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ABSTRACT: Catastrophe theory was successfully applied to the analysis of draw resonance 
phenomena. It was shown that the potential of cusp catastrophe was appropriate to the analysis of 
oscillating viscoelasticity appearing in the above-mentioned phenemena. Moreover, basic behavior 
such as stress relaxation is discussed in regard to this potential. In these analyses, no relaxation 
spectrum is introduced. However, an apparent spectrum can be obtained if the results of stress 
relaxation are analyzed by a procedure similar to that used in the analysis of linear viscoelasticity. But 
a spectrum may not always exist even if derived analytically. 
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The theory oflinear viscoelasticity has widely been 
accepted as a tool for describing viscoelastic pheno
mena of high polymers by the introduction of 
relaxation or retardation spectrum. 1 Furthermore, 
this theory enables us to describe the stress-strain 
relationship, using the Boltzmann superposition 
principle, since this theory is very cbnvenient to 
analyse such phenomena. In spite of this advantage, 
we have no direct proof that there must be a 
relaxation spectrum. In other words, the introduc
tion of the spectrum is not inevittable but 
conventional. 

According to recent results in NMR relaxation 
studies of high polymers both in bulk and in solution, 
viscoelasticity can be explained as a discrete system 
with respect to their time constants. In the broadline 
NMR spectrum of poly( methyl methcacrylate), the 
ratio of the half width to the whole width between 
maximum slopes is 1.6 at the room temperature. 2 

This value is close to 1.732 which is the spectrum 
expected with a Lorentzian shape. This implies that 
this polymer rapidly fluctuates with a singele cor
relation time at room temperature. In the pulsed 
NMR measurement of vulcanized natural rubber, 
the solid echo is the Fourier transform of the Wei bull 
function in the rubbery region. 3 Such a solid echo 
curve cannot be obtained if one introduces any kind 
of relaxation spectrum. Even in the case of a partially 
crystalline polymer, the solid echo from the amor-

phous region cannot be analyzed with the relaxation 
spectrum. The mobile region of low-density poly
ethyelene is a typical example.4 The discreteness of 
the time constants also appears in the high
resolution NMR spectrum of the polymer solution. 
In a trans-decalin solution of a polypropylene the 
PRFT (partially relaxed Fourier transform) 13C 
NMR spectrum, there are many peaks correspond
ing to chemical groups and stereochemical con
figurations. 5 The intensity of each peak in the PRFT 
spectrum recovers exponentially with respect to its 
thermal equilibrium value with a corresponding 
discrete time constant. As seen from experimental 
evidence, no positive proof for the necessity of a 
relaxation spectrum from NMR experiments could 
be found. Of course, there are papers in which NMR 
experiments are analyzed under the assumption of 
the necessity of a relaxation spectrum. However, 
these papers are not poor of the significance of this 
assumption. 

There are many works on viscoelasticity of po
lymers in which nonlinear terms are consedered. A 
typical treatment6 is the use of time-dependent 
variables instead of constants which are strictly 
constant in the linear theory. Such an extension can 
be recognized as a perturbation method in which the 
nonlinearity is a perturbation to the unperturbed 
linear viscoelasticity term. This situation is quite 
different from the nonlinear theory in other fields of 
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science such as mathematical ecology/ where the 
nonlinearity due to interaction between species is 
introduced as an essential factor. 

In this paper we will apply catastrophe theory to 
nonlinear viscoelasticity in polymers; the distinct 
features of our treatment are (I) that no relaxation 
spectrum is required, (2) there is no perturbation 
theory caused by a nonlinear term, and (3) that our 
treatment is applicable to oscillating nonlinear 
phenomena such as draw resonance in melt spinning 
process. Ishihara and Kase8 and Denn and Fischer9 

analyzed draw resonance phenomena with only 
viscosity terms. Though our trestment is different 
from theirs, we analyze the phenomena by viscoelas
ticity terms. The arrangement of this paper is as 
follows; the Maxwell element is, at first, surveyed 
from the standpoint of dynamical system; this ele
ment is, secondly, extended to nonlinear model with 
the aid of the catastrophe theory; stress relaxation 
and apparent relaxation spectra derived from the 
nonlinear model are discussed; the nonlinear model 
is further extended to the viscoelastic phenomena 
with oscillation; and finally, draw resonance pheno
mena are analyzed with the latter model. 

DYNAMICAL SYSTEM OF 
MAXWELL ELEMENT 

The fundamental equation for the Maxwell model 
of viscoelasticity with stress ri and strain 8 is given by, 

dri/dt= -ri/r+Mg(ds/dt) (I) 

where tis the time, r is the relaxation time, and Mg is 
the modulus of elasticity. This equation can be 
rewritten in terms of the following two equations, 

dri/dt= -ri/r+Mg{J 

d8/dt= f3 

(2) 

(3) 

where f3 is the rate of strain. In the case of the 
exponential decay of {3, this quantity may be ex
pressed as 

df3/dt=- /3/r' (4) 

where r' is the decay constant for {3. In the simplest 
experiment, 8 is applied stepwise. In other words, f3 is 
a form of the Dirac delta function. It may be thought 
that this type of excitation is inevitably delayed to 
some extent in practice. Such a delay is expressed in 
eq 4 in the form of simple exponential decay. 

The quantities ri and f3 can be solved as functions 
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of time. Eliminating time from these two quantities, 
we can draw a number of trajectories on {3-ri plane. 
In Figure I are shown tranjectories under conditions 
in which Mg=r=r'=l. 

I 
I 

Figure I. A family of trajectories of the relaxation due 
to the Maxwell model (2) and eq 4 on [3-(J plane. Selection 
is made with M,=T=T'=I. Each segment and each 
spacing separated by segments in the broken lines cor
responds to the change of the system in the same interval 
of time. Solid lines and the abscissa are the minima of 
pseudo-potentials. 

Linear differential equations such as eq 2 and 4 can 
be summarized in the general form of 

dxfdt= -f(x) (5) 

where xis the representative of ri and {3, andf(x) is a 
function of x. The variable x is called a dynamical 
variable. Defining the pseudo-potential, 

V(x)= J f(x)dx (6) 

of x, we can say that the system moves towards a 
minimum of the pseudo-potential along an approp
riate trajectory. The pseudo-potential derived from 
the right-hand side of eq 2 is, 

V(ri) = (ri- Mg/3r)2 /2r- Mg2 {32r/2 (7) 

and its minimum lies in 

(8) 

The solid straight line in Figure corresponds to 
eq 8. Similarly, the minimum of the pseudo-potential 
derived from the right-hand side of eq 4 lies in 

/3=0 (9) 

This is the axis of abscissa m Figure I. Each 
trajectory is, at first, directed to the straight line 
defined by eq 8. However, this straight line is not the 
asymptote of the trajectories. Crossing over eq 8, 
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each trajectory is asymptotically directed to the 
abscissa in Figure 1, and finally tends to the origin in 
which both pseudo-potentials take on their mi
nimum values. We can say that the slow relaxation 
towards the origin of the {3-CJ plane is preceded by the 
rapid relaxation towards eq 8 in the system de
scribed by eq 2 and 4. In the case of the viscoelasticity 
in liquid-like bodies, this situation becomes impor
tant, because of a comparatively small value of r. 

CONSTRUCTION OF CATASTROPHE 
MODEL 

The catastrophe theory is a branch of mathematics 
founded by Thom. 10 The finite classification theorem 
of the theory states the classification of topological 
shapes of the pseudo-potentials when the generalized 
force is defined by the gradient of pseudo-potential. 
More precisely, if the number of control variables or 
parameters such as f3 in eq 2 is less than or equal to 
four, the topologically different shapes of the pos
sible potentials are classified into only seven types. 
We must say here that the above statements are not 
original version of Thorn but an alternative approp
riate for describing phenomena encountered in na
tural science. 

The linear viscoelasticity described by eq 2 is the 
behavior occuring in the harmonic pseudo-potential 
of eq 6. This means that the nonlinear viscoelasticity 
is the behavior occuring in an anharmonic pseudo
potential. Apart from phenomena such as evolution 
in which the system changes gradually over a very 
long time interval compared with the life of a human 
being, all of the phenomena must be described with 
the potential whose derivative is positive in the 
region of very large values of x, and negative for very 
small values of x. This is due to the requirement of 
the stability of system. A quartic function fulfills the 
above mentioned conditions for the potential and is 
the simplest among anharmonic potentials. The 
potential with a quartic form is strictly confined in a 
topological sense to that of cusp catastrophe accord
ing to Thorn's theorem. The nonlinear form cor
responding to eq 2 is, therefore, 

(10) 

This equation is the abstract form in the topological 
sense. Then, some coefficients and terms are neglect
ed for explicitly. Fro example, the coefficient with the 
dimension of [ CJ- 2] is neglected in the first term of the 
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right-hand side. Furthermore, if CJ and f3 approach 
nonvanishing values of CJe and fJ., respectively, CJ and 
f3 must have the meaning of CJ-CJ. and {3-{3., re
spectively. The terms - CJe and - f3. are dropped also 
in eq 10. This equation is isomorphous with van der 
Pol's equation in the theory of electric circuit. 

The factor A in the second term of the right-hand 
side in eq 10 is very important. If the sign of A is 
confined to be negative, the term, - CJ3 /r, may be 
thought to be a perturbation to the term, ACJ/r. On 
the contrary, if the sign of A is positive, the situation 
is quite different, because the term, - A/r, loses the 
meaning of relaxation time. 

In Figures 2a and 2b are shown trajectories similar 
to those in Figure 1 obtained from eq 4 and 10 for 
A= 1.0 and - 1.0, respectively. A= 1.0 and -1.0 are 
the representatives of A >0 and A <0, respectively. 
In both figures, the system changes along a trajectory 
from the margin of the figures to potential minimum 
curves, CJ3 - ACJ- f3 = 0, which are drawn as solid 
lines. The system finally tends to the intersections of 

-3 -2 a 

-2 ---

----
(a) 

B .. ::..::..- -- ""'"-=-
'• 

- - - __ 2_L ___ 

a 
-3 -2 -1 

(b) 

Figure 2. Similar trajectories to Figure I due to the 
catastrophe model'( I 0) instead of eq 2. Selection is made 
with M=r=l, r'=5, A=-1 (a), and A=l (b) are 
selected. The minima of the pseudo-potentials are also 
shown with solid lines. 
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these potential minimum curves with the abscissa 
axis. The situation in the of A < 0 is not so 
different from that in Figure I, because the in
tersection is uniquely determined. On the contrary, 
the situation is unusual in the case of A> 0. There are 
three intersections. Among these, one appearing at 
the origin is not a minimum but a maximum in this 
case. The remaining two are minima. The system 
tends to one of these two minima depending on the 
initial condition. This is the nonlinearity which is 
newly introduced by the application of catastrophe 
theory. The model decribed by eq I 0 will be called the 
catastrophe model. It is impossible, at the present, to 
clarify the physical meaning of the quantity A. 
Qualitatively, A perhaps originates from the distor
tion of the pseudo-potential due to structural defects 
included in the system. 

STRESS RELAXATION AND APPARENT 
RELAXATION SPECTRA 

We will apply the catastrophe model, eq 10, to 
stress-relaxation phenomena. Solving eq 10 for va
rious values of A under appropriate initial con
ditions, we obtain the time dependence of stress, that 

(a) 

-
. "' 

0 
-3 -2 -1 0 1 

log 1 

(b) 

Figure 3. (a) Stress relaxation curves due to eq 10 and 
(b) their apparent relaxation spectra for A= - I, r = 3, 
and {3=0, (I), I, (2) 3, (3) 6, and (4) 10 are selected as the 
initial values of u. 
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is, the stress-relaxation curve. In Figures 3a, 4a, and 
5a are shown the stress-relaxation curves for A= - 1, 
0, and 1, respectively. In these three figures, only the 
curves with r = 3 and f3 = 0 are reproduced from our 
data. The vanishing value of f3 means that the strains 
are applied stepwide at t = 0. This selection is due to 
the convenience of comparision with widely accepted 
curves in rheology. The values of the initial stress are 
noted in the figure captions for corresponding fi
gures. In so far as the comparison between these 
three figures is concerned the sign of A dose not affect 
seriously the stress-relaxation behavior. Comparing 
these figures with the stress-relaxation curve due to 
linear viscoelasticity, we can find a more drastic 
decrease in stress at an earlier stage of the relaxation. 

As stated in the Introduction, we do not introduce 
the concept of relaxation spectra. Figures 3a, 4a, and 
5a are, indeed, the sollltion of eq 10 without the 
introduction of any kind of spectra. We will try to 
derive the apparent relaxation spectra for the stress 
relaxation in the above figures with the aid of a 
method commonly used in the analysis of linear 
viscoelasticity; the relaxation function is defined by 

--- ·--r-·-·---- . 
t 
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Figure 4. (a) Stress relaxation curves due to eq 10 and 
(b) their apparent relaxation spectra for A= 0, r = 3, and 
{3 = 0, (I), I, (2) 3, (3) 6, and ( 4) I 0 are selected as the initial 
values of u. 

Polymer J., Vol. II, No. II, 1979 



Catastrophe Theory to Draw Resonance 

0 

t 

(a) 

log T 

(b) 

Figure 5. (a) Stress relaxation curves due to eq 10 and 
(b) their apparent relaxation spectra for A= I, r = 3, and 
P = 0, (I), 1, (2) 3, (3) 6, and ( 4) 10 are selected as the initial 
values of 17. 

the ratio of a(t) to strain. For stepwise strain, a(t) 
itself can be used instead of the relaxation function. 
Therefore, a(t) is interrelated with H(a) by 

a(t)=r: exp(-t/r)H(r)dlnr (II) 

Putting s= 1/r and F(s)=(!/s)H(!js), we have 

a(t)=r: exp ( -ts)F(s)ds (12) 

we know this to be the Laplace transform. If F(s) is 
bounded and continuous, F(s) can be calculated by 
the inverstion formula 12 of 

F(s)=lim ( -l)k/(k!)(k/sr 1J<k>(k/s) (13) 

where f(k>(x) means the k-th derivative of f(x) with 
respect to x. In the course of numerical computation, 
we must inevitably truncate the operation of the lim 
up to a finite value of k. In the following discussion, 
we will truncate this operation up to the finite k in 
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which the relative error of F(s) to that in (k- I )st 
stage is less than 10-4 . 

In Figures 3b, 4b, and 5b are shown the apparent 
relaxation spectra obtained from the above pro
cedure for the stress relaxations in Figures 3a, 4a, and 
Sa, respectively. In spite of the absence of true 
relaxation spectra, we obtained apparent spectra as 
shown in Figures 3b, 4b, and 5b. Although the 
precise shapes of these apparent spectra are different 
from those familiar in the linear viscoelasticity, 
namely, the sum of the wedge and box type spectra, 
we can say that there is the possibility of a derivation 
of apparent spectra. Comparing these apparent 
spectra with each other, we find that these are almost 
unimodal for A= 0 and A > 0, while these are 
bimodel for A <0. Furthermore, we must stress here 
that a successful derivation of apparent spectra for 
the nonlinear system which has nothing to do with 
spectra does not imply that relaxation spectra ac
tually exist even if they are apparently derived. This 
is one point where we treated an essential nonlinear 
system instead of a linear or perturbed nonlinear 
system. 

APPLICATION TO SELF-OSCILLATING 
PHENOMENA 

As stated earlier, eq 10 with positive A has two 
minima on the abscissa in Figure 2a. Then, introduc
ing a centripetal force on f3 for this system, we have a 
self-oscillating system in which the oscillation is 
repeated between two Zeeman13 introduced 
a similar centripetal force in order to analyze the 
relaxation of heartbeat. Following his procedure, we 
will introduce the centripetal force given by 

d{Jjdt= -a/r" (14) 

where 1/r" is the proportionality constant defining 
the rate of {3. The simultaneous solution of eq 10 and 
14areshown in Figure 6a for A =r=r" =a0 =/30 = 1. 
a0 and {30 denote the initial values of a and {3, 
respectively. In (2) and (3) of this figure are shown 
the time dependence of a and {3, respectively. We 
could arrive at stress oscillation but not stress 
relaxation. In these figures the patterns of oscillation 
are comiderably different from sinusoidal curves. 
This is a characteristic of nonlinear oscillating 
phenomena. With an increase in A, we can have more 
typically nonlinear oscillation. In (I) of Figure 6a is 
shown the trajectory of the solution on the {3-a plane 
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Figure 6. (a) Self-oscillating and (b) nonoscillating solutions of eq 10 and 14 for (a) A= I, (b) A= -I, and 
r = r" = <Jo = /30 = I. In both (a) and (b), (I) is the trajectory on /3-<J plane, (2) is the time dependence of <J, and 
(3) is the time dependence of /3. 

after the elimination of time from (2) and (3). This is 
a typical solution with a limit cycle. Then, if any 
perturbation is applied to this system, the system 
temporarily deviates from the limit cycle, but it 
finally goes back to the cycle, ensuring the stability of 
the self-oscillation described by eq 10 and 14. 

By selecting a negative value of A, we can never 
reach such a self-oscillating solution. In Figure 6b 

A<O 

Figure 7. Schema tical illustration of the behavior of the 
system described by eq 10 and 14 in /3-A-<J space. 
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are shown similar plots to Figure 6a for the same 
selection of the parameter values except for A= -I. 
These are neither a self-oscillating nor a limit cycle 
solution. 

In addition to eq 10 and 14 we must consider 
solving eq 4. After the accomplishment of the rapid 
relaxation due to eq 10, the slow relaxation is 
performed on the pseudo-potential derived from the 
right-hand side of eq I 0. Such a slow relaxation is, of 
course, described by eq 4. In so far as being confined 
to the trajectory of slow relaxation is concerned 
necessary, since only eq 10 and 14 participate in 
deciding the trajectory. This is the reason eq 4 is not 
considered in the discussion of Figures 6a and 6b. 

The behavior in the {3-A-u space is schematically 
illustrated in Figure 7. A family of trajectories for 
slow relaxation is given by a manifold with the shape 
of a furrow, whose projection on {3-A plane is cusp
shaped. We can say that self-osciliation for positive 
A is to so-called delay convention.10 

APPLICATION TO DRAW RESONANCE 
PHENOMENA 

There are self-oscillating phenomena in melt spin-
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ning and film formation processes which are called 
draw resonance and surging phenomena, respec
tively. We will apply the procedure in the preceding 
section to such oscillating phenomena. In order to 
apply this procedure, a minor modification is 
required. 

Immediately after the discharge from the orifice, 
the flow of polymer melt is inflated to the direction 
perpendicular to the flow. This phenomenon is 
known as the Barus effect. We will assume the 
proportionality of the rate of input and/or the output 
of the melt into and/or from this inflated region to 
the rate of strain, namely, 

dmjdtrxdsjdt= f3 ( 15) 

Dividing the flow of melt into constant and in
termittent flows as shown in Figure 8, we can write 
the diameter of filament as 

(16) 

where s and f3 _ are the contribution from the 
constant and the intermittent flows, respectively. 
When f3 is positive, the part of intermittent flow is 
stored in the inflated region, so f3 _ = 0. When f3 is 
negative, the part flows out from the inflated region, 
and f3 _ is equal to the absolute value of {3. In short, 

f3 _ =(I /2)1 (/3- I /31 ) I (17) 

irrespective of the sign of {3. In eq 16 the effect of 
shrinkage is not taken into consideration. The 
proportionality constant is not explicitly written in 

y 

s + s 
+ X 

al 

a b 

Figure 8. Division of the inflated region due to the 
Barus effect into (a) constant and (b) intermittent flows. 

eq 16, as yet. 
We will compare the experimental results on the 

change of thickness of a polypropylene film along the 
film direction instead of the change of diameter of 
filament. These data were supplied by courtesy of Dr. 
S. Ichihara, according to whom the extruded melt 
can laminate on paper synchronously moving with 
the melt, and the measurement of the thickness 
becomes easier. In this case, deformation without the 
change of volume can be described in two dimen-

y 
t 

al{ l+b/ ( s+S ) } 

s+8 

l+b/ (s+f:!_) 

Figure 9. Schematical illustration of the dimension before and after drawing to x-direction. 

A J\ : 0 
• 0 

I \ N 

" '\---------- \,.,. 

90 em 

Figure 10. Comparison of the experimental (solid line) and the calculated (broken line) curves on the draw 
resonance of polypropylene. Scales for longitudinal and transverse directions are also shown. 

Polymer J., Vol. II, No. II, 1979 885 



R. CH0J6 and K. TsuYAMA 

sional manner, 

x=Lal{l +b/(s+f3_)} 

y=(s+f3_)j{l +b/(s+f3_)} 

(18) 

(19) 

as shown in Figure 9. In these equations, b is a 
proportionality constant and a! is a scaling factor for 
length. 

The solid line in Figure 10 is the record in a gauge 
meter measuring the thickness of polypropylene in 
which the temperature of the melt is 300°C and the 
take-up speed is 40m min- 1 . We can find good 
agreement with the calculated curves of the broken 
line. In the broken line, the values of a!, b, and s are 
selected as 0.123, 0.550, and 0.180, respectively. 
Substituting eq 18 and 19 by these values and 
considering the independence of a! and b on the 
system condition, we can deduce that, 

s= 0.18/(0.5Ar/r" +0.5) (20) 

In other words, the fraction of the constant flow 
decreases and that of the intermittent one increases 
with an increase of Ar/r". In order to illustrate this 
statement visually, the variations of y with x are 
shown in Figure II for various sets of parameter 
values. On comparison with the result of Ishihara 
and Kase,8 we can say that our treatment is better 
than theirs because of the adjustability in the selec
tion of A, r and r". This advantage is due to the 
introduction of a elasticity term besides the pure 
viscosity one. Indeed, the calculated curve of 
Ishihara and Kase behaves similar to that in Figure 
II (2) which is far different from their experimental 
curve. 

CONCLUSION 

The catastrophe theory is certainly a powerful tool 
for describing nonlinear viscoelasticity. Especially, it 
is useful in understanding self-oscillating pheno
mena such as draw resonance. The catastrophe used 
here is the cusp catastrophe. Not restricted to 
viscoelasticity, our study suggests that the cusp 
catastrophe is applicable for analyzing nonlinear 
phenomena unsolved within the framework of the 
perturbation in other fields. 

Numerical calculations were carried with the aid 
of a computer HITAC M-180 at the Information 
Processing Center, Tokyo Institute of Technology. 
Calculation results were plotted with the aid of 
Plotter WX 545. 
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Figure 11. Examples of calculated curves correspond
ing to Figure I 0 for various sets of parameter values. The 
abscissae are the length in arbitrary units and the 
ordinates are the diameter or thickness in arbitrary units. 
Parameter values are (I) A=r=r"=l, (2) A=r=l, 
r"=O.I, (3) A=O.I, r=r"=0.25, and (4) A=O.I, r= I, 
r" =0.1. 

A lot of figures to Figures 2, 3, 6, 
10, and II with different parameter values are 
available in copy form. 
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