Alternating Copolymerization of 1,3-Cyclooctadiene and Acrylic Monomers

Junji Furukawa,* Eiichi Kobayashi,* and Shiro Nagata**
Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan.

(Received July 8, 1977)

Abstract

Three new kinds of alternating copolymers were successfully synthesized from 1,3-cyclooctadiene and acrylic monomers complexed with organoaluminum compounds. The copolymerization rate is as follows; acrylonitrile $>$ methacrylonitrile $>$ cis-crotononitrile. As an optimum condition giving the alternating copolymer, equimolar amounts of acrylonitrile, 1,3-cyclooctadiene, and EtAlCl_{2} as a catalyst were used. The intrinsic viscosity of copolymers is from $0.40-0.60 \mathrm{~d} l / \mathrm{g}$. From their ${ }^{1} \mathrm{H}$ NMR and infrared spectra the preferential 1,4-addition and cis-structure of carbon-carbon double bond of cyclooctadiene unit were confirmed.

KEY WORDS Alternating Copolymer / 1,3-Cyclooctadiene / Acrylonitrile / Methacrylonitrile / Crotononitrile / Ethylaluminum Dichloride / ${ }^{1} \mathrm{H}$ NMR Spectrum / Infrared Spectrum / cis-1,4-Linkage / Reactivity /

The reactivity of the conjugated double bond of cyclic 1,3 -diene compounds is dependent on ring size. Okamura, et al., ${ }^{1}$ have discussed the cationic polymerizability of cyclic diene monomers such as 1,3 -cyclopentadiene (1,3 -CPD), 1,3 -cyclohexadiene (1,3-CHD), and 1,3-cyclooctadiene ($1,3-\mathrm{COD}$) in relation to ring size. Yamaguchi, et al., reported the remarkable difference in the alternating copolymerization of SO_{2} and $1,3-\mathrm{CPD},{ }^{2} 1,3-\mathrm{CHD},{ }^{3}$ or $1,3-\mathrm{COD} .{ }^{4}$ That is, SO_{2} copolymerizes with the diene monomer at the 1,4 -positions in the former two, whereas at the 1,2 -positions in the latter. Moreover, 1,3-CPD, ${ }^{5} 1,3-\mathrm{CHD},{ }^{6}$ and 1,3 -cyloheptadiene 7 are capable of giving the Diels-Alder adducts with maleic anhydride, while this cannot be done with $1,3-\mathrm{COD} .{ }^{8}$

According to the studies carried out so far, the authors have found that the alternating copolymers of linear 1,3 -diene and acrylic monomer possess the 1,4-trans linkage. ${ }^{9-11}$ However, there is no available information for the alter-

[^0]nating copolymerization and the copolymer structure of cyclic 1,3 -diene and acrylic monomer.

This report deals with the copolymerizations of 1,3 -COD and acrylonitrile or its derivatives in the presence of Lewis acid.

EXPERIMENTAL

1,3-COD, acrylonitrile (AN), methacrylonitrile (MAN), and crotononitrile (CrN) were purified by distillation over calcium hydride before use. The two isomers of CrN were fractionated by distillation equipment having spinning bands and were identified by ${ }^{1} \mathrm{H}$ NMR spectra.
Ethylaluminum dichloride (EADC) and ethylaluminum sesquichloride (EASC) were used after vacuum distillation.

Copolymerization was carried out in a sealed glass tube under nitrogen atmosphere, and into which reagents such as solvent toluene, acrylic monomer and then an aluminum compound were introduced at $-78^{\circ} \mathrm{C}$ in this order. After shaking the mixture at room temperature, 1,3 COD was finally added at $-78^{\circ} \mathrm{C}$. After copolymerization, the reaction mixture was poured into methanol containing hydrochloric acid.

The copolymer yield was calculated based on the total monomer in the feed and the copolymer composition was determined by elemental analysis.

The intrinsic viscosity of the copolymers was determined in chloroform at $30^{\circ} \mathrm{C}$. $100-\mathrm{MHz}$ ${ }^{1} \mathrm{H}$-NMR spectra of the copolymers were measured by a Varian HA-100 spectrometer in deuterochloroform and their infrared spectra were measured in KBr tablets by Hitachi EPI-2 spectrometer.

RESULTS

Copolymerization of $1,3-C O D$ and $A N$
1,3-COD polymerizes easily by conventional
cationic catalysts ${ }^{1}$ but not by radical initiators. No copolymer of 1,3-COD and acrylic monomer has been known. Table I shows that 1,3-COD copolymerizes with AN complexed with a stoichiometric amount of EADC or EASC. When a large excess of $1,3-C O D$ is used in the feed, the copolymerization system becomes heterogeneous, but the copolymerization is not retarded. The rate of copolymerization in the presence of EADC compared with that of benzofuran-AN copolymerization ${ }^{12}$ is fast even without a radical initiator as a cocatalyst. Since the copolymer composition is consistently about $1: 1$, independent of the feed monomer ratio, and the radical polymerization of $1,3-\mathrm{COD}$ is difficult, these equibinary copolymers are considered to be the

Table I. The copolymerization of $1,3-C O D$ and AN in the presence of EADC or EASC in toluene at $30^{\circ} \mathrm{C}$

$\underset{\substack{1,3-\mathrm{COD} \\ \mathrm{~mol} / \mathrm{l}}}{\text { and }}$	AN		Catalyst		Polymn time, hr	Copolymer		
	mol / l,	feed mol $\%$		$\mathrm{mol} / \mathrm{l}$		Yield, $\%$	AN content, $\mathrm{mol} \%$	$\begin{aligned} & {[\eta],{ }^{\mathrm{a}}} \\ & \mathrm{~d} l / \mathrm{g} \end{aligned}$
0.54	1.52	73.9	EADC	1.46	16	5.9	50.7	0.45
0.94	1.52	61.9	"	"	"	5.4	49.5	0.63
1.54	1.52	49.7	"	"	"	5.5	48.6	0.63
3.08	1.52	33.0	"	"	"	3.8	48.1	0.56
4.62	1.52	24.8	"	"	"	4.5	49.9	0.68
0.54	1.52	73.9	EASC	1.47	46	7.0	50.3	0.27
0.94	1.52	61.9	"	"	"	6.7	50.2	0.37
1.54	1.52	49.7	"	"	"	6.0	50.5	0.44
3.08	1.52	33.0	"	"	"	4.9	49.5	0.63
4.62	1.52	24.8	"	"	"	5.3	48.8	0.55

Table II. The copolymerization of 1,3-COD and MAN in the presence of EADC ${ }^{a}$ in toluene at $30^{\circ} \mathrm{C}$

$\underset{\substack{1,3-\mathrm{COD} \\ \mathrm{~mol} / \mathrm{l}}}{\text {, }}$	MAN		AIBN, $\mathrm{mol} / \mathrm{l}$	Polymn time, hr	Copolymer		
	$\mathrm{mol} / l,$	feed mol \%			Yield, \%	MAN content, $\mathrm{mol} \%$	$\begin{aligned} & {[\eta], \mathrm{b}} \\ & \mathrm{~d} l / \mathrm{g} \end{aligned}$
0.74	1.49	66.9	0	72	0.8	55.3	-
1.47	1.49	50.3	0	72	0.8	51.9	-
2.95	1.49	33.6	0	72	0.9	48.6	-
0.74	1.49	66.9	0.0147	45	40.6	53.7	0.13
1.47	1.49	50.3	0.0147	19	34.9	53.4	0.23
2.95	1.49	33.6	0.0147	19	38.0	50.7	0.26
4.68	1.49	24.2	0.0147	19	29.7	50.1	0.26

[^1]
Alternating Copolymer of 1,3-COD-Acrylic Monomer

Table III. The copolymerization of 1,3-COD and CrN in toluene at $30^{\circ} \mathrm{C}$

alternating copolymers. The copolymers are fairly high-molecular-weight ones.

On the other hand, the free-radical copolymerization of $1,3-\mathrm{COD}$ and AN by azobisisobutyronitrile (AIBN) at $60^{\circ} \mathrm{C}$ generally produces the AN-rich random copolymer. The monomer reactivity ratios, r_{AN} and $r_{1,3-\mathrm{CoD}}$ calculated by the Fineman-Ross method are found to be 2.2 and about zero, respectively.
Copolymerization of $1,3-C O D$ and MAN
$1,3-C O D$ is also copolymerizable with MAN as shown in Table II. The rate is fairly slow without AIBN even in the presence of EADC but can be improved by the addition of $1-\mathrm{mol} \%$ AIBN for EADC. The copolymer composition is a little dependent on the monomer feed ratio through the equibinary copolymer is obtainable from 1,3-COD-excess monomer.

The monomer reactivity ratios, $r_{\text {MAN }}$ and $r_{1,3-\mathrm{COD}}$, in the free-radical copolymerization of $1,3-C O D$ and MAN initiated by AIBN at $60^{\circ} \mathrm{C}$ are found to be 3.2 and approximately zero, respectively.

Copolymerization of 1,3-COD and CrN

The copolymerization of $1,3-\mathrm{COD}$ and the α, β-disubstituted monomer, CrN (cis/trans $=69.9$ / 30.1 mixture) was attempted in the presence of

EADC or EASC as a complexing agent. Though no copolymer is obtained without AIBN, the equibinary one is prepared in the presence of 1-mol\% AIBN for aluminum compounds independent of monomer feed ratio, probably corresponding to an alternating copolymer (Table III). EADC is also more effective than EASC in this system. The extremely slow rate of this reaction may be due to the steric hindrance of the β-substituent of CrN as well as a conventional radical polymerization.
The reactivity of cis- CrN and trans- CrN was investigated in detail using the fractionated pure

Table IV. The copolymezation ${ }^{2}$ of 1,3-COD and cis- or trans-CrN in toluene at $30^{\circ} \mathrm{C}$ for 72 hr

CrN, cis/trans	Yield, $\%$	CrN content mol $\%$	$[\eta], \mathrm{b}$ d l / g
	3.5	49.7	0.09
$69.9 / 30.1$	2.8	49.8	0.08
$44.2 / 55.8$	1.7	50.3	0.07
$0.8 / 99.2$	1.2	48.7	-

${ }^{\text {a }}$ Feed conditions: 1,3-COD, $1.60 \mathrm{~mol} / l ; \mathrm{CrN}, 1.64$ mol / l ($50.5 \mathrm{~mol} \%$ in feed); EADC, $1.46 \mathrm{~mol} / l$; AIBN, $0.0147 \mathrm{~mol} / l$.
${ }^{\mathrm{b}}$ In CHCl_{3} at $30^{\circ} \mathrm{C}$.
cis or trans isomer of CrN . Table IV shows the comparison of the reactivities of both isomers with 1,3-COD. The determination of the cis/ trans ratio of CrN was performed quantitatively by gas chromatography ${ }^{12}$ and practically no isomerization of CrN monomer during copolymerization was confirmed by the determination of the cis/trans ratio of the residual CrN . According to these data, the cis isomer copolymerizes three times more rapidly than the trans isomer, while the reactivity of cis- CrN is more than ten times larger than that of the trans- CrN in the system of benzofuran- CrN copolymerization. ${ }^{12}$
${ }^{1} H$ NMR Spectroscopy of the Alternating Copolymers of 1,3-COD and Acrylic Monomers
$100-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of three types of copolymers of $1,3-\mathrm{COD}$ and acrylic monomers were measured in CDCl_{3} and are illustrated in Figures 1, 2, and 3. The two modes of reaction are possible for the addition of the acrylic monomers to the conjugated diene. They are the 1,2 - and 1,4 -additions which should be distinguished by the ${ }^{1} \mathrm{H}$ NMR spectra of the polymers. For instance, the alternating copolymer obtained by the 1,2 -addition should have one allylic methine $\left(\mathrm{H}_{\mathrm{b}}\right)$, two allylic methylenes $\left(\mathrm{H}_{\mathrm{c}}\right)$, one usual methine $\left(\mathrm{H}_{\mathrm{d}}\right)$ and six methylene protons $\left(\mathrm{H}_{\mathrm{e}}\right)$ on the cyclic unit and that by 1,4 -addition $2 \mathrm{H}_{\mathrm{b}}+8 \mathrm{H}_{\mathrm{e}}$. The equibinary copolymer obtained in this work shows a simple and clear spectrum pattern composed of three peaks (Figure 1) where the peak at $\delta_{\mathrm{A}} 5.46$ in the lowest magnetic field is assigned to the olefin protons $\left(\mathrm{H}_{\mathrm{a}}\right)$ and the
major signal at $\delta_{\mathrm{C}} 1.66$ in the highest field to the methylene $\left(\mathrm{H}_{\mathrm{e}}\right)$ and $\left(\mathrm{H}_{\mathrm{g}}\right)$. From comparison with the spectra of the copolymers of butadiene or vinyl chloride and AN^{11-13} the geminal proton $\left(\mathrm{H}_{\mathrm{f}}\right)$ with nitrile is considered to appear in the lower field than δ_{C} and perhaps is contained in the signal at $\delta_{\mathrm{B}} 2.70$. In fact, the peak at δ_{B} 2.70 can be divided into two peaks at $\delta 2.8$ and 2.6. The former is assigned to the H_{f} proton.

Though the allylic methylene signal is known to be observed at about $\delta 2.2$ like cyclooctene. ${ }^{1,14}$ There is only minor peak of 3% with respect to the total intensity at $\delta 2$. Moreover, the area ratio of $\delta_{\mathrm{A}}: \delta_{\mathrm{B}}: \delta_{\mathrm{C}}$ is $1.0: 1.5: 5.0$. Consequently, it is suggested quantitatively that the 1,4 -addition occurs exclusively in the 1,3-CODAN alternating copolymerization and the peak δ_{B} is assigned to $\left(2 \mathrm{H}_{\mathrm{b}}+\mathrm{H}_{\mathrm{f}}\right)$, because the area ratio

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of the alternating copolymer of $1,3-\mathrm{COD}$ and acrylonitrile measured at $55^{\circ} \mathrm{C}$.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectrum of the alternating copolymer of $1,3-\mathrm{COD}$ and methacrylonitrile measured at $31.5^{\circ} \mathrm{C}$.

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of the alternating copolymer of $1,3-\mathrm{COD}$ and crotononitrile measured at $31.5^{\circ} \mathrm{C}$: *, assignment is unknown.
of $\delta_{\mathrm{A}}: \delta_{\mathrm{B}}: \delta_{\mathrm{C}}$ must be $1.0: 2.5: 4.0$, if the $1,2-$ addition occurs preferentially and the peak δ_{B} is assumed to be due to $\left(\mathrm{H}_{\mathrm{b}}+2 \mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{d}}+\mathrm{H}_{\mathrm{f}}\right)$.

The alternating copolymer of $1,3-\mathrm{COD}$ and MAN also shows a simple and interesting spectrum (Figure 2), where the peak at $\delta_{\mathrm{D}} 5.57$ is assigned to the olefin protons, the peak at $\delta_{F} 1.67$ to the methylene and $\delta_{\mathrm{G}} 1.35$ to the methyl protons, respectively. In this chart, the allylic methylene signal at about $\delta 2.2$ was hardly observed. The two peaks at $\delta_{\mathrm{E}} 2.90$ and $\delta_{\mathrm{E}}, 2.64$ may be ascribed to the two allylic methines, separated because of their nonequivalence. As the area ratio of $\delta_{\mathrm{D}}: \delta_{\mathrm{E}}: \delta_{\mathrm{E}^{\prime}}: \delta_{\mathrm{F}}: \delta_{\mathrm{G}}=2.0: 1.0:$ $1.0: 10: 3$, this system is considered to be subject to the 1,4 -addition copolymerization.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the alternating
copolymers of $1,3-\mathrm{COD}$ and CrN is very complicated and shows the same pattern in spite of cis or trans configuration of the CrN monomer used. In Figure 3 the peaks at $\delta 5.51,1.68$, and 1.10 may be assigned to the olefin, methylene, and methyl protons, respectively, and the signals corresponding to the four protons are detected between $\delta 3.3$ and 2.2 from the integrated curve, though this assignment is obscure owing to the coexistence of at least four kinds of methine. The allylic methylene signal at about $\delta 2.2$ is also not remakable in this spectrum. Consequently, the 1,4 -addition copolymerization also seems to occur predominantly in this system.
Infrared Spectra of the Alternating Copolymers of 1,3-COD and Acrylic Monomers
The infrared spectra of these copolymers were
determined in KBr tablets using powder samples, where the peak of the nitrile is observed at $2270 \mathrm{~cm}^{-1}$ and that of the carbon-carbon double bond at $1640-1650 \mathrm{~cm}^{-1}$.

The configuration of the carbon-carbon double bond of various diene polymers is usually distinguished by using the bands owing to the out-of-plane deformation vibration of olefin protons as a key band. ${ }^{15,16}$ In this case, no peak resulting from the trans-1,4-configuration exists between $920-980 \mathrm{~cm}^{-1}$ in the copolymers. On the other hand, a strong peak appears at $730 \mathrm{~cm}^{-1}$, and thus in the copolymers of $1,3-C O D$ the double bond of the cyclooctene unit is considered to have the cis configuration. This structure is due to a 1,4-addition, but not to a 1,2-addition from the ${ }^{1} \mathrm{H}$ NMR spectra.

The infrared spectra of the alternating copolymers of the 1,3-COD with cis- or trans-CrN coincide perfectly with each other.

DISCUSSION

The new alternating copolymers were successfully synthesized from the 1,3-COD and acrylic monomers complexed with an equimolar amount of strong Lewis acids. Particularly, the copolymerization of $1,3-\mathrm{COD}$ and AN is very rapid even without AIBN. When MAN is used instead of $A N$, the rate falls somewhat. Moreover, in the 1,3-COD-CrN system no copolymer is obtained without AIBN. This low copolymerizability of the latter is owing perhaps to the steric hindrance of the β-substituent of CrN . Besides, cis- CrN is more reactive than the transisomer. Previously, the authors found that cisCrN is also more reactive than trans- CrN in the alternating copolymerization of benzofuran and $\mathrm{CrN} .{ }^{12}$ On the other hand, in an anionic polymerization of CrN the trans isomer has the same or a larger reactivity than the cis isomer. ${ }^{17}$ The molecular weight of the alternating copolymer decreases with a decrease in the apparent rate of copolymerization as follows; AN $>$ MAN $>$ CrN . The tendency may coinside with the order of steric hindrance of acrylic monomers.

The spectrometric analyses gave the informations for the characterization of these 1,3-CODacrylic monomer alternating copolymers. Particularly, ${ }^{1} \mathrm{H}$ NMR spectra of these copolymers
were unexpectedly simple and it was clearly proved that the 1,4 -addition copolymerization but not the 1,2-addition one occurs exclusively.

Yamaguchi, et al., ${ }^{4}$ concluded that 1,3-COD copolymerizes alternatingly with SO_{2} by the $1,2-$ addition from ${ }^{1} \mathrm{H}$ NMR spectra, though 1,3CPD^{2} and $1,3-\mathrm{CHD}^{3}$ do this by the 1,4 -addition, since the angle between the two double bonds of $1,3-\mathrm{COD}$ is larger than that of the $1,3-\mathrm{CPD}$ or $1,3-\mathrm{CHD}$ in relation to ring strain ${ }^{18-20}$ which reduces its conjugate character and increases the olefinic character. This may be compatible with the fact that 1,3-COD cannot produce DielsAlder adduct with maleic anhydride ${ }^{8}$ while 1,3CPD, ${ }^{5} 1,3-\mathrm{CHD}^{6}$, and 1,3-cycloheptadiene ${ }^{7}$ can do so.

However, 1,3-COD acts as a conjugated diene monomer in the copolymerization with complexed acrylic monomers as mentioned before. 1,3-COD may behave as either a conjugated diene compound or olefin according the kind of reaction.
In order to know the reactivity of cyclic monoolefin and cyclic diolefin having eight carbon atoms, the copolymerization of cis-cyclooctene and AN was tried as a model reaction under the following conditions: AN $1.52 \mathrm{~mol} / l$, cyclooctene $1.46 \mathrm{~mol} / l$, EADC $1.46 \mathrm{~mol} / l$, AIBN $0.015 \mathrm{~mol} / l$ in toluene at $30^{\circ} \mathrm{C}$ for 140 hr . An equibinary copolymer was obtained in very low yield (1.1%), but not without AIBN. Moreover, no copolymer was obtained using CrN as an acceptor even in the presence of AIBN. Thus, the reactivity of cyclooctene is remarkably inferior to that of $1,3-C O D$, indicating the conjugation of the two double bonds of 1,3-COD.

According to Yamashita, et al., ${ }^{21}$ the cis-1,4 content in the butadiene homopolymer is 16.4%, and similarly in the butadiene-AN copolymer obtained by AIBN this is 18.9% while the buta-diene-maleic anhydride copolymer has a cis-1,4 content as high as 73.7% perhaps owing to the strong cisoid interaction between the monomers. In the alternating copolymer of the diene monomers such as butadiene ${ }^{10}$ and cis- or trans-1,3-pentadiene ${ }^{22}$ with acrylic monomers complexed with Lewis acid, the microstructure of the diene unit is all trans-1,4. On the other hand, the cyclooctene unit of the copolymers of

1,3-COD and acrylic monomers is all cis form though the trans-cylooctene unit is possibly present as well as the cis one.

The relative stabilities of cis and trans olefins can be estimated from their heats of hydrogenation. According to Turner and Meador ${ }^{23}$ the heat of hydrogenation of cyclooctene, $-\Delta H$, is 23.0 and $32.2 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ with the cis and trans isomer, respectively. The empirical energy of cis-cyclooctene is 4.9 and that of the trans isomer is estimated to be $14.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ based on the strain energy in cyclooctane of 9.3 kcal $\mathrm{mol}^{-1} .^{24)}$ Thus, cis-cyclooctene is more stable than trans one. Consequently, the configuration of the diene unit formed in these alternating copolymers is considered to be dependent on the stability of the resulting cis-cyclooctene unit.

REFERENCES

1. Y. Imanishi, K. Matsuzaki, S. Kohjiya, and S. Okamura, J. Macromol. Sci.-Chem., A3, 237 (1969).
2. T. Yamaguchi and T. Ono, Chem. Ind. (London), 769 (1968).
3. T. Yamaguchi, K. Nagai, and T. Ono, Kobunshi Kagaku (Chem. High Polymers), 22, 31 (1969).
4. T. Yamaguchi and N. Nagai, Kobunshi Kagaku (Chem. High Polymers), 26, 809 (1969).
5. K. Alder and G. Stein, Ann., 514, 1 (1934).
6. O. Diels and K. Alder, Ann., 460, 115 (1928).
7. K. Alder and H. Mölls, Chem. Ber., 89, 1960 (1956).
8. A. C. Cope and L. L. Estes, Jr., J. Am. Chem. Soc., 72, 1128 (1950).
9. A. Kawasaki, I. Maruyama, M. Taniguchi, R. Hirai, and J. Furukawa, J. Polym. Sci., Part B, 7, 613, (1969).
10. J. Furukawa, Y. Iseda, K. Haga, and N. Kataoka, J. Polym. Sci., Part A-1, 8, 1147 (1970).
11. M. Taniguchi, A. Kawasaki, and J. Furukawa, J. Polym. Sci., Part B, 7, 411 (1969).
12. J. Furukawa, E. Kobayashi, and S. Nagata, J. Polym. Sci., Polym. Chem. Ed., in Press.
13. J. Furukawa, E. Kobayashi, and J. Yamauchi, Polym. J., 2, 407 (1971).
14. Y. Imanishi, K. Matsuzaki, T. Yamane, S. Kohjiya, and S. Okamura, J. Macromol. Sci.Chem., A3, 249 (1969).
15. R. R. Hampton, Anal. Chem., 21, 923 (1949).
16. D. Morero, A. Santambrogio, L. Porri, and F. Clampelli, Chim. Ind., 41, 758 (1959).
17. Y. Kobuke, J. Furukawa, and T. Fueno, J. Polym. Sci., Part A-1, 5, 2701 (1967).
18. E. A. Braude, Chem. Ind. (London), 1557 (1954).
19. N. L. Allinger and M. A. Miller, J. Am. Chem. Soc., 86, 2811 (1964).
20. H. Oberhammer and S. H. Bauer, J. Am. Chem. Soc., 91, 10 (1969).
21. Y. Yamashita and T. Kokubo, Yuki Gosei Kagaku Kyokai Shi, 27, 524 (1969).
22. N. G. Gaylord, M. Stolka, and B. K. Patnaik, J. Macromol. Sci.-Chem., A6, 1435 (1972).
23. R. B. Turner and W. R. Meador, J. Am. Chem. Soc., 79, 4133 (1957).
24. R. B. Turner, B. J. Mallon, M. Tichy, W. E. Doering, W. R. Roth, and G. Schröder, J. Am. Chem. Soc., 95, 8605 (1973).

[^0]: * Present Address: Department of Industrial Chemistry, Science University of Tokyo, Noda 278, Japan.
 ** Present Address: Central Research Laboratories, Kuraray Co., Ltd., Kurashiki 710, Japan.

[^1]: ${ }^{\text {a }} \mathrm{EADC} 1.46 \mathrm{~mol} / \mathrm{l}$.
 ${ }^{\text {b }}$ In CHCl_{3} at $30^{\circ} \mathrm{C}$.

