenient means for 
determining the effect of the composition on the 
properties of tri-component polymer blends by 
means of a simple lattice planning of the experi
ment.1 But, parameters obtained were quite 
empirical and had few physical meanings. Much 
experimental data on the viscosity of two-com
ponent polyblends has appeared in the past 
years. 2 ' 3 ' 4 The development of a single math
ematical model for predicting the flow behavior 
of all such polyblends has not been successful. A 

* Read at The Second Pacific Chemical Engineering 
Congress (Pache '77), Denver, Collorado, on August 28 
(1977). 

model of the laminar flow in a pipe of concentric 
adjacent fluids with the different viscosity was 
first proposed by Heitmiller5 to try to explain the 
flow viscosity of a polymer-wax blend. The ex
perimental viscosity of two-component poly blends 
in this investigation, is now correlated to a math
ematical model by introducing a frictional correc
tion factor at the liquid interfaces between two 
unlike adjacent compositions. 

THEORETICAL CONSIDERATION 

The author proposes herewith a model of the 
laminar flow in a pipe of two concentric unlike 
adjacent fluids having different viscosity but the 
same density as an approximation of two-com
ponent systems to evaluate the relationship be
tween the composition and the viscosity of the 
mixture. Though the model proposed here is far 
from the phase structure of the polyblends, from 
a morphological point of view, the liquid interface 
will suffice to indicate approximately the entire 
contact area between the two unlike adjacent 
compositions [see Appendix]. The derivation of 
the mass flow rate for the system of fluids follows 
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Figure 1. Schematic representation of symbols used. 

the same lines as the derivation of the Poiseuille 
equation. 

A sketch illustrating the symbols used in this 
model is shown in Figure 1. The boundary con
ditions chosen in our derivations were zero
velocity at the wall, and continuity of alternate 
shearing stress and friction between the two com
ponents at the liquid interfaces. 

Under the circumstances, the balance of forces 
on a cylinder of r where Ri-1 <r<Ri and a fric
tional correction factor X on the model, lead to 
the following equation. 

dv -tiP 
7:=-fli ;:v:-+X=-·ur (1) 

where X deals with the difference in frictional 
force between pure-single and two-component 
polymeric systems. Thus X can be regarded as 
the frictional force between interfaces of the two 
unlike adjacent polymeric components and is, 
therefore, a function of r and w at a given tem
perature and shear rate. Then we have 

-dv=(- -tiP (2) 
2Lt-ti 1-li 

Integration of eq 2 between the limits r and Ri 
gives the velocity profile in the ith layer, i. e., 
Ri-1<r<Ri 

v- V=-=_(t1P+2(L/R)Z)(R· 2 -r2) ( 3) 
' 4Lt-ti ' 
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where X=rZ/R and Z is now a function of w only. 
The velocity in the interface r=Ri-1 is 

-(tiP+2(L/R)Z)(R·2-R2 ) 

4Lt-ti ' J-1 

The value of Vi thus can be evaluated using itera
tive procedures, starting from layer n (where 
r=R, Vn=O). 

-(tiP+2(L/R)Z) i=n 1 2 2 
V.=------------ I: ---(Ri -Ri-1) 

4L i=i+l 1-li 

(4) 

and the velocity profile in layer i is 

-(t1P+2(L/R)Z) i=1 1 2 2 v=------------ -- · I: -(R3 -Rj-1) 
4L i=i+1 1-li 

+-=__(d_[J_+2(LI_!._)?_) (R/-r2) (S) 
4Lt-ti 

The volume flow rate in layer i is 

Qi=\R; 2nvrdr=2n\R; -(ti!_+}-_(I-jR)Z) 
Jai-l Ja,_1 4L 

j=n 1 
X I: -(R/-R]_1)rdr 

i=i+1 flj 

+2n i R; 
h;-1 4Lt-ti 

4L 
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" 1 ( 2 2 ) X I; -- Ri -Ri-1 
j=i+l /1j 

( 6) 
8Lp, 

The total volume flow rate, QT, then is 

Carrying out the integration and evaluating the 
summations we have finally 

_ -n:(11P+2(L/R)Z) ;.., 1 -(R zR2 -R4 ) 
L.L i t-1 t-1 

SL i=l !1; 

;: (R/-R7_1) 2 

SL i=l 11, 

-n:(11P+2(L/R)Z) ;: _1_(R/-RL) 
SL i=l !1; 

(7) 

From the macroscopic point of view, we know for 
a fluid of the same density of viscosity flE that 

n:( -ilP) R 4 

8LpE 
(8) 

Setting QE=QT, we can solve for the effective 
viscosity f1E: 

R 4 11P+2(L/R)Z ;: 
f1E ilP i=l ft; 

=(3;: R/-R;-1 
i=l !1; 

(9) 

where 

Q 11P+2(L/R)Z = 1 2(L -) 
Jp + R Jp 

(10) 

Since 

(11) 

where 'w is the shearing stress at the tube wall. 
Thus we get 

z 
(3=1----

'w 
Here, we set Z to be 
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(12) 

(13) 

where aAB represents the interaction coefficient, a 
constant for a given system. The general case 
was particularized for a system of two different 
fluids A and B each occupying in an alternating 
manner n/2 layers. The weight or volume frac
tions of the fluids were assumed to be variable, 
i. e., w A for A, (1-w A) or wB for B, but it was 
assumed that all annuli of a given fluid had the 
same area. Since for most polymer melts, which 
exhibit almost the same density, for the tube of 
radius R, A occupies n/2 layers, each of area 2n:w A 

R 2/n, and B occupies n/2 layers, each of area 2n:wB 

R 2/n. 
By using eq 9, the two components, A and B, 

are separated, and the summation sign expanded. 

R4 [n;2 R4 R4 n/2 R4 R4 J -=(3 .E 2i-1- 2i-2 + .E 2i- 2i-1 

flE i=l f-loA i=l flB 

For component A, this gives 

='3wAR2 R 2(n-2+2wA) 
n 2 

wAR\n-2+2wA) 
n 

For component B under the same procedure, 

n/2 wBR4(n+ 2w A) 
.E 
i=l n 

The following expression for flE is obtained as 

If n )> 1, [see Appendix] then, 

Q-1 1 
f!E=t' 

f-loA flB 

or 

(14) 

(15) 

(16) 

(17) 

Equation 17 gives the effective viscosity of a system 
of two-component polyblends. If (3=1, namely 
Z =0, eq 17 coincides with the equation of 
Heitmiller5 as follows: 
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(18) 

If because of sufficiently less friction between 
like components than between unlike components, 
the values of p for most of the polymer mixtures 
in a given system are larger than unity, then the 
effective shearing action will be reduced and, 
therefore, one obtains a lower viscosity than 
would be obtained by eq 18. 

EXPERIMENTAL 

'E 
"' 
"' .. 
X 

1.0 

0.5 

0 

PS/PB • experimental value 

o idealized value 
--- quasi 

-l.o 
W ( PB) 

Systems of PVC/ABS and PS/PB studied were 
prepared in this paper. The experimental data 
for another two systems of PE/PS and PP/PS were 
adapted from data by Han and Yu.2 ' 3• The value 
of 'w was experimentally obtained from shear 
stress vs. shear rate plot for a given system. A 
capillary extruding type of Koka-fiow tester was 
used for obtaining the flow curves. The melt 
blending was accomplished by an internal mixer 
(Plasti-Corder, Brabender). 

Figure 2. The correction factor of the PS/PB blends 
as a function of the weight fraction of PB. 

RESULTS AND DISCUSSION X 

0.6 ,...---,---..,---,..---,----, 

PVC I ABS e experimental value 
o idealized value 

0.4 --- quasi 

- __ 

w (ABS) 

The value of the correction factor X can be 
calculated readily from the relation r = flt +X, 
where t is shear rate. The experimental viscosity 
of the pure component may be cited in the above 
equation to give X=O. For the polyblend sys
tems, the values of f.l obtained from eq 18 are 
substituted into the above equation yielding the 
values of X for different blend ratios. The solid 

Figure 3. The correction factor of the PVC/ABS 
blends as a function of the weight fraction of ABS. 

Table I. Interaction coefficients evaluated 

System I'A• poise fiB, poise -a, dyn/cm2 Remark 
-------------

T=145°C 
PS/PB 4.4 X 104 4.0 X 104 1.28 X 106 Dw=60s- 1 

L/R=20 

T=180°C 
PVC/ABS 2.5 X 104 5.8 X104 7.67x105 Dw=60 s- 1 

L/R=20 

T=200oC 

PP/PS 2.7 xl03 a 3.1 X 103 " 4.31x105 Dw=200s- 1 

L/R=40 

T=200°C 
PE/PS 4.23 X 103 " 3.65x105 Dw=200 s- 1 

L/R=40 

" Extracted from the data by Han and Yu. 2 • 3 
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lines on Figures 2 to 5 correspond to the experi
mental values of X as a function of the blending 
ratio. An abruption is observed at the composi
tion of PVC/ABS=85/15. For convenience, a 
quasi curve of X, shown as the dashed line, is 
drawn in order to estimate the value of the interac
tion coefficient, a. This average value of a can 
then be taken to yield the idealized curves of X as 
shown by using eq 13. The evaluated mean 
values for the four polyblend systems are given 
in Table I. Therefore, the comparisons of the 
experimental and quasi values of X for each 
polyblend system are shown in Figures 2 to 5. 

The value of f3 can be calculated from eq 12 
as long as the idealized value of Z is available. 
The theoretical viscosity may then be obtained 

PP/PS 

-0.5 

• experimental value 

o idealized value 

- 25 ---:o:-":.4:-----:o:':.s:-----=o-'=.s __ __..JJ.O 

w (PS) 

Figure 4. The correction factor of the PP/PS blends 
as a function of the weight fraction of PS. 

.. E 

.. 
t:: 
>-.., 

n2 

X 

-1.0 

• experimental value 

o idealized value 

--- quasi 

Figure 5. The correction factor of the PE/PS blends 
as a function of the weight fraction of PS. 
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according to eq 1 7. 
The comparisons of the experimental and theo

retical vs. viscosity blending ratio curves for such 
systems are shown in Figures 6, 7, 8, and 9, re
spectively. 

It may be seen that the curves calculated from 
eq 17 give generally better representations of 
the experimental data than those calculated from 
eq 18. The calculated data in accordance with 
eq 17 for PP/PS system coincides best with the 
experimental data. It was observed in the 
PVC/ABS system that the composition at PVC/ 
ABS=85/15 shows abrupt peaks in the experi
mental melt viscosity. In the PS/PB system, how
ever, a deviation from the experimental data over 
broad compositions was observed. The composi
tions of PB and ABS behave more elastically. 
While the resin can flow when it melts, the rubbery 
phase is probably only deformable and does not 
flow in the ordinary sense. In the PE/PS system, 
the deviation occurs also at the blending ratio of 
PE/PS=50/50. These deviations may be at
tributed, therefore, to the phase fracture as well 
as the elastic behavior of the component. It is 
well known that the state of dispersion in a 
blended system affects the melt viscosity of the 
system.4 At the phase fracture, the assumption 
of a laminar flow in a pipe is no longer valid. It 
is easy to be felt that the state of the confused 
phase structure is in a greater degree of chain 
entanglement and consequently the effective vis
cosity of the system increases. The feature of the 
phase fracture in a certain blending ratio can be 
grasped with the aid of microphotographs as 
shown in Figure 6 for PS/PB system. It is also 
well known that the phase structure of a poly blend 
can be affected by both the mixing torque ratio 
and the composition. 6 

The dispersed particles in the suspending medi
um show a finer state in the composition below 
10% of PB, where PB consist of dispersed particles. 
Within these ranges, the experimental viscosity 
fits well with eq 17. In the range over 10% of 
PB the state of dispersed particles is obscure and 
the phase structure is more confused. It should 
be recognized that the effective viscosity under 
this condition gives a greater value than that calcu
lated, as seen in Figure 7 for the PVC/ABS= 
85/15. This may result in an abrupt peak in 
viscosity. At this instance, no distinct dispersed 
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Figure 6. Effect of blending ratio on the melt vis
cosities of PS/PB blends. 
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Figure 7. Effect of blending ratio on the melt vis
cosities of PVC/ABS blends. 

particles could be observed by phase micrographs 
due to the compatibility of these two components, 
and a poor agreement between experimental and 
theoretical viscosities resulted. The actual situa
tion is, however, not well understood from a mo
lecular point of view, and it is far more com
plicated than the simple graphical discussion pre
sented here. 

CONCLUSION 

Although the interpretation of the melt viscosity 
of polyblends is not easy, the results of the fore-
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Figure 8. Effect of blending ratio on the melt vis
cosities of PP/PS blends. 
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• Calculated by Heitmillers eq. 
o Calculated otter correction 
A Experimental value 
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Figure 9. Effect of blending ratio on the melt vis
cosities of PE/PS blends. 

going theory are rather promising. It was noticed 
above that the phase structure as well as elastic 
behavior can greatly affect the viscosity of the 
system and make the estimation of viscosity more 
complicated. Therefore, one can not grasp the 
true flow behavior unless there is an understanding 
of both the morphology and the viscoelastic be
havior of the system. However, the flow behavior 
may be included in the following criteria: 

(1) Before the frictional force between two 
adjacent unlike fluids is applied, the agreement 
between theory and experimental is generally poor. 
Better agreement is now found with the proposed 
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(a) (b) 

(c) (d) 

Figure 10. Electron micrograph ( x 3,000) of the extrudate cross section for PS/PB blends: (a), 
PS/PB=90/10; (b), 70/30; (c), 50/50; (d), 20/80; stained and hardened by the osmium tetroxide 
procedure. 

Figure 11. Electron micrograph ( x 1,400) of the 
extrudate cross section for PVC/ABS blends (PVC/ 
ABS=85/15); stained and hardened by the osmium 
tetroxide procedure. 

Polymer J., Vol. 11, No.3, 1979 

model by introducing a fricrional correction factor 
into the theoretical calculation. 

(2) Better agreement between theory and ex
periment is found for less compatible systems, such 
as PP/PS system and PE/PS system. Less satis
factory agreement between theory and experiment 
is shown for systems containing an elastic com
ponent, such as PVC/ABS and PS/PB systems. 

(3) The confused phase structure of the poly
blends often causes an increase in the viscosity of 
the system and thus the deviation from the theo
retical data. 

APPENDIX 

The magnitude of n in eq 16' can be evaluated 
as having an order of about 100 in the real two
component polyblends as follows. 
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The microscopic phase structure of an ideal 
two-component polyblend consists of a dispersed 
phase and a matrix base (see Figure Al(a)). When 
the dispersed spheres of one component is small 
enough in the matrix component, the number of 
spheres becomes equal to rrR2LwA/(4/3)rr(10-4), 3 

if the diameter of dispersed spheres is assumed to 
be about l,u = 10-4 em, and the total interface area 
becomes equal to 2rrR2Lw"(l04). On the other 
hand, the total contact area between two-unlike 
components in the proposed concentric model 
(see Figure Al(b)) is calculated as follows: 

Consider the sum of Rj over j: This may be 
split into two parts: the terms with j=21 (even) 
and those withj=2/-1 (odd). 

n-1 

27rL I; Rj=2rrL(L; + 

(
(n/21-1 n/2 ) 

=27rL -F Ru + R21-1 

( 
R (n/21-1 . _ 

=2rrL -:;;11 -F J!(l+l) 

+-1R 
v n 1 

2rrRL (\(n/21-1 

==, J n J1 Jx(x+J) dx 

+ r2J(x=T)x+2WAX dx) 

==, ( n'(l when n)> 1 

=o7rRLn312 

Let 

then 

or 

n= --1 R2 wA'(l03) 

Let R=O.l [em] and w A =0.1, then n is close to the 
order of about hundred. 

NOMENCLATURE 

D , Diameter across the tube, em; shear rate, s- 1 . 
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(a) (b) 

Figure AI. Comparison of particle-matrix model 
and concentric model for two-component polyblend. 

L Length of the tube, em. 
n Total number of layers in concentric adjacent 

fluids. 
LlP, Pressure drop along the tube, dyn/cm2• 

Q , Volume flow rate of fluids, cm3/s. 
R , Radius across the tube, em. 
r , Arbitrary distance from the center of tube, em. 
v , Velocity profile in ith layer, cm/s. 
V,, Velocity in the interface r=R,, cm/s. 
X , Interaction of a ftmction of r and lv between the 

interfaces of concentric adjacent fluids, dyn/cm2• 

Z , Interaction of a function of w between the inter
faces of concentric adjacent fluids, dynjcm2 • 

a Interaction coefficient, dyn/cm2 • 

f3 , Interaction parameter. 
p , Viscosity of fluids, poise. 
-r Shearing stress, dyn/cm'. 
w Weight fraction. 
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