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ABSTRACT: The asymmetry of the dielectric loss curve observed in vinyl-type 
polymer solutions is investigated by means of the Monte Carlo method. The loss curve 
is calculated from the Fourier transformation of the decay function which is obtained 
by using the Monte Carlo method. The model used for a polymer chain in this paper 
is a chain composed of connected beads lying on the cubic lattice. The following 
three cases are discussed: Case 1 concerns the random coil chain; symmetric loss curve 
is obtained. Case 2 has to do with the non-self-intersecting model; the asymmetric loss 
curve is obtained, but it differs from that derived through experiments in that the ex
perimental curve is more asymmetric, broader on the high frequency side. In Case 3, 
random numbers are used, taking the correlation into account. In this case the loss 
curve obtained is asymmetric and is in fairly good agreement with the experimental 
curve. The results suggest that the most important factor for the appearance of the 
asymmetric loss curve of vinyl-type polymer in dilute solutions is the correlated molec
ular motion of the motional units. 
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Dielectric measurements on dilute solutions 
of polar polymers offer important information 
on chain motion. In particular vinyl-type poly
mers having dipoles attached rigidly and perpen
dicularly to the chain backbone give important 
information, since the change in the direction 
of the dipoles requires a change in the con
formation of the chain backbone. It has been 
reported1 that the dielectric loss curves (c 11 vs. 
log(/)) of vinyl-type polymers are asymmetric, 
being broader on the high frequency side, and 
independent of the molecular weight, tempera
ture, and solvent. The experimental data sug
gest that the asymmetry of the loss curve is the 
characteristic feature in vinyl-type polymers. A 
number of theories2- 7 have been proposed to 
interpret the shape of the loss curve, but none 
of them seems to explain the experimental re
sults in a satisfactory manner. Recently Shore 

and Zwanzig reported8 a model which consists 
of a one-dimensional lattice of objects called 
spins which are free to rotate in a plane perpen
dicular to the common axis. The results they 
obtained indicated that an asymmetric loss curve 
is observed when the dipolar relaxation, reflect
ing a correlated molecular motion, occurs in a 
viscous medium owing to an appropriate strength 
of interactions between moving units in the 
chain. These results are very interesting and 
seem to be consistent with many experimental 
data. However there is a difference between 
the model suggested by them and the real chain, 
because their model is a one dimensional Ising
like model while a real chain motion is a three 
dimensional one. 

* Present Address: Bridgestone Tire Co., Ltd. 
Tire Materials Division. 

The purpose of this paper is to investigate 
the asymmetric loss curve of vinyl-type polymer 
in a dilute solution by the Monte Carlo method. 
Molecular motions of dipolar units are simulated 
by the change of the position of the beads. 
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The application of the Monte Carlo method 
to the investigation of polymers was given for 
the first time by Verdier and co-workers9- 11 in 
terms of the behaviour of the square of end
to-end distances with and without excluded 
volume restrictions. Various problems12 • 13 in 
polymer physics have been studied by means of 
the Monte Carlo method but to our knowledge 
no application of the Monte Carlo method has 
been made to the problem of the dielectric 
relaxation spectrum of polymers. 

Remarkable results obtained indicate that the 
existence of a correlated molecular motion of 
the motional unit is one of the most important 
factors for the appearance of the asymmetry 
in the loss curve. 

It is shown that the decay function is obtained 
by eq 6 in the case of the Monte Carlo method. 
Consequently the loss curve (e'' vs. log(/)) can 
be calculated. The procedure of the simulation 
of the micro-Brownian motion is shown and 
the three cases are discussed. 

METHOD OF CALCULATION 

The dielectric response of materials is sum
marized in terms of dielectric constant e' ( w) and 
the loss factor s" ( w) by the complex dielectric 
constant s*(iw)=e'-is". s*(iw) is given by the 
following macroscopic relation: 14 

s*(iw)-s= ~= dai(t) ( . )dt ( 1 ) ---exp -zwt 
e0 -s= 0 dt 

e0 and s= are the limiting low- and high-frequency 
dielectric constants, respectively. ai(t) is the 
normalized decay function of the polarization 
when a steady macroscopic electric field is re
moved from the materials. Equation 1 shows 
that the normalized complex dielectric constant 
is given by the one-sided Fourier transformation 
of the quantity -dai/dt. It follows from eq 1 
that 

---cos w e'(w)-s=_ ~= dai(t) ( t)dt 
e0 -e= 0 dt 

( 2) 

~= ---sin(wt)dt 
11

( ) ~= dai(t) 
s0 -e= 0 dt 

( 3) 

If the decay function ai(t) can be calculated 
on a certain model, the dielectric loss curve 
(s" vs. log(/)) is given in terms of eq 3. Dipole 
decay function is written as follows. 
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ai(t) <M(O)-M(t)) 
<M(O)-M(O)) 

( 4) 

where M(O) and M(t) is the dipole moment of 
a chain at the times O and t respectively. M 
is the vector sum of the elementary dipoles µi 
of the polymer chain. The angle brackets 
denote the average over the possible conforma
tions of the chain in equilibrium. In that the 
ergodic hypothesis may be possible for a suf
ficiently long time interval T, the average < ... ) 
of eq 4 can be replaced as follows. 

(M(O)-M(t))=_l__ ( M(t')·M(t+t')dt' ( 5) 
T Jo 

In our case the total dipole moment M(t) is 
calculated and recorded at each step which is 
repeated by means of the Monte Carlo method. 
Therefore eq 5 is reduced to 

<M(O)-M(t)) 
1 N 8 -t 

N,-t+l 1~0 M(j)·M(t+j) ( 6) 

where N, is the number of repeated steps of the 
random process. Our choice of the number of 
repeated steps is based on the following .con
sideration. The value of <M(O)-M(t)) calculated 
by eq 6 should be independent of initial con
formation of the chain. One may expect quite 
naturally that the large number of N. removes 
the effect of the initial conformations. Accord
ing to Lowry15 the statistical error represents 
the order of (N./,T112, where r- is the time in 
which the effect of the initial conformations 
vanishes. In order to keep this error within 
596, the number of N. should be chosen as N.= 
400-r. In this paper N. is chosen as 40,000. 

The dipole decay function ai(t) can be obtained 
by eq 4 and 6, as follows. 

{j}(t) 
N,+I 

N.-t+l 

N 8 -t 

I: M(j)-M(t+j) 
j-0 

N, 
( 7) 

I: M(j). M(j) 
j=O 

Following all this, the loss curve (s" vs. log(/)) 
can be obtained. It follows from eq 3 that 

e''(w) = ~= _j_l N,+l . )f M(j)·M(t+j)] 

e -·= dtl N -t+l N, 
0 0 L • j~O M(j)-M(j) 

xsin(wt)dt (8) 
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PROCEDURE FOR SIMULATION 

The model for a polymer chain used in this 

paper is a chain of connected beads lying on 

the lattice points of a cubic lattice, with the 
connections between adjacent beads lying along 

cube edges. The micro-Brownian motion of the 
polymers in dilute solution is simulated by the 
Monte Carlo method, using this cubic lattice 

model as following procedure. 
First, the initial conformation of the chain is 

determined by the random numbers. In this 

case, the random numbers one to six are gen
erated, corresponding to the unit vectors of the 
cubic lattice as illustrated in Figure 1. As the 

selection of the position for the first bead may 

be arbitrary, we made it the origin. The posi
tion for the second bead is determined by a 

random number chosen within the range from 
one to six, and the position of the third bead 

z 

y 

X 

Figure 1. Direction of the unit vectors: the ran
dom numbers from one to six correspond to the 
directions of the unit vectors illustrated by arrows. 

z 

X X 

z 

is determined by another random number within 

this range. This procedure is repeated Nth times 

where N is the total number of beads. 
Vinyl-type polymers have the dipoles attached 

rigidly and perpendicular to the chain backbone. 

The arrangement of dipoles is determined by 
these random numbers. In this case the random 

numbers one to four are generated and corre
spond to the directions perpendicular to the 

bond of the .chain as illustrated in Figure 2. 

This procedure for the determination of the 

dipole arrangement is performed for each bond. 
In Figure 3, one example of initial conformation 

is shown. 
Next, we assume that the micro-Brownian 

motion of the chain can be simulated by the 

transition of the position of the randomly 

selected bead, and by the reorientation of the 

dipoles. The transition of the position of the 
bead is assumed to obey the following rule: if 

the nth bead is selected, the position of nth bead 
R,. is changed to a new position R,.1 as shown 

by the following: 

R,.'=Rn-i+Rn+i-Rn (2-:;.n-:;.N-l) 

Rn'=Rn+a or Rn'=Rn-a (n=I, N) 

where a is the unit vector of the lattice. 

For example if the bond R,.+ 1-Rn is perpen
dicular to the bond Rn-Rn-i, the nth bead 

jumps to the diagonally opposite corner of the 
square determined by these bonds in three di

mensional space. The orientation of the dipole 
altered along with the transition of the back
bone chain, is determined by the random num
bers one to four. These random numbers are 

z 

y y 

a b C 

Figure 2. Directions of dipoles: the random numbers one to four correspond 
to the directions perpendicular to the backbone chain illustrated by arrows: 
(a) the bond is parallel to x-axis; (b) the bond is parallel to y-axis; (c) the 
bond is parallel to z-axis. 
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z 

y 

Figure 3. Initial conformation of chain: the bond 
vectors are determined successively by the random 
numbers, 3, 2, 6, 1, ... ; the directions of the di
poles are determined successively by the random 
numbers, 2, 2, 2, 4, .... 

generated each time the transition of the back
bone chain occurs. For example, as illustrated 
in Figure 4, when the 6th bead is selected, the 
bead jumps to a new position according to the 
above, and successively the orientation of the 
two dipoles which attach to the 5th bond 
and the 6th bond are altered by the random 
numbers 4 and 4, respectively. This procedure 
is repeated 40,000 times as stated above. 

These three cases, in terms of the transition 
of the position of the bead, are treated in this 
paper. In all cases the number of the beads 
in chain is chosen as 50. In Case 1 the bonds 
of the chain are allowed to intersect with them
selves, so that Case 1 corresponds to the random 
coil chain. In Case 2 no bonds are allowed to 
intersect with themselves, so this case corre
sponds to a chain with excluded volume, and 
we denote this case as a non-self-intersecting 
one. In Case 1 and Case 2, the probability of 
selection of the bead number for the transition 
is equivalent to that among all beads. On the 
other hand, in Case 3, the random numbers 
which have the Gaussian distribution are gen
erated for the successive selection of the bead 
number, so the probability of selecting the bead 
for the transition is not uniform in the chain. 
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Figure 4. Change of the conformation of the 
chain. 

For example if the 6th bead is selected initialy, 
the probability of selecting the 5th bead or the 
7th bead near the 6th bead is larger than the 
probability that the 13th bead far from the 6th 
bead will be selected for the successive events. 
Consequently if the 8th bead is selected, the 
probability of selecting the bead near the 8th 
bead is larger. Differing from Case 1 and Case 
2, in Case 3 some correlation of the behavior 
of the transition of the bead is taken into con
sideration. The magnitude of the correlation 
depends on the dispersion constant a of the 
Gaussian distribution. In Case 3 both instances 
of the random coil chain and of the non
self-intersecting are treated. 

RESULTS AND DISCUSSION 

The dielectric loss curve obtained in Case I 
is symmetric. Only the effect of connectivity 
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of polymer chain is taken into consideration 
since this case corresponds to the simulation of 
random coil chains. The result in Case 1 is 
quite different from that of the two dimensional 
case.16 In the two dimensional case the asym
metric loss curve is obtained both in the random 
coil case and in the non-self-intersecting case. 
This result implies that only if a polymer has 
the dipoles attached rigidly and perpendicular 
to the chain backbone, is the asymmetric loss 
curve in all cases obtained. But the result in 
Case 1 in terms of the three dimensional Monte 
Carlo method suggests that the asymmetry of 
the curve of vinyl-type polymer is not subject 
only to the arrangement of its dipoles. The 
loss curve obtained in Case 2 is asymmetric to 
a small extent but this is not in agreement with 
the experimental loss curve of vinyl-type poly
mer in dilute solutions; the experimental curve 
is more asymmetric, and broader on the high 
frequency side. This shows that the effect of 
the excluded volume contributes to the asym
metry of the loss curve, but that the asymmetry 
of the experimental curve cannot be interpreted 
only by the effect of excluded volume. In the 

1.0 

0.8 

,J 0.6 

0,4 

-2 -1 0 

log(f/fm) 

Figure 5. Dielectric loss curve: (C) is the cal
culated loss curve obtained on non-self-intersecting 
with a=N/3 in Case 3; (D) is the Debye's case in 
which the loss curve is symmetric; (E) is the 
experimental loss curve of vinyl-type polymer in 
dilute solution. 
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two dimensional case the effect of excluded 
volume shows a negative contribution to the 
asymmetry. Hilhorst and Deutch have re
ported17 recently that the effect of excluded 
volume on the kinetics of polymer chains in a 
lattice model imposes certain rigorous constraints 
on the chain motion. They also reported that 
the Monte Carlo calculations in the presence 
of excluded volume are subject to the specific 
choice of the kinetics rather than to the intrinsic 
nature of the excluded volume interaction. 
These constraints on the kinetics are more severe 
in the two dimensional case than that in the 
three dimensional case, so that the negative 
contribution to asymmetry in two dimensional 
case is not very reasonable. Verdier and co
workers9-11 have reported that there is a large 
increase in the relaxation times in the presence 
of excluded volume restrictions. It has been 
also reported that the end-to-end distance corre
lation function which decay exponentially in 
the absence of excluded volume becomes strongly 
nonexponential in the presence of excluded 
volume restrictions. However in our calculation 
of the dipole-dipole decay function, the two 
behaviors in terms of excluded volume men
tioned above by Verdier are not observed. The 
results in Case 2 are not subject to the specific 
choice of the kinetics, so the effect of excluded 
volume on the kinetics in the lattice model 
seems to show the reasonable effect in this 
work. The loss curve obtained in Case 3 is 
more asymmetric, broader on the high-frequency 
side than that obtained in Case 2. Particularly, 
the loss curve obtained in a non-self-intersecting 
case with the dispersion constant u=N/3 of the 
Gaussian distribution is in fairly good agreement 
with the experimental curve of vinyl-type polymer 
in dilute solution as shown in Figure 5. This re
sult suggests that the correlation of the motional 
unit contributes greatly to the asymmetry of 
the loss curve. 

In this paper we make use of the empirical 
decay function suggeste by Williams18 in order 
to investigate the correspondence between the 
results obtained in the various cases and the 
function. The empirical decay function is re
presented as follows. 

@.=exp ( -(--; Y) ( 9) 
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If .B= 1, r/J. is reduced to the Debye's case in 
which the loss curve is symmetric. It is reported 
that as the value of ,B decreases, the loss curve 
is more asymmetric, broader on the high fre
quency side. We found that the loss curve cal
culated from the empirical decay function agrees 
with the observed loss curve of vinyl-type poly
mer in dilute solution when .S is about 0.55. The 
dipole decay function obtained in various cases 
can be represented approximately by the function 
mentioned above. The values of ,B which are 
estimated by the dipole decay functions are 
listed in Table I. The calculation of .S is carried 
out by the least squares method. As the value 
for a becomes smaller, so does the value for ,B. 
This tendency is observed commonly both in 
the random coil case and in the non-self-inter
secting case. These results show the loss curve 
becomes progressively asymmetric with smaller 
values of a. The correlation of the motional 
unit associated with the dispersion constant a 
seems to be the cause of the asymmetry in loss 
curve. Unfortunately it is difficult to discuss 
the exact relation between the correlation of chain 
motion and the value of a at this stage. There
fore we cannot at the present stage show exactly 
the kind of chain motion correlation contribut
ing to the asymmetry. 

In Table I -r is the relaxation time for the 
dipole decay function. It should be noted that 
it is meaningless to discuss the absolute value 
of relaxation time in this case, because there 
is no unique relation between the time interval 

Table I. Relaxation time -r, and f', calculated 
from the decay function 

Case (J !" p 

Case 1 8.0 1.09 * 

Case 2 9.3 0.92 ** 
N/2 10.4 0.91 
N/3 19.5 0.54 * 
N/5 147 0.34 

Case 3 
N/2 11. 5 0.76 
N/3 18.9 0.59 ** 
N/5 44.1 0.37 

* Random-coil. 
** Non-self-intersecting. 
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in the real world and the number of steps in 
the random process by the Monte Carlo method. 
Furthermore, the variation of relaxation time 
shifts the peak of the loss curve parallel to the 
abscissa and does not depend on the shape of 
loss curve. However it is interesting to study 
the relation between the relative variation of 
relaxation time and the effect of temperature. 
It may be possible to discuss the effect of tem
perature by using the Metropolis-Teller method. 19 

This problem is under study. 

CONCLUSIONS 

Even if a polymer has the dipoles rigidly 
perpendicular to the backbone chain, the di
electric loss curve of the polymer does not 
always show the asymmetric shape. In other 
words the asymmetry of the dielectric loss curve 
is not subject to the arrangement of dipoles, 
but to the other factors, for example, chain 
motion. The effect of excluded volume con
tributes to the asymmetry of the loss curve, but 
its effect is not the important factor. One of 
the most important factors for the appearance 
of the asymmetry of the loss curve is the cor
related molecular motion of the motional units, 
which is simulated in terms of the random 
numbers with the Gaussian distribution in this 
paper. 
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Note added in proof 
A very recent paper (F. Geny and L. Monnerie, 

J. Polym. Sci., Polym. Phys. Ed., 15, 1 (1977)) 
shows that the asymmmetric loss curve observed 
for poly(p-chlorostyrene) in dilute solution is 
explainable by using the autocorrelation func
tion of orientations for the polymeric chain 
derived by Valeur, et al. 20 We are very stimu
lated by their work since it is on the basis of 
the model of conformational jumps in a chain 
described in a tetrahedral lattice. 
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