Stiff Chain Behavior of Poly(phthaloyl-trans-2,5-dimethyIpiperazine) in Dilute Solution

Abstract

Fractionated samples of poly(phthaloyl-trans-2,5-dimethylpiperazine) in various organic solvents at 25°C were studied by light scattering, viscosity, and sedimentation velocity. The data obtained for z-average mean-square radii of gyration ‹S2z, intrinsic viscosities [η], and sedimentation coefficients s0 exhibited features predictable for stiff or semiflexible chains. Thus an attempt was made to analyze the data by combination of the Yamakawa—Fujii theory for intrinsic viscosity and the Benoit—Doty expression for mean-square radius of gyration of unperturbed wormlike chains with a reasonable assumption for the partial specific volume. In this way, three parameters q, ML, and d characterizing the wormlike cylinder were estimated for each solvent; for example, q=33 Å, ML=33 daltons/Å, and d=7.4 Å in N-methyl-2-pyrrolidone. Here q is the persistence length, ML is the molecular weight per unit length of the wormlike cylinder, and d is the its diameter. The estimated parameter values were found to reproduce quite closely the observed molecular weight dependence of ‹S2z, [η], and s0.

References

  1. 1

    P. W. Morgan, “Condensation Polymers: By Interfacial and Solution Methods,” Interscience, New York, N.Y., 1965.

    Google Scholar 

  2. 2

    P. W. Morgan and S. L. Kwolek, J. Polym. Sci., Part A-2, 181 (1964).

  3. 3

    M. Katz, J. Polym. Sci., Part A-2, 40, 337 (1959).

  4. 4

    E. M. Hodnet and D. A. Holmer, J. Polym. Sci., Part A-2, 58, 1415 (1962).

  5. 5

    T. Tsuji, T. Norisuye, and H. Fujita, Polym. J., 7, 558 (1975).

  6. 6

    Gj. Dezelic and J. Vavra, Croat. Chim. Acta, 38, 35 (1966).

  7. 7

    J. P. Kratohvil, Gj. Dezelic, M. Kerker, and E. Matijevic, J. Polym. Sci., 57, 59 (1962).

  8. 8

    G. C. Berry, J. Chem. Phys., 44 4550 (1966).

  9. 9

    M. L. Huggins, J. Am. Chem. Soc., 64, 2716 (1942).

  10. 10

    D. F. Mead and R. M. Fuoss, J. Am. Chem. Soc., 64, 277 (1942).

  11. 11

    J. W. Williams, R. L. Baldwin, K. E. Van Holde, and H. Fujita, Chem. Rev., 58, 715 (1958).

  12. 12

    H. Fujita, “Foundations of Ultracentrifugal Analysis,” Interscience, New York, N.Y., 1975.

    Google Scholar 

  13. 13

    R. L. Baldwin, Biochem. J., 55, 644 (1953).

  14. 14

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Row, New York, N.Y. 1971.

    Google Scholar 

  15. 15

    G. V. Schulz and E. Penzel, Makromol. Chem., 112, 260 (1968).

  16. 16

    E. Penzel and G. V. Schulz, Makromol. Chem., 113, 64 (1968).

  17. 17

    H. Yamakawa, Pure Appl. Chem., 46, 135 (1976).

  18. 18

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  19. 19

    H. Yamakawa and M. Fujii, Macromolecules, 6, 407 (1973).

  20. 20

    H. Yamakawa and M. Fujii, Macromolecules, 7, 128 (1974).

  21. 21

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Motowoka, M., Norisuye, T. & Fujita, H. Stiff Chain Behavior of Poly(phthaloyl-trans-2,5-dimethyIpiperazine) in Dilute Solution. Polym J 9, 613–624 (1977). https://doi.org/10.1295/polymj.9.613

Download citation

Keywords

  • Poly(phthaloyl-trans-2,5-dimethylpiperazine)
  • Wormlike Chain
  • Persistence Length
  • Dilute Solution
  • Refractive-Index Increment
  • Light Scattering
  • Intrinsic Viscosity
  • Sedimentation Coefficient
  • Yamakawa—Fujii Theory
  • Benoit—Doty Theory

Further reading

Search