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ABSTRACT: The theory of anisotropic light scattering developed by Nagai is valid 
for any macromolecular structure. It is applied here to the calculation of polarized 
light scattering from DNA in a completely rigid configuration. This configuration is 
the one adopted by DNA fragment molecules of low molecular weight. The polarized 
light-scattering characteristics of such a rigid configuration are adequately represented 
by the model of an infinitely thin rod with two polarizabilities. The influence of the 
double helical structure of finite thickness is vanishingly small. The rod model is used 
to establish the range of validity of Nagai's approximate formulas. This range is ex
tremely limited; for DNA fragments: 0:s; 10°. It is suggested that the best analysis of 
light-scattering data, whether polarized or unpolarized, is to use the exact formulas of 
the rod model, instead of looking for limiting laws valid either at low or high angles. 
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A general theory of elastic (Rayleigh-Debye) 
light scattering by an isotropic system composed 
of anisotropic units has been recently developed 
by Nagai. 1 • 2 It is useful for the calculation of 
anisotropic light scattering from macromolecules 
in solution. 

The units which are included in polymer chains 
are always anisotropic and their optical proper
ties have to be represented by a polarizability 
tensor having three principal components. Prior 
to Nagai's contribution, several theories were 
developed to describe light scattering from 
polymer chains composed of anisotropic units. 
For example, Utiyama and Kurata3 ' 4 studied 
the random coil, and Horn, et al., 5 ' 6 studied 
the rigid rod (with unequal longitudinal and 
transversal polarizabilities). These theories are 
particular results derived for special models. 
The theory of Nagai is, on the other hand, gen
eral. It does not contain any assumption about 
the distribution of units in the chain and is, 
thus, valid for polymers of any structure. 

Formally, the theory of Nagai is exact. How
ever, it yields formulas that are too complex for 

detailed numerical calculations. To circumvent 
this difficulty and to be able to obtain results 
that could be compared with experiment, Nagai 
expanded the anisotropic part of the scattered 
intensities in powers of the difference between 
incident and scattered wavevectors. 1 The first 
few terms in this expansion are still complex 
but amenable to practical calculations. The 
corresponding results are only approximate be
cause of the neglect of higher order terms. 

Nagai applied this approximate theory to the 
wormlike-chain model, 1 ' 2 and Patterson to the 
case of realistic chains of polymethylene. 7 How
ever, as Patterson pointed out in his paper, the 
importance of anisotropic light scattering should 
be largest when " ... the chains are not in a 
random-coil state but adopt a regular repeating 
conformation such as a helix ... ". 7 The case 
of the DNA molecule is, then, a typical example 
of a macromolecule for which the theory of 
Nagai should be more relevant, because its mo
lecular structure is that of a double helix which 
shows a measurable negative anisotropy. 

In this paper we study the application of 
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Nagai's theory to the light scattered by DNA. 
Only rigid conformations are considered. Em
pirically, this corresponds to short fragment 
molecules of DNA (molecular weights up to 
about 5 X 105). 

Our first point in this paper is to determine 
the range of validity of Nagai's approximate 
equations in the case of the DNA molecule. 
The most direct way for determining this range 
is to compare the theoretical intensities which 
are calculated with the exact and approximate 
equations. For the real structure of DNA this 
is not possible because, as explained above, the 
exact formulas of Nagai are not useful. How
ever, for the simplified model of a rigid rod, 
the exact results are known and have been given 
by Horn, et al. 5 •6 It is, then, possible to es
tablish the range of validity of Nagai's approxi
mate equations for the case of such a model of 
DNA. That is what we discuss first in this paper. 

The rod model is the one usually applied to 
interpret the optical anisotropy of DNA. s-u 
However, the representation of the molecule as 
an infinitely thin rod with two principal polar
izabilities is an idealization of the DNA structure 
which neglects its finite cross-section and its 
helical character. 

Our second point of discussion in this paper 
is to determine what is the importance of the 
double helical structure of DNA for its aniso
tropic light scattering. This can be studied 
thanks to the theory of Nagai, which is valid 
for any macromolecular configuration. As a 
representation of the real structure of DNA we 
use here a double helical model recently propos
ed by us for the study of X-ray diagrams and 
hydrodynamic properties. 12 By using Nagai's 
approximate equations we calculate the light
scattering behavior of such a double helical 
model and compare the corresponding results 
with the ones obtained for the idealized rod of 
zero thickness. 

MODELS FOR DNA 

In our double helical model12 the scattering 
units are placed along a double helix of radius 
A and pitch 34 A. There are 20 units per turn 
so that a one to one correspondence exists be
tween chain units and nucleotides of the DNA 

34 

molecule. We arbitrarily choose the axis of the 
double helix as the z-axis of a fixed cartesian 
frame of reference. The coordinates of any 
scattering unit, i, referred to such a frame, are 
given by12 : 

X;=A cos (t;+w) ( 1 ) 

y;=A sin (ti+w) ( 2) 

Zi=(34/2ir)t; ( 3) 

where 

t;=0.2ir int {(i-1)/2} ( 4) 

and int ( ) means integer part. In one of the 
two helices w=O, while in the other w=ir. 

We represent the anisotropy of the units by 
means of three different principal polarizabilities, 
a 1 , a2 , and a 3 , having the following directions: 
a 1 is tangent to the helix and is intended to 
represent the polarizability along the direction 
defined by the sugar-phosphate sequence; a2 is 
perpendicular to the helical axis and it should 
represent the intense polarizability of the bases13; 

a 3 is perpendicular to the plane defined by a 1 

and a 2 • Simple geometric relationships yield 
for unit i the following polarizability tensor, 
r;, expressed in the frame of reference fixed to 
the helix: 

C'·' , ''')C' 
0 

I.) r;= C1C S -CzC 0 ll'.2 

Cz 0 C1 0 0 

C'·' 
c 1c ~i X C s ( 5) 

C2S -C2C C1 

where the symbols s, c, Ci, and c2 , stand for 

( 6) 

The more simple model of a rigid rod, calcu
lated by Horn, et al., 5 ' 6 has only two principal 
values of the polarizability: one along the rod 
direction, a 11 , and another (degenerate) perpen
dicular to it, a_J_. The anisotropy can be char
acterized in this model by means of a parameter 
a, defined as 
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a au-a.L 
2a.L +au 

( 7) 

Different experimental studies of polarized 
light scattering5- 9 and of flow birefringence14 •15 

yield for DNA values of a in between -0.10 
and -0.15. 

It is easy to establish a correspondence be
tween the double helical model and the rod 
model. When the polarizability tensors of the 
units composing the double helical model are 
averaged over an integer number of turns, the 
resulting tensor is diagonal and has the same 
value for the two polarizabilities perpendicular 
to the z-axis. This is equivalent to an aniso
tropic rod having principal components of the 
polarizability, au' and a.t', related to a 1 , a 2 , and 
aa, by 

a11'=c22a 1 +c1 2a 3 (8) 

a.L' =(c/a1 +a2 +c;a3)/2 ( 9) 

LIGHT-SCATTERING INTENSITIES 

According to Nagai's theory,1 the Rayleigh 
ratio, R, for different states of polarization (V = 
vertical, H=horizontal), is given by 

Rvv/KcM=(Nrr2{f2-fsh2+ · · · +(Nr)2P(O)} (10) 

RvH/KcM=(Nrr2UJ2-f4h 2-f5h2 cos o+ ... } (11) 

RHH/KcM=(Nr)-2{¾f2-fsh2-f1h2 cos o+ • • • 

+[-¼f2-fsh2+ · · · +(N7)2P(O)] cos2 O} 

(12) 

The first letter in the subscript of R denotes the 
polarization of the incident light and the second 
letter the polarization of the scattered light. h 
is a function of the scattering angle, O, and of 
the wavelength of the light, A: 

h= 4ir sin!_ 
A 2 

( 13) 

In eq 10-12, the anisotropic contribution to R 
is considered up to terms of order h2 • N is the 
number of scattering units, and r the mean po
larizability of any unit: 

i=¼Trrii (14) 

K, c, and M, have their usual meanings of 
optical constant, concentration, and molecular 
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weight, respectively. 
/2, Is, ... , / 7, are quantities independent of 

angle and defined in eq 55-61 of ref 1. They 
can be written in a more compact way as follows: 

(15) 

½fs, /1, fs=(Nr)\x1 V1 +x2V2+xs Vs)/210 (16) 

f4,fs,fs=(Nr)2(x4V2+x5 Vs)/210 (17) 

where 

(18) 

(E=unit tensor of rank 3). 'Xi, x 2 , ••• , x 5 , are 
numerical coefficients, which have different value 
for each /; they are shown explicitly in the Ap
pendix. Vi, V2, Vs, are quantities which repre
sent the combined influence of the geometry of 
the chain and of the anisotropy of its units. 
They are given by 

(19) 

(20) 

(21) 

where rii means the vector distance (column 
vector) between units i and j, and the super
script T denotes transpose (row vector). These 
V's are closely related to what Patterson calls 
the invariants (Q) in his application of Nagai's 
theory7 (actually, (N7)2V1 =(02)+(0s), (N7)2V2= 
(Q4), and (Nr)2 Vs=(Q5)). 

P(O), in eq IO and 12, is the form factor for 
the macromolecule, which is given by 

P(O)=~ f 2: sin hrii 
N i=l J=1 hrii 

(22) 

and constitutes the isotropic contribution to R. 
Since we consider a rigid structure for DNA, 
no configurational average of eq 22 is required. 

We first study in this paper the range of va
lidity of the above equations for R. To this 
end, we apply them to the model of a rigid rod 
of vanishing cross-section. The exact expressions 
of R for this model are known and have been 
given by Horn, et al. 5 ' 6 (eq 1-3 in ref 5). In 
these author's notation, v. corresponds to our 
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Rvv/KcM, i3 has the same meaning as here, and 
x=hL/2, where L is the total length of the rod. 
If the spacing between scattering units along the 
rod is small compared to its total length, L, 
then Nagai's theory yields for the rod model: 

(Nf)-2/ 2=4/32/5 (23) 

V1=L2o/3 (24) 

V2=L2o2/2 

Va=L202/3 

(25) 

(26) 

We use eq 10-12, 15-17, 19-21, and 23-26, 

and take the result of P(0): 

P((})= 2 Si (hL) 4 sin2 (hL/2) (27) 
hL (hL) 2 

(si(x)=~:r-1 sintdt), to evaluate the R's ac

cording to Nagai's theory for the rigid rod. We 
then compare our results with the ones obtained 
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Figure 1. Rayleigh ratios for polarized light scat
tering from a rigid rod, as a function of the an
gular variable, h, and rod length, L, for different 
values of the anisotropy, ii: --, exact results 
calculated according to Horn, et a[.s.s; ----, ap
proximate results calculated according to Nagai.1 
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using the exact formulas of Horn, et al. 5 • 6 

This comparison is show on Figure I for Rvv· 
It is represented vs. hL for different values of 
the anisotropy parameter, /3. The exact results 
are drawn as continuous lines and the approxi
mate ones, from Nagai's theory, as discontinuous 
lines. The same comparison for RvH and RHH 
is not so easily drawn because they depend, not 
only on hL, but also on cos(} (see eq 11 and 12). 
However, the conclusions that are obtained re
garding the angular range for which the approxi
mate formulas are valid are the same as for Rvv, 
so that Figure 1 serves as a good example of the 
three polarized components. 

As a second point in this paper, we study the 
influence of the finite, helical cross-section of 
DNA structure on the R values. This we do 
by comparing the scattering behavior of our 
double helical model (described above) with that 
of the infinitely thin rod. For the double helix, 
we calculate / 2 , Vi, V2, and Va, from the polar
izability tensor (eq 5) and cartesian coordinates 
(eq 1-3) of the units. Actually, there is no 
need to calculate the R's in detail, because the 
differences between the rod and the double helix 

Table I. Comparison between the double helical 
model (unprimed symbols) and the rigid rod model 
(primed symbols), as a function of the number of 
scattering units in the macromolecule, N. The 
quantities /2, Vi, Vi, Vs, are defined in eq 15 and 
19-21. They have been calculated with A=8 A, 
a1=90 .A.3, a2=40 .A.3, a3=20 A.a, a11'=20.32 .A.3, al_'= 

64.84 A.a. 

N 
(Nf)-2/s Vi Vi Vs 

(N'r')-2/2' Vi' V2' Vs' 

6 1.271 2.668 21.947 1.280 
10 0.999 1.161 5.076 0.827 
16 1.038 1.198 2.754 1.093 
20 1.000 1.155 1.928 1.089 
26 1.014 1.132 1.663 1.096 
30 1.000 1.115 1.434 1.088 
40 1.000 1.090 1.263 1.075 
50 1.000 1.074 1.182 1.064 
60 1.000 1.062 1.137 1.056 
80 1.000 1.047 1.088 1.044 

100 1.000 1.038 1.064 1.036 
130 1.000 1.029 1.045 1.028 
160 1.000 1.024 1.034 1.023 
200 1.000 1.019 1.025 1.019 
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are already contained in the values of / 2 , V1 , V2, 

and V3 • Hence, it is enough to compare the 
values calculated for those quantities according 
to both model chains. 

The results obtained from this comparison are 
shown on Table I, where the primed symbols 
refer to the rod and the unprimed ones to the 
double helix. The length of the equivalent rod 
is taken equal to the maximum z-value of the 
double helix in this calculation. 

DISCUSSION 

The analysis of the data represented on Figure 
shows that the approximate equations of Nagai 

have a very limited range of validity for the 
rigid rod. For example, for a DNA fragment 
of L=l500A (equivalent to M=3XI05) and a 
value of 8= -0.2, the equation for Rvv is valid 
only in the angular range 0::::; l0°, when A= 
4090 A. This is almost inaccesible to experi
mental determination, with the instruments now 
available. We have to conclude that the ap
proximate equations are not adequate to predict 
the intensities of polarized light scattering of 
macromolecules having a rigid structure which 
can be suitably represented by long anisotropic 
rods, such as is the case with DNA fragments. 
Unfortunately, the exact equations of Nagai, 
which are valid for any angular range (eq 37-39 
of ref I), are too complex to be applied to con
tinuous models and they would spend too much 
computing time if applied to discontinuous 
models, such as our double helical one. 

The relationship between such a double helical 
model and the equivalent rigid rod can be de
duced from the data shown on Table I. We 
see on the Table that for a double helix of A=8 A 
(which is the value obtained by comparison with 
X-ray scattering diagrams12), and principal po
larizabilities 90, 40, and 20 A3, 13 the magnitudes 
which determine the anisotropic scattering for 
the two models converge very fast as N grows. 
For a DNA fragment of L= 1500 A (such as the 
one considered in the preceding paragraph), N= 
884, and the difference between the two models 
is vanishingly small, according to Table I (the 
value of the anisotropy for DNA is even smaller 
than the one used to construct Table I, so that 
the figures tabulated are in excess of the actual 
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ones). 
In addition to this, since the distances char

acteristic of the double helical structure (radius, 
pitch) are much shorter than 2, the influence of 
the cross-section on the isotropic light scattering 
should be very small also. In fact, the differ
ences in P((}) between the rigid rod and the 
double helix are irrelevant, as we have demon
strated elsewhere. 16 

In summary, the technique of polarized light 
scattering is not sensitive to the double-helical 
structure of DNA, at least in the low angle 
region where Nagai's approximate theory holds. 
The cross-sectional structure should make a more 
important contribution to the polarized light 
scattering in the region of high angles where 
the exact equations of Nagai are required. 

The scattering of unpolarized light is a conven
tional technique in polymer characterization. 
Macromolecular parameters are usually obtained 
by analysis of the unpolarized light-scattering 
data according to the method of Zimm. In a 
Zimm plot, the linear extrapolation to zero 
angle implies a power series expansion, up to 
terms of order h2, not only of the anisotropic 
contribution to R, but also of the isotropic one. 
We have already seen that the range of validity 
of such an expansion of the anisotropic part of 
polarized light is extremely limited, in the case 
of rigid DNA. The question remains of how 
good the Zimm plot is for the unpolarized light. 
We tackle now this problem by studying the 
Zimm plot of the rigid rod model. We have 
just seen that, in the low angle region where 
the expanded formulas are expected to hold, the 
configuration of rigid DNA is adequately repre
sented by the rod model. 

The series expansions of Horn, et al. 's equa
tions, up to terms in h2, yield: 

Rvv/KcM=( 5+5
482 ) 

X { l 35+2082 -288 (hL)2 + ... } 
252(5+482) 

(28) 

(29) 

37 



J. G. de la TORRE and A. HORTA 

+(-}. )(20+402 )](hL)2+ ... } 
4irL 5+4il2 

(30) 

If incident and scattered light are both unpo
larized, the corresponding Rayleigh ratio, Ruu, is 

Ruu=Rvv+2RvH+RHH (31) 

We calculated Ruu with the exact equations of 
Horn, et al., and with the expanded ones (eq 
28-30) and compared both results. They are 
shown on Figure 2, plotted in the usual way 
as KcM(I +cos2 0)/Ruu vs. sin2 (0/2). The con
tinuous curves represent the exact results and 
the discontinuous straight lines the linear ex
pansions given by eq 28-30. The results have 
been calculated for a value of L/J. typical of 
DNA fragments (L= 1500 A, J.=4000 .A). 

As we can see, the range for which the initial 
tangents and the curves coincide is extremely 
short and decreases as the anisotropy, il, grows. 
This means that the Zimm plot for this kind of 
macromolecule should deviate considerably from 
linearity. Instead of the Zimm plot, some au
thors17 prefer to determine M and L from the 
asymptotic behavior of P(0), which is propor-

et:: 
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8 
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sin2 (0/2) 

Figure 2. Rayleigh ratios for unpolarized light 
scattering from a rigid rod: --, exact results 
calculated according to Horn, et a/. 5 ,6; ----, linear 
extrapolation of the Zimm-plot type. 
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tional to h. As we have shown elsewhere,16 

this may not be a good procedure because the 
L and }. usually involved yield hL values which 
are not large enough for the asymptotic behavior 
to be reached. For this reason, we believe that 
the determination of M and L for anisotropic 
rigid macromolecules from measurements of P((J) 
should avoid any limiting law, valid either for 
low or high angles. Instead, it will be more 
correct to fit the experimental data to the exact 
theoretical results of the idealized rod model. 

An alternative to the use of integrated inten
sities (P(0)) for the study of anisotropic rigid mac
romolecules are the advances made by Pecora, 18 

Tagami, 19 and Maeda and Saito20 concerning the 
interpretation of the quasi-elastic light scattering 
from rod models. The theories developed by 
these authors relate the translational and rota
tional diffusion coefficients of the rod to the 
spectrum of polarized light scattering. However, 
no experiments on rigid fragments of DNA are 
yet available for the application of these theories, 
as Berne and Pecora21 have pointed out. 
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APPENDIX 

The numerical coefficients appearing in eq 16 
and 17 are as follows: 
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