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ABSTRACT: The effect of intramolecular interactions on the configration of a flexible 
polymer molecule is investigated by the method of cluster expansion. Using the first 
approximation which takes account of the special type of diagrams, expansion para
meters for the mean square end-to-end distance and the mean square radius of gyration 
are calculated near the 8-temperature. It is shown that both expansion parameters are 
singular at the 8-temperature. The expansion parameter for the mean square radius 
of gyration is a measurable quantity and to find the singularity experimentally it is 
necessary to measure the mean square radius of gyration at the temperature [T-Ell< lK 
for N=500 or [T-Ei[<3K for N=lOO. 
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The globule-coil transition was first discovered 
experimentally in the solution of poly(meth
acrylic acid) by Birshtein, et al./ and Ptitsyn, 
et al. 2 The cause of such transitions was attri
buted to the coexistence of the hydrophobic 
groups and hydrophilic groups in a macromolec
ular chain. On the other hand, such a transition 
phenomena was observed near the 19-temperature 
in poly(vinyl acetate) in carbon tetrachloride 
and poly(p-chlorostyrene) in n-propylbenzene 
through dielectric and viscosity measurements 
and through small angle X-ray scattering by 
Mashimo, Chiba, and others. 3- 5 In these mole
cules the residues cannot be differentiated into 
hydrophobic groups and hydrophilic groups. 
Therefore, the globule-coil transitions seem to 
be due to the attractive intramolecular interac
tions. 

Repulsive intramolecular interactions bring 
about the excluded volume effect. 6 Langmuir7 

first suggested that attractive intramolecular 
interactions give rise to a transition such as the 
one mentioned above; this transition was also 
suggested by Stockmayer. 8 Statistical mechanical 
theories of the transitions were developed by 
Edwards9 and by several workers. 10 - 15 One of 
the authors16 has shown in preliminary reports 

that the globule-coil transition occurs at the 19-
temperature and that the expansion parameter 
for the mean square end-to-end distance changes 
abruptly at the 19-temperature. Theoretically the 
globule-coil transition should occur at the 19-
temperature in the limit N-->oo. The reason that 
the globule-coil transition occurs at the 19-tem
perature in finite N in the present theory is due 
to the Gaussian approximation, which is valid 
only at the limit N-->oo. This point will be 
discussed in a separate paper. 

In this paper we calculate the expansion para
meters for the mean square end-to-end distance 
a2 and for the radius of gyration a/ below and 
above the 19-temperature. Our calculation is 
based upon the Ursell-Mayer cluster expansion; 
the first approximation, 17 which takes account 
of the special type of diagrams, is used. In 
such a way it can be shown that both expansion 
parameters, a2 and a/, are singular at the 19-
temperature. 

PARTITION FUNCTION 

The partition function of a polymer molecule 
with fixed end-to-end distance has been already 
obtained in the first approximation by the 
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method of a generating function. 16 Here we 
show that this partition function can also be 
obtained by the diagramatic method. 

We consider a flexible polymer molecule in 
solution. A polymer in solution is assumed to 
be represented by a model which is constructed 
of N + 1 segments linked by N bonds of length 
b. The segments are numbered from 0 to N 
along the chain; the coordinates of the ith seg
ment are denoted by r; and the interaction 
energy between the ith and jth segments is as
sumed to be u(r;-rJ)=u(rii). Then the partition 
function with fixed end-to-end distance can be 
written as 

S-1 

X exp [-,8 .L;.L; u(r;i)]l1 dr; ( 1) 
i<j 

where P(r0 • • ·rN) is assumed gaussian: 

P(ro·. ·rN)= l1 --2 exp __ r;-r"i-1] N ( 3 )3/2 ( 3[ •2) 
2nb 2b 

(2) 

and 1/,8 is the absolute temperature multiplied 
by the Boltzmann constant. We define Xii by 

( 3) 

and expand Q in powers of x's. 

N-1 

+ .L; .L; .L; .L; X iJXkl + · · ·) l1 dr i 
i<j lc<l i=l 

( 4) 

If we represent Q by= , Q0 by --, and 
Xii by ,--, , eq 4 can be written in the dia
gramatic form: 

= =-- + ..£.:,._ + 

+ r7.:;\ + ,-::_:) + _ __ c s l 

The expression which corresponds to any arbi
trary diagram can be written down immediately. 
For example, the third term of the right hand 
side of eq 5 is found to correspond to the 
following expression, after integrating all the 
coordinates except r;, ri, rk, and r1: 

28 

k-j) 

xQo(Yz-r," l-k)Qo(rN-Yz, N-l)XiiXIcl 

( 6) 
where Q0 is 

. . ( 3 )3/2 
Qo(rj-r;,J-z)= 2--:;U=ilb" 

( 3r'r ·-r·r'2) X exp - 3 • 

2(j-i)b2 
( 7) 

Next we make an approximation which takes 
account of only the following type of diagrams. 17 

= = --+ + ..c..r::::,_ + c-on +·--

( 8 ) 

The second line of eq 8 forms a diagramatic 
equation and can be written in the form of an 
integra-difference equation: 

Q(rN-r0 , N)=Q0(rN-r0 , N) 

+ .L; .L; \ dr; drjQ0(r;-r0 , i) 
i<:i J 

X Q0(ri-r;,j-i)Q(rN-ri, N-j)x;j 

( 9) 

We call this approximation as the first approxi-
mation. We shall be able to include such dia
grams as the· fourth and fifth terms on the right 
hand side of eq 5 by replacing 0 by Q in 
eq 8 and by introducing the vertex, respectively. 
But we shall consider only the first approxi
mation in this paper. To solve eq 9 we make 
a change of variables: 

rN-ro=R, 

ri-r;=R2 , 

r;-r0=R1 , 

rN-ri=R3 

(10) 

(11) 

The following relations hold among the new 
variables: 

n1+n2+n3=N 

Then eq 9 becomes 

Q(R, N)=Q0(R, N)+ .L;' (' dR1 dR2 dR3 
nl,n2,n3 ) 

(12) 

(13) 

X Qo(Rt> n1)Qo(R2, n2)Q(Ra, na)x(R2) (14) 
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The prime with the summation sign means that 
we make the summation under the condition 
given by eq 13 and the prime with the integra
tion sign means that we carry out the integra
tion under the condition given by eq 12. Let us 
define the Fourier transformation and generating 
function of Q, Q0 , and X by 

W(k, z)= zN dr e-ik·rQ(r, N) (15) 

W0(k, z)= I; zN I dr e-ik·rQ0(r, N) 
) 

and 

x(k)= dr e-ik·Tx(r) 

Then eq 14 becomes 

W(k, z)= W0(k, z)+ W0(k, z)W(k, z) 

(16) 

( 17) 

X I z) (18) J (2rr) 

which yields 

W(k, z)= ______ W0(k, z) .. _ __ 

1-W0(k, z) I dq d(q)W0(k-q, z) J (2rr) 
(19) 

Here we assume that 

x(r)=- f31o(r) (20) 

namely, 
(21) 

Here {31 is the excluded volume and is given by 

4;as (1- (22) 

where a is a diameter of the segment. Using 
eq 16 and 21, eq 19 becomes 

[ ( b2 2) I ( 3 )]-1 
W(k, z)= 1-zexp - 6 k +{31 ¢ z, T 

(23) 
where {3/ is given by 

I ( 3 )3/2 
{31 = 2rrb2- {31 (24) 

and ¢(z, s) is defined by 

00 

MEAN SQUARE END-TO-END DISTANCE 

Now we calculate the expansion parameter 
for the mean square end-to-end distance defined 
by 

(26) 

If we know the Fourier transformation and the 
generating function W(k, z) of the partition func
tion with fixed end-to-end distance, we can 
calculate the mean square end-to-end distance 
from W(k, z) in the following way: 

(r2)=b2/NfZN (27) 

where 

(28) 

and 

(29) 

From eq 26 and 27, the expansion parameter 
can be written as 

2 1 IN a=--
N ZN 

(30) 

Since the first approximation W(k, z) is given 
by eq 23, ZN and IN have the following forms: 

Z - 1 f-·- dz - 1 (31) 
N-2rrf ZN+11-z+{3/<jJ(z, 

1 f dz z 
IN= 2rri -z-+_{3_1_1 ¢-(-=.-2-3 -)-J (32) 

For {3/ < 0 the integrals eq 31 and 32 are evalu
ated from the residues at the pole Z= z0 for 
large N and, when z0 < 1 

(33) 

<fi(z, s)= 2: z"';n• 
n=l (25) Consequently, 
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where 

)=0 (36) 

As shown in Appendix A, we have for p/ ->0-, 
and thus Z0->1-, 

(37) 

and 

+ v7r,(l__)-3'2 
'\1 -pr' 2 2 

(40) 

which means that IN' given by eq 34 diverges 
for small p/. In this case we have to take 
account of the contributions from the contour 
integrals around the branch cut which are given 
in Appendix A. The divergent term in eq 40 
can be shown to be cancelled, and we have (see 
eq A-13) 

2 --- - ( 3 )-1/2 
a = 1-2 -I-pr' -I rr C 2 (41) 

For p1
1 >0 the integrands of eq 31 and 32 

have no real pole inside the unit circle and the 
two poles nearest to the origin are determined 
by the equation: 

)=o (42) 

where and are the values of 3/2) just 
above and below the real axis, respectively, and 
are expanded as 

=c(} )±2-/-rri-/z-1 

+c(+)(z-1)+··· (43) 
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0 

Oz.-· 

1 
Qz_ 

Figure 1. Path of integration for calculating ZN 
and IN for /N>O. 

Introducing eq 43 into eq 42 and ignoring the 
higher order terms of eq 43, the solutions of 
eq 42 are given as 

z±=1+.B{ c( 2rrp/] 

±i2-/7r-.B/3 ' 2 (44) 

Besides the poles, the integrands of eq 31 and 32 
have a branch cut on the real axis (l<z<oo). 
The integrals of eq 31 and 32 are replaced by 
the sum of the residues of the pole z± and the 
contour integral around the branch cut. (see 
Figure I) Then we can write 

Z , __ I_ 
N - 2rri 

+c.c. 

(45) 

(46) 

(49) 
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IN"= j9/ ¢+)2 

- J (50) 

Z/' and I/' are calculated in Appendix B; 
they yield for the case j9/ N « 1 

ZN" = -exp [ Nj9/( 2rr19/ J 
(1+2rrNj9/2 +···) (51) 

IN"= -N exp [ Nf91'(2rrj9/ J 
(1+4rrNj9/2 +···) (52) 

Introducing eq 44 into eq 47 and 49 and regard
ing j91

1 as small, ZN' and I/ can be calculated as 

ZN' =2 exp [ Nj9/ ( 2rrj91'- J 
(1+2rrNj9/2 + · · ·) (53) 

I/ =2N exp [ Nj9/( 2rrj9/ J 
(l +4rrNj9/2 + · · ·) (54) 

1.2 

1.1 

-0.005 

Q.g 

o.a 

Figure 2. Expansion parameter a2 as a function 
of fN. 
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From eq 51-54, ZN and IN become 

ZN=ZN' +Z/' =exp [ Nj9/( 2rrj9/ J 
(1+2n-Nj9/2 +·· ·) (55) 

IN= IN' +IN" =N exp [ Nj9/(2rrj9/ J 
(1+4rrNj9/2 + .. ·) (56) 

Introducing eq 55 and 56 into eq 30, we obtain 

a 2 = 1 +2rrNj9/2 +0(N2j9/3) (57) 

From eq 41 and 57 it turns out that j9/ =0 
(T=fJ) is a singular point of a 2• (see Figure 2) 

MEAN SQUARE RADIUS OF GYRATION 

In this section we calculate the mean square 
radius of gyration, defined by 

(58) 

where <rL> is 

2 I 2 N 
(rij) =) rijP(r0 • • • rN) exp [- j9 u(rij)] )}0 dri 

X {I P(r0 .. ·rN) exp [ -j9 I: I: u(rij)] 
j t<J 

(59) 

Performing the integral with respect to all the 
coordinates except ri and rj, eq 59 can be 
written as 

where ZN is a normalization constant and is 
identical with eq 28 and F(rij,j-i) is a partition 
function with fixed rii and is defined by 

F(rij,j-i)= P(r0 • • ·rN) exp [ -j9 "L:J; u(rij)] 

X II drk (61) 
k*i,j 

If we know the Fourier transformation of 
F(r;j,j-i), which is defined by 

F(k,j-i)= dr e-ik·r F(r,j-i) (62) 

(rL> can be calculated from F as follows: 

(r;j)=ZN - 1[ -f'k 2 F(k,j-i)h=o (63) 
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(a) 

(b) 

(C) 

(d) 

/ ...... -, 
rrrr{ o \1 I II /Iiiii I I 7] 

/--, 
"''''"'''''',{ o b 

,.. ....... -- - ......... 

vrd 0 0 "'vrn 

IZZZ222; 2.1 = ----+ 
Figure 3. Diagrams necessary for calculating the 
mean sguare radius of gyration in the first ap
proximation. 

In the first approximation we must consider 
the five diagrams shown in Figure 3. Corre
spondingly the partition function with fixed r;; 

can be written as 

F(r;;, j- i)=F'a 1 (r;;, j- i) + F 1b 1 (r;;, j- i) 

+Fie I (r;;,j-i) +F'dl (r;;, j-i) 

+F'" 1(r;;,j-i) (64) 

The expression which corrsponds to the diagram 
shown in Figure 3-a is 

F 1a1(r;;,j-i)= dr0 drNQ(r;-r0 , i)Q(r;-r;,j-i) 

xQ(rN-r;, N-j) (65) 

where Q is defined by eq 9. The Fourier trans
formation of eq 65 becomes 

fi'a 1(k,j-i)=Z;ZN-; f W(k, z) (66) 

where Z; and W(k, z) are given by eq 31 and 
eq 23, respectively. Introducing eq 66 into eq 
63, we obtain 

(67) 

where 1;-i is given by eq 29. The partition 
function with fixed r;; which corresponds to 
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Figure 3-b can be written as 

F 1b 1(r;;,j-i)= 
1
t0 ii dr0 drz drm drNQ(rz-1"0, I) 

XQo(Y;-l"t. i-I)Qo(Ym-Y;, m-i) 

xQ(r;-Ym,j-m)Q(rN-r;, N-j) 

XX(Ym-Yz) (68) 

The Fourier transformation of eq 68 becomes 

x i-1) 

X Q0(q-k, m-i) 

where Q and Q0 are defined by 

Q(k,j-m)= 2
1 z) 
7rl z 

and 

Q0(k, i-1)= 2
1--.f- z) 
71:1 z 

(69) 

(70) 

= exp ( __ (71) 

After integrating over q, eq 69 becomes 

-(b) 0 • - i j - . -/311 
F (k,j-1)- I; I; Z 1ZN_;Q(k,;-m) 1312 

l=O m=i (m- ) 

[ b2(m-i)(i-l)k2] x exp - -------
6(m-l) 

(72) 

Introducing eq 72 into eq 63, the contribution 
of the diagram shown in Figure 3-b to is 

<r2-)lbl=-(3 'b2Z -1 t t ZzZN-i 
'J 1 N l=O m=i (m-1) 312 

X Z;-m+f;-m J . (73) 

In a similar way, the contributions of the dia
grams shown in Figure 3-c, 3-d, and 3-e to <r;;) 
become 

x [-u---Es=J)zl+i+Il+i] (74) 

< 2 )'dl P 'b2Z -1 i ; Z Z ri; = -1-', N I; I: 1 N-m 
l=O m=j 

(j-i)(m-j+i-l) X - ---
(m-1)5/2 

(75) 

Polymer J., Vol. 10, No. 1, 1978 



Intramolecular Interactions in a Polymer 

X Zz'-m + ll'-m J (76) 

Since Z and I have already been calculated in 
eq 55 and 56, we can calculate the contributions 
of the five diagrams shown in Figure 3 to (r;1> 
and therefore to (i). In this way we can write: 

(i)=(s"/al +(i)(bl +(i)(cl +(s")(dl +(i/el 

(77) 

where 

(i)(cl=(s")(bl (80) 

<i> (d)=- _L_p I b2 N3!2- :(}) p/2b2N5/2 
105 1 189 

(81) 

Then the expansion parameter for the mean 
square radius of gyration a.Z, which is defined by 

a/=(s")/(s")o, (i) 0=N:2 (83) 

becomes 

a 2= 1 +6629rr f3 r2N _ 214 P 'N112 

8 144 1 1051-'1 

82C(_i_) 
31/ p/zNstz+O(Nzf3/s) 

= 1 + 144.62p/2N-2.04f3/N112 

-0.68p/2N 312 +0(N2p/3) (84) 

For p/ ;'S;O, ZN and INJN are calculated and 
found to be independent of N. Therefore, the 
expansion parameter for p/ ;'S;O become 

(85) 
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2. 
OCs 

N=500 

N=lOO 

-0.005 

0.7 

Figure 4. Expansion parameter a 82 as a function 
of (N. 

The graphs of a/ vs. p/ are shown in Figure 4; 
a 8

2 is singular at p1 =0 (T=fJ), just like a 2 • 

CONCLUSION 

Using a method of cluster expansion we have 
calculated the expansion parameters a 2 and a.2 

for Jp/i « 1 in the first approximation. We have 
shown that the expansion parameter a 2 is equal 
to 1 at the fJ-temperature, it decreases with 
infinite slope for T < fJ, and it increases with 
zero slope for T> fJ. Furthermore, we have 
also shown that a, 2 is equal to 1 at the f)-tem
perature and it decreases with infinite slope 
for T<fJ. In contrast to this, for T>fJ, a,2 

first decreases with finite slope and then increases. 
Although a 2 and a 8 

2 are independent of molec
ular weight below the f)-temperature, they are 
molecular weight dependent above the f)-tem
perature. Figure 4 suggests that the singularity 
is difficult to find experimentally. For a short 
chain it is easier to find the singularity. If one 
wants to observe the singularity, one must 
measure the radius of gyration in the tempera
ture range !T-fJI< 1 K for N=500or !T-fJ!<3K 
for N=100. 
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We have used the first approximation and 
neglected many diagrams, but the expansion 
parameters a 2 and a/ may still be singular at 
the 6>-temperature. 

APPENDIX A 

First we notice the properties of the analytic 
continuation of the function rp(z, s) for I log zl < 2rr: 

..!.( ) r 1 ) 1 )s-1 00 I' ) (log zt 
'f' z, s = ( -s (- og z + L: -,(s-n ----

n=o n! 

(A-1) 

where ((s) is the Riemann's (-function. Since 
eq A-1 is valid for z=z0 < 1 given by eq 36, 
we have for p/ ( < 0)-->0 

-j3/ ¢( zo, + )-->-j3/ r( + )(-j3/(( -112-->0 

(A-2) 

(A-3) 

The integrals of eq 31 and 32 are given respec
tively as 

(A-4) 

and 

(A-6) 

I "=_1_ (oo 5_ 
N 2tri J1 t;N 

x (A-7) 

where ¢+ and rft- stand respectively for the 
values just above and below the branch cut of 
the function rp(z, 3/2). Putting I;= 1 +x, we have 

¢±(;;. =t;( )=Fr( -+ )ivix-

+ (( )x+ · · · (A-8) 

Equation A-5 is then 
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p/r(-_!_) 
1/ 2 

ZN =-----
7r 

which is transformed, through the change of 
variable x= (-p/)s, into 

roo vis ds 
X Jo . (1- j3/ s)N+i 

(A-10) 

The integral in eq A-10 converges irrespective 
of the value p/. Thus when - j3/ is small, we 
obtain 

(A-ll) 

In the same way we obtain 

which cancels the second term of eq 40. Ac
cordingly we finally obtain 

(A-13) 

APPENDIX B 

If we put t;=l+p/s in eq 48, ZN" is trans
formed into 

Since for N» 1 (1 + j3/ s)-IN+ll is appproximated 
by e-Pl'N•, ZN" is approximated as 
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This integral is easily calculated by using the 
change of variable s= y": 

zN" 
2:!;- L (/-c( dy 

= -exp [ Np/( 2rrp/ J 

xj);( 
X sin [ 2Np/ )-rrp/) J 
+ cos[2Np/ 

(B-3) 

By expanding sin and cos in eq B-3 and neglect
ing higher order terms of p/, we obtain eq 51. 
In a similar manner IN" is calculated. If we 
put 1 + p/ s in eq 50, we obtain 

rr (T+ s)N 

X ------- ------------- (B-4) 

))\4rrp/sJ 

which is transformed, through the change of 
variable s= y 2 , into 

oo )y2) 
L. [ -(c ) t 

(B-5) 

This integral is calculated easily and becomes 
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which, by expanding sin and cos and regarding 
p/ small, reduces to eq 52. 

Acknowledgment. This work was supported 
in part by a research grant from the Ministry 
of Education. 

REFERENCES 

1. T. M. Birshtein, Ye. V. Anufrigeva, T. N. 
Nekrasova, 0. B. Ptitsyn, and T.V. Sheveleva, 
Vysokomol. Soedin., 7, No. 2, 372 (1965). 

2. 0. B. Ptitsyn, A. K. Kron, and Yu. Ye Eizuer, 
J. Polym. Sci., Part C, No. 16, 3509 (1968). 

3. S. Mashimo and K. Shinohara, J. Phys. Soc. 
Jpn., 64, 1141 (1973). 

4. A. Chiba, S. Uzawa, M. Uda, and S. Doi, 
Rep. Prog. Polym. Phys. Jpn., 17, 105 (1974). 

5. Y. Iwasa, S. Mashimo, A. Chiba, and K. 
Shinohara, ibid., 17, 95 (1974). 

6. H. Yamakawa, "Modern Theory of Polymer 
Solutions," Harper & Row, N.Y., 1971. 

7. I. Langmuir, D. Sc., "Colloid Chemistry," J. 
Alexander, Chemical Catalog Co., N.Y., 1926, 
p 525. 

8. W. H. Stockmayer, Macromol. Chem., 35, 54 
(1960). 

9. S. F. Edwards, "Critical Phenomena," M.S. 
Green and J. V. Sengen Ed., NBS Publishers, 
273, 1966, p 225. 

10. A. K. Kron, Vysokomol. Soedin., 7, 1228 (1965); 
A. K. Kron and 0. B. Ptitsyn, ibid., 7, 1235 
(1965). 

11. Y. Oono, J. Phys. Soc. Jpn., 39, 25 (1975). 
12. I. M. Lifschitz, Soviet Phys. JETP., 28, 1280 

(1969). 

35 



H. MIYAKAWA and N. SAITO 

13. C. Domb, Polymer, 15, 259 (1974). 
14. Yu. Ye. Eizner, Vysokomol. Soedin., Ser. A, 

14, 1512 (1972). Yu. Ye. Eizner, ibid., Ser. A, 
11, 364 (1969). 

15. P. G. de Gennes, J. de Physique Lett., 46, L55 
(1975). 

16. N. Saito and M. Inoue, Rep. Prog. Polym. 

36 

Phys. Jpn., 17, 17 (1974); N. Saito, Symposium 
for High Polymer Physics Center for Theore 
tical Physics & Chemistry, Seoul, Korea, (1975), 
p 31. 

17. T. Kato, J. Phys. Soc. Jpn., 30, 675 (1971); Y. 
Chikahisa, J. Chern. Phys., 52, 206 (1970). 

Polymer J., Vol. 10, No. 1, 1978 


	Intramolecular Interactions in a Flexible Polymer Molecule
	PARTITION FUNCTION
	CONCLUSION
	REFERENCES


