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ABSTRACT: Theoretical calculations for the mean square of unperturbed radius of 
gyration <S2)o,av and the branching factor g of star-like polypeptides in random coil 
form were carried out for two cases in which the degree of polymerization of the 
subchains distributed uniformly and randomly. The radius of the gyration ratio 
<S2)o,av/n!2 and g depended on the degree of polymerization as well as the number of 
branches, and increased with an increasing degree of polymerization. 
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Some natural proteins have cross-linked struc­
ture through the S-S bond between cystine 
residues. Proteins, even when they have no 
cross-linked structure, have complicated high­
order structures owing to intramolecular inter­
actions. Therefore, we may consider that such 
proteins have similar structures to the cross­
linked polymers. Consequently, using branched 
polypeptide as a model of natural protein is 
reasonable. By this model, we may determine 
step by step the complicated intramolecular 
interactions in proteins. 

chain approximation is therefore not always 
adequate, as this method is useful for infinite 
degree of polymerization. Flory and his co­
workers3-9 have calculated the dimension of 
polymer chains as a function of the degree of 
polymerization for linear polymer chains. These 
calculations were carried out on the basis of 
the rotational isomeric model. In this paper, 
Flory's method is applied to the star-like poly­
peptide chains for calculating the unperturbed 
dimensions. 

As a kind of branched polypeptides, there are 
star-like polypeptides, having branches stemming 
from one point. These star-like polypeptides 
are similar to globular proteins in structures. 
Thus these polypeptides may provide new in­
formation about globular proteins. 

Unperturbed dimension is one of the funda­
mental molecular properties for investigating the 
form of the polymer chains in dilute solution. 
Unperturbed dimensions of the branched polymer 
chains have been calculated using the Gaussian 
chain approximation by Zimm and Stockmayer, 1 

and Kurata and Fukatsu.2 The degree of poly­
merization for many globular proteins is in a 
range of 50-200. The method of the Gaussian 

MEAN SQUARE OF THE RADIUS OF 
GYRATION 

In Figure 1, a star-like chain molecule is shown. 

Figure 1. A star-like chain molecule. 
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This chain possesses p branches ( subchains) 
attached to one branching point 0. The degree 
of polymerization of the k-th subchain is assumed 
to be n1,. The branching point is given the 
symbol 0, and each atom (structural unit) in the 
k-th subchain is counted as 1, 2, · . ·, and nk 
toward the end of the subchain. The vector 
from the center of mass G of the molecule to 
the i-th atom of the subchain is Si. As each 
atom is assumed to be equal in mass, the square 
radius of gyration S 2 is represented by 

p "k 
S2=( z: z: S/ +s/)(n+ 1)-1 ( 1 ) 

k=l i=l 

If the vector from the i-th atom to the j-th atom 
is rij, then 

S2=[ z:2 z:2 rL 
l~k<h~p O~i<j~nkh 

p 2 2 2 
-(p-2)1: Z: rij](n+l)- (2) 

t=1 O~i<j~nt 

from the theorem of Lagrange (See Appendix), 
where n,.k is represented by nkh=nk+nh and 
symbolism of the type Z: k indicates the serial 
k symbols of summation. The amide bond in 
polypeptide chains has a planar trans-partial 
double bond, so that the chain is regarded as 
a sequences of virtual bonds between the adjacent 
a-carbon atoms. Such a character of polypeptide 
chain makes it possible to assume that the rota­
tion of the virtual bond is treated as if it does 
not depend on the rotation of its adjacent bonds. 
Furthermore, it may be assumed that the rota­
tion of the virtual bonds succeding the branch­
ing point is treated as an independent rotation. 
Thus one obtains 

(S2)0=[ z:2 z:2 (rL) 
I;'i.k<h;'i.p O;'i.i<j;'i.nkk 

p 2 2 2 
-(p-2)1: Z: (r;j)](n+l)- (3) 

t=l O~i<j~nt 

where the suffix O indicates the unperturbed state. 
Furthermore if all subchains are statistically 
equal, eq 3 can be simplified as 

(S2)o=[p(p-l) z:2 (rL) 
2 O;'i.i<j;,,nkk 

For a linear chain whose rotation of the bond 
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is treated as an independent rotation, the value 

(S2)o=(n+ 1)-2 Z: 2 (rL) ( 5 ) 
O~i<:i~n 

is represented by two methods. 
One is the method (method I) to represent 

(S2 ) 0 as a series of matrix (T) by applying the 
regular property of matrix (T), where (T) is 
the statistical average of the matrix T which 
transform the representation of a vector in the 
coordinate system of bond i + 1 into its represen­
tation in a similar coordinate system affixed to 
bond i (see ref 3). In this method, (S2 ) 0 is 
represented by eq 6, 

(S2) 0=l2(n+ 1)-2 

X {i-n(n+ l)(n+2)[(E3+(T) )(E3-(T))-1]u 

-n(n+ l)[(E3-(T)r2(T) ]u 

+2n[(E3-(T) )-3(T/]11 

-2[(E3-(T))-4(T/(E3-(T)")]11} ( 6) 

where the subscript 11 of [ M]11 denotes the 
1, I-element of matrix M, the matrix Ek repre­
sents the unit matrix of the order k, l is the 
length between successive a-carbons, and n is 
the number of virtual bonds. 

The other is Flory-Jernigan7 matrix method 
(method II). In this method, (S2) 0 is represented 
by eq 7. 

where 

[
1 1 11<T> 12;2 12;2] 
o 1 11<T> 12;2 12;2 

Di= 0 0 (T) I I 

0 0 0 1 1 

0 0 0 0 1 i 

( 8 ) 

Jk * is defined as the row vector consisting of 
k elements, the first element being unity and 
all succeeding elements being zero, and Jk is 
defined as the column vector consisting of k 
elements, the last element being unity and other 
element being zero. Symbolism of the type 
D11"' 1 (see ref 3) indicates the serial product of 
the type D1 D 2 • • • D,., i.e., a product of n such 
terms. 0 is rectangular null matrix of the ap­
propriate dimension, and / is the bond vector 
as a column. 

Polymer J., Vol. 9, No. 6, 1977 



Unperturbed Chain Dimension of Branched Polypeptides. I. 

RADIUS OF THE GYRATION RATIO OF 
STAR-LIKE POLYPEPTIDES WITH 

UNIFORM AND RANDOM 
DISTRIBUTION IN 

LENGTH 

Considering eq 5 and 6, or eq 5 and 7, the 
unperturbed dimension of star-like chains whose 
degree of polymerization are known can be 
calculated by using eq 3 or 4. However it seems 
almost impossible to determine the degree of 
polymerization for all subchains. So the average 
is carried out in two statistically interesting cases. 
One case is the average of the uniform distribu­
tion of subchain length. The other is the case 
in which the average of the random distribution 
of subchain length. 

Uni[ orm Distribution of Subchain Length 
Let the degree of polymerization of the mole­

cule be n, and that of the k-th subchain be nk; 
then, n1c is represented by 

n1c=n/p (k=l,2,···,p) (9) 

In the case of uniform distribution of subchain 
lengths, using eq 9 we obtain eq 10 from 4. 

<S2)0,av=(n+l)-2[p(p-l) l:; 2 <r;j) 
2 O~i<j~2n1c 

-p(p-2 )o~iE:nk <r;J-)] (lO) 

The subscript av of <S2)o,av denotes the average 
on the distribution of the degree of polymeri­
zation of subchains. Using method I (eq 5 and 
6), we obtain eq 11. 

<S2) =nz2{~ (n+p)[(3p-2)n+2pJ_ 
O,av 6 p2(n+1)2 

X [(Es-<T>)-1(Es+<T))]11 

-(~¾1)[(Es-<T>)-2<T>J11 

+ (n:1)2 [(E3-<T))-3<T/]11 

+ p 2[(Es-<T>)-4<T/{(p-3)E3 
n(n+l) 

-2(p-2)<T>n!p + (p-1)<T)2n/p)]11} 

(11) 

Using method II (eq 5 and 7), we obtain eq 12. 
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<S2)0,av=(n+ 1r2[p(p- l)J7*D1 12n 1P 1J7 

-2p(p-2)J/D11nlp>J1] (12) 

Equations 11 and 12 are derived only by using 
the rotational isomeric approximation, and are 
applied to all star-like chains whose branches 
have the same degree of polymerization. Sub­
stituting 1 or 2 for p in eq 11 and 12, we obtain 
the equations for linear chain by simple calcula­
tion. 

Random Distribution of Subchain Lengths 
When the degree of polymerization of the 

subchains are randomly distributed, the average 
of the mean square of radius of gyration is 
obtained by the following equation. 

where 
k 

N1c=I: nt 
t=l 

I:p-1 
O<Ni<···<Np-l<n 

( 13) 

(14) 

In the case of method I, according to from 
eq 4-6, 

<S2 ) 0 =l2(n+ 1)-2{¼[ n(n+ l)(n+2) 

-6 I; 3 n1cn 1nm] 
l~k<l<m~p 

X [(E3-<T) )-\Es+<T> )]11 

-n(n+ l)[(E3 -<T) r 2<T) ]11 

+2n[(E3 -<T> )-3<T/]11 

+[{p(p-3)Es+2 I:2 <T>nkh 
l~k<h~p 

p 

-2(p-2) I; <T>nk)(E3 -<T))-4<T/]11) 
k=l 

Using eq 13 and 15, we obtain eq 16. 

<S2) -nz2{~l_ 6p (n+2) 
o,av- 6 (p+l)(p+2) (n+l) 

X [(E3 -<T) )-\Es+<T) )]11 

-~1 [(Es-<T>)-2<T>]11 
n+l 

(15) 

+ (n:1)2 [(Es-<T>)-3<T/]11 

+p!(p-1)(- ll[(Es-<T> p-2(T)n+s]11 
p-2 

X [ I1 (n-k)(n+ l)r1 

k=-l 

+(p+ l)!(p-2)(-1? 
X [(Es-<T> p-3(T)n+3]11 
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p-l 
X [ II (n-k)(n+ l)r1 

k=-1 

+p! pil (p-l)i_+p-3 (-1/ 
i=0 (p-1-l)! 

X [(E3 -(T) )-H(T/+3] 11 

><[j((n-k)(n+l)r1 } (16) 

To calculate the random average of eq 15, fol­
lowing relations are used, 

p-1 1 p-l • 
I; nkn1nm=--- II (n-1) 

O<N1<···<Np-1<n (p+2)! i=-2 
1 p-1 

r;p-l 1=-~- II (n-i) 
O<H1<···<Np-1<n (p-1)! i=l 

( 17) 

I;p-I Ank 
O<N1<···<Np-1<n 

=(-Ir\Em-A/-p An+(-ljP(Em-A/-PAv-i 

+ p£1 If (n-~) (Em-A/-i A1- 1(- ll (18) 
j=2 k=j (p-])! 

I; p-1 Ank+nh 
O<Nr<···<Np-I<n 

=(n-p+ l)(Em-A/-p An(-1/ 

+(p-2)(£,n-A)l-p An(-1/ 
p-I 
II (n-k) 

+(En,-A)I-p k(~--::_3)! 

X pi I . P::-_"~P::-i_::.!:~_ Aj ( - 1 i ( 19) 
;=2 (n-J+l)(n-J) 

where A represents the regular matrix of the 
order m. 

In the case of method II, we define (Ap,1c) 

and (Bp,kh) by eq 20. 

(Ap,1,)=J1 * D11nk1J1 

(Bp,kh)=J1 * D1 ln1c+nhlJ7 

Using eq 4, 5, 7, and 20, we obtain 

(S2) 0 =(n+ l)-2[p(p- l)(Bp,1ch)-1p(p-1)(Ap,1c)] 

(21) 

Substitution eq 21 into 13, we obtain 

G2= I; J/D/N1IJ7 
0<N1<N2 

The sum in this equation is obtained by using 
the following matrix {H(2)}; 

{H(2));=[~ D:11 (23) 

As shown in eq 27, {H(k)); represents a series 
of expanded matrices whose starting matrix is 
D. {H(2)); in eq 23 represents the 2nd matrix 
of this series. Thus, 

a2=Is *{H(2)}i IN2-11Js 

Similarly, we let 

and using the following matrix, 

we obtain the summation in eq 24. 

(24) 

Gs=J/{H(3)}iln-2JJ9 (25) 

From the definition of (A 3)av, we obtain 

(As)av=Gs/ I:; 2 

O<N1<N2<n 

Substitution of eq 25 into this equation gives 

(As)av=J/{H(3)}i1n-21J9/ I:; 2 

0<N1<N2<n 

Similarly, we obtain (Ap)av 

(Ap)av=J;+s{H(p)}i ln-p+IIJp+s/ I;p-I 
O<Nr<···<Np-1<n 

(26) 
where 

(27) 

Calculation of (Bv)av is carried out in the fol­
lowing way. In the case of p=4, we let 

b _ .._,2 J *n 1N11D1N2-N11J 
s- L..J 7 1 N 1+1 7 

O<Ni<N2<N3 

(S2)o,av=(n+ 1)-2[p(p-l)(Bp)av 

-1p(p-1)(Ap)av] 

The sum in this equation is obtained by using 
(22) the following matrix 

where (Ap)av and (Bp)av are defined as random 
average of (Ap,1,) and (Bp,kh), respectively. 

Calculation of (Av)av is carried out as follows. 
In the case of p=3, we let 
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where 

{K(2));=[~ 

{K(2))i=[D1 

/ 0H(2)] 
H(2) i 

O] 
(28) 

Polymer J., Vol. 9, No. 6, 1977 
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l 0 =[E1 O] 

and orders of matrices {K(2))i and / 0 are respec­
tively, 7xl5 and 7x8. Thus, we obtain 

ba=f1 *{K(2))i in-11J1s 

Similarly, we let 

and using the following matrices, 

{K(3))i=[K~2) K(2{151 (i?:.2) 

{K(3)}i=[D1 OJ 
we obtain b4 as 

b4 =J/{K(3)}i1"-21 J 16 (29) 

where the order of {K(3))i is 7 x 16. From the 
definition of <B4)av and eq 29 

<B4)av=J/{K(3)}iln-21Jl6/ I;3 

Similarly, we obtain <Bv)av 

<Bp)av 

0<Ni<~V2<1V3<n 

=J/{K(p-l)}i1n-p121Jv+1e/ I;v-1 1 
0<.1"1 <N2<-··<Sp-i<n 

where 

{K(k))i=[ K(k0-1) K(k- ~)J1c+121 
{K(k)}i=D1h 5 (k?:.2) 

h=[E1 OJ 
and the order of h is 7 x (k+8). 

(30) 

(k?:. 3, i?:.2) 

(31) 

(32) 

Substituting eq 26 and 30 into 22, we obtain 
finally 

<S2)0,a,=[p(p- l)J7 *{K(p-l)}iln-p+2l Jp+l2 

-2p(p-2)J;+6{H(p) }i I n-p+l I Jp+GJ(p-1 )! 
p-1 

X[(n+l) 2 II (n-i)r 1 (33) 
i=l 

Substituting I or 2 for p in eq 16, we obtain 
the equation for the linear chain, for which eq 
16 corresponds to eq 5. Similarly, defining 
(K(l)}i by eq 34, 

{K(l)}i=[D DJ (i?:.2) 
0 D i (34) 

{K(l))i=[D1 O] 

Substitution of 1 or 2 for p in eq 33 results in 
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the equation for the linear chain, eq 7. Equa­
tions 16 and 33 contain no mathematical ap­
proximation, and is thus useful to analyse the 
star-like chains having randomly distributed 
subchain lengths. 

The branching factor g is defined as the ratio 
of <S2)o,av of star-like chain to <S2) 0 of the 
linear chain whose number of bond is identical 
with that of the branched chain. In the case 
of star-like chains having uniformly distributed 
subchain length, the branching factor g is ob­
tained by dividing eq 11 by eq 6 or dividing 
eq 12 by eq 7. Then, the following equation 
is obtained as the g value for infinite degree of 
polymerization. 

3p-2 
g= p2 (35) 

This equation is in accord with the results ob­
tained by Zimm and Stockmayer,1 and Kurata 
and Fukatsu2 for the Gaussian chain. Similarly, 
in the case of star-like chain having randomly 
distributed subchain lengths, the branching factor 
g is obtained by diving eq 16 by eq 6 or dividing 
eq 33 by eq 7. Then, the following equation 
is obtained for the infinite degree of polymeri-
zation, 

- 6p 
g-(p+l)(p+2) 

(36) 

This equation also agrees with Zimm's and 
Kurata's result. 

NUMERICAL RESULTS AND DISCUSSION 

The characteristic ratio <R2) 0/n/2 and the radius 
of the gyration ratio <S2) 0/n/2 of linear poly­
peptides were calculated by Flory, et al.,4· 5 and 
Tanaka and Nakajima.10 ·11 It was mentioned 
in these papers that the value of the van der 
Waals radius rm12 for p-methylene group signifi­
cantly affected the calculated value of the charac­
teristic ratio and the radius of gyration ratio, 
and that linear side chains longer than methyl 
should have little influence on the characteristic 
ratio and the radius of gyration ratio. Thus 
the results calculated for poly-L-alanine may be 
applied to other polypeptides composed of a-L­

amino acid residues. Consequently, the calcula­
tions in this study are carried out for star-like 
polypeptides composed of L-alanine residues. 
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Flory and his co-workers5 arrived at the following 
matrix for poly-L-alanine. 

[ 
0.51 

<T)= -0.046 

0.65 

0.20 

-0.61 

-0.23 

0.59] 
0.21 

-0.30 

This formula is used in our calculation. 

The Radius of Gyration Ratio 

(37) 

Figure 2 (uniform distribution) and Figure 3 
(random distribution) indicate that the radius 
of the gyration ratio <S2)o,av/n/2 of star-like 
molecules whose branch lengths distribute uni­
formly and randomly, increase asymptotically 
with the degree of polymerization n like that of 
linear chain. This tendency is remarkable in the 
case of random distribution of subchain length. 
Figures 2 and 3 also show that <S2)o,av/n/2 of 
star-like chains always smaller than that of linear 
chain of identical n. Figure 4 indicates that 
<S2)o,av/n/2 decreases asymptotically with number 
of branches p, and <S2)o,av/n/2 of random dis­
tribution is always larger than that of uniform 

1-5 
2 --------------/ 

/ 
/ 

/ 
I 

1-0 I 
N I c I - I > 

" I o· 
A I N I (/) 

V I 
0-5 I 

I 
I 

0-0~----'--~----'----'-----_J 
0 50 100 150 200 

n 

Figure 2. The radius of the gyration ratio 
(S2)o,av/n/2 plotted against the degree of polymeri­
zation n for star-like polypeptides having uniform 
distribution of subchain length. The numeral on 
each curve indicates the number of branches. 
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1-0 
N 

c 
--> 

" o" 

" N 
I.fl 
V 0-5 

n 
Figure 3. The radius of the gyration ratio 
(S2)o,av/n/2 plotted against the degree of polymeri­
zation n for star-like polypeptides having random 
distribution of subchain length. The numeral on 
each curve indicates the number of branches. 

1-6 

N 

C 1-2 --> 
Cl 
R- 0-8 

N 
1/) 

" 0-4 50 
200 

o.o 
2 4 6 8 10 

p 

Figure 4. The radius of the gyration ratio 
(S2)o,av/n/2 plotted against the number of branches 
p for star-like polypeptides having random distri­
bution of subchain length (solid lines), and having 
uniform distribution of subchain length (broken 
lines). The numeral on each curve indicates the 
degree of polymerization. 

distribution of identical p. Also, Figure 5 in­
dicates that r., which is the ratio <S2)o,av/n/2 to 
(<S2)o,av/n/2)oo ((<S2)o,av/n/2)oo is the asymptotic 
value of <S2)o,av/n/2 at n), decreases asymp-
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0-8 

0-4 

2 

----

4 

----

6 

p 

------

8 10 

Figure 5. rs, which is the ratio <S 2)o,av/n/2 to 
( <S2)o,av/n/2)=, plotted against the number of 
branches p for star-like polypeptides having random 
distribution of subchain length (solid lines), and 
having uniform distribution of subchain length 
(broken lines). The numeral on each curve in­
dicates the degree of polymerization. 

Table I. Summary of the number of bonds re­
quired for (<S2)o,av/n/2)=-<S2)o,av/n/2 to be 

within 10 and 5% of ( <S 2)o,av/n/2)= for 
star-like polypeptides 

Uniform Random 
p 

n(l0%) n(5%) n(10%) n(5%) 

2 157 330 157 330 
3 201 414 177 370 
4 248 508 205 420 
5 295 605 228 470 
6 342 576 255 530 
8 440 896 315 640 

10 540 1100 370 760 

totically with the number of branches p, and 
r. of random distribution is always larger than 
that of uniform distribution of identical p. 
Table I indicates that the number of bonds 
required for (<S 2)o,av/nl2)=-<S2)0,a,/n/2 to ap­
proach to within 10 and 5 % of ( <S2)o,av/nl2)= 
is always larger for uniform distribution than 
for random distribution, and that the number 
of these increases with an increasing number of 
branches p. Figure 6 represents each term of 
eq 16 as functions of the degree of polymeriza­
tion for p=3. The 1st term in braces of eq 16 
is represented by A1 , and the 2nd and 3rd terms 
are by A 2 • The 4 and 5th terms are, respectively, 
represented by B1 and B2 • The term for i=k 
in the 6th term are represented by CkH· The 
terms Bi, B2 , C5, and C6 have a large influence 
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1,0 

--------,/,,..---------
/ 

I 
I 

0-0 

-1-00 
50 100 150 200 

n 

Figure 6. Each term of eq 16 calculated for p=3 
as functions of the degree of polymerization. The 
1st term within the braces of eq 16 is represented 
by Ai, and the 2nd and 3rd terms by A2. The 
4th and 5th, terms are, respectively, represented by 
B1 and B2. The terms for i=k in the 6th term 
are represented by Ck+4, The broken line indicates 
<S 2)o,av/nl2• 

on <S2)o,av/nl2 at n < 20, but converge very rapidly 
to O with increasing n. The term A 2 converges 
slowly. The effect of this term cannot be neglected 
for a large value of n. 

Branching Factor 
Zimm and Stockmayer,1 and Kurata and 

Fukatsu2 showed that the branching factor g of 
star-like chains whose branch lengths distribute 
uniformly and randomly is dependent on the 
numbers of branches p. In this work Figures 
7-9 show that the branching factor of star-like 
chain dependents not only on the number of 
branches p, but also the degree of polymeriza­
tion n. In the case of random distribution, 
the value of g increases monotonously to the 
asymptotic limit, i.e., Y=, while, in the case of 
uniform distribution, the value of g decreases 
with n, and passes through a minimum, i.e., 
Ymin, and increases with n to the value of Y=· 
In the case of uniform distribution for p=3, 
the value of g reaches a minimum value Ymin = 
0.685 when n= 15; the value of Ymin decreases 
with p, that is, Ymin =0.499 when n= 16 for p=4, 
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and Ymin=0.163 when n=30 for p=lO. The 
value of g converges more rapidly to Y= with 
increasing n than (S2)o,av/nl2 in both cases of 
uniform and random distributions. Table II 
shows that the number of bonds required for 
Y=-g to approach to within 10 and 5 % of Y= 
is always larger for uniform distribution than 
for random distribution, and that the number 
of these increases with an increasing number of 
branches p. 

From the results mentioned above, the radius 
of the gyration ratio (S2)o,av/n/2 and the branch­
ing factor g depend not only on the number of 
branches p but also on the degree of polymeri­
zation n. These two parameters are important 
factors for the characterization of star-like poly­
peptides as a model of globular proteins. 

Tonelli12 has calculated the value of g for the 
particular star-like and comb-like polyethylenes 
whose subchain length is specified. In the case 
of a 3 branched star-like chain whose subchain 
lengths nk are 25, 50, and 100, Tonelli. obtained 
the values of 0.737, 0.769, and 0.776 for g, 

0-8 

0-6 

CJ) 

0-4 

0-2 

0 50 100 

n 

3 

4 

5 

6 

8 

10 

150 200 

Figure 7. The branching factor g plotted against 
the degree of polymerization n for star-like poly­
peptides having uniform distribution of the subchain 
length. The numeral on each curve indicates the 
number of branches. 
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0-6 
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0-2 
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n 

Figure 8. The branching factor g plotted against 
the degree of polymerization n for star-like poly­
peptides having random distribution of the subchain 
length. The numeral on each curve indicates the 
number of branches. 

CJ) 

0-0 L----'---'-----'------' 

2 4 6 8 10 

p 

Figure 9. The branching factor g plotted against 
the number of branches p for star-like polypeptides 
having random distribution of subchain length 
(solid lines), and having uniform distribution of 
the subchain length (broken lines). The numeral 
on each curve indicates the degree of polymeri­
zation. 
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respectively. These results are slightly larger 
than our results 0.735, 0.756, and 0.767. In the 
case of a 4 branched star-like chain, his results 
are g=0.568, 0.615 and 0.608, for n1c=25, 50, 
and 100. These results are slightly smaller than 
our results 0.571 and 0.611 for nk=25 and 100, 
and slightly larger than our result 0.597 for 
nk=50. Though his configuration partition func­
tion was formulated incorrectly and the polymers 
used as the model were different, the difference 
between the two value of g is smaller than that 
between goo and g for the corresponding n. 

Recently, Mattice and his coworker13 - 15 have 
calculated values of g for the 3 and 4 branched 
star-like polyethylenes whose subchain lengths 
are uniformly distributed. Their value for Umin 

2 4 6 8 10 

p 

Figure 10. The ratio g to goo plotted against the 
number of branches p for star-like polypeptides 
having random distribution of subchain length 
(solid lines), and having uniform distribution of 
the subchain length (broken lines). The numeral 
on each curve indicates the degree of polymeri-
zation. 

Table II. Summary of the number of bonds re­
quired for goo-g to be within IO and 5% 

of goo for star-like polypeptides 

Uniform Random 
p 

n(I096) n(55'6) n(IO%) n(5%) 

3 33 84 8 34 
4 84 180 37 87 
5 135 280 65 142 
6 186 378 93 249 
8 280 576 150 315 

IO 380 770 208 430 
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Table III. Summary of the results on g for star­
like chains whose subchain lengths distribute 

uniformly 

p n(gmin)a Ymin n(15'6)b 

3 15(15) 0 0.685(0.659) 432( 650) 
4 16 (16) 0 .499 (0 .480) 904(1200) 
5 20 0.383 1390 
6 24 0.308 1878 
8 24 0.216 2500< 

IO 30 0.163 2500< 

• Number of bonds at which g attains the minimum 
value gmin• 

b Number of bonds required for goo-g to be within 
1% of goo. 

0 Numerical values in parentheses are Mattice's 
results obtained with u=0.54, ¢=1, and w=0.088 
for the 3 and 4 branched star-like polyethylenes. 

was slightly smaller than our results, but the 
number of bonds for Umin was identical with 
our results. The number of bonds required for 
goo-g within 1% of goo, which they have ob­
tained, are larger than our results. That is, the 
convergence of the g value to the limiting value 
goo is slower than that for star-like polyethylenes, 
but the difference between their results and ours 
is very small. 

Computations were carried out by the FACOM 
230-75 computer at the Kyoto University Com­
putation Center. 

APPENDIX 

Modification of the Lagrange's Theorem 
For the star-like chain as shown in Figure 1, 

if each atom is equal in mass, the square radius 
of gyration S2 is represented by eq 1. Let the 
vector from the branching point 0 to the i-th 
atom be r 0;, and then 

(Al) 

From eq 1 and Al we obtain the following 
relation 

The definition of S; leads to 

p "'k 

I; I; S;+S0 =0 (A3) 
k=li=l 
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By substituting eq Al into A3, we obtain the 
following equation. 

1 p '11,k 

So=- -- I: I: r0; (A4) 
n+l k=li=l 

Combination of eq A2 with A4 results in 

1 P nk ni. 

1 2 I: I: I: Yo;roj 
(n+ ) k=1 i=l i=l 

2 '11,k '11,h 

-~( l)2 I: I: I: I: ro;r0 j (A5) 
n+ 1;&;k<h;;i;p i=l i=l 

Finally substituting the cosine rule 

ro;roj=½(rt +r~i+ rL) 

into eq A5, eq 2 is obtained. 
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