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ABSTRACT: The non-Gaussian distribution function of the square distance of the 
center of mass from one fixed end of a polymer chain is discussed in detail. The 
characteristic functions of the distribution function with and without interactions are 
represented by the Feynman path integral. 

The path integral is evaluated in closed form exactly for the non-interacting case 
and approximately for the interacting case by the use of a trial path integral. The dis­
tribution function and some statistical quantities are calculated analytically and numeri­
cally in two dimensions. It is shown that the most probable peak of the distribution 
function is pushed out and pulled in by repulsive forces and attractive forces, respectively. 
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The excluded volume effect in polymer sta­
tistics is one of the most difficult unsolved 
problem.1 The distribution function P(R, L) of 
the end-to-end distance R and the mean square 
end-to-end distance <R2) of a linear polymer 
chain with an excluded volume, where L is the 
total length of the chain, has been studied the­
oretically and experimentally from various points 
of view by many investigators. 2- 7 Computer 
experiments (Monte Carlo Methods-to and Exact 
Enumeration Method11- 13) lead to the conclusion 
that the dependence of <R2) on L may be ex­
pressed as <R2)ocL", where the exponent i; has 
the value of 1.2-1.333 in three-dimensional 
space and depends only on the space dimension­
ality and the intra-chain potential range. 

Interesting information concerning the behavior 
of P(R, L) has been given by many studies. 8 •11 

Several authors have given analytic represen­
tations for P(R, L). 2 ' 4 ' 14 Many of these studies 
indicate that the well-known Gaussian nature 
of the distribution is destroyed completely if 
interaction forces are taken into account. The 
important influences of the excluded volume on 
the Gaussian nature appear in two respects; one is 

that the length of a segment changes from the 
original length to the longer renormalized one 
owing to many body interactions between seg­
ments, and the other is that the most probable 
peak of P(R, L) shifts out because each segment 
pushes away from the others faster than in the 
ideal random configuration. 

There are other measurable quantities besides 
P(R, L) and <R2); the mean square radius of 
gyration <S2), the mean square distance of the 
center of mass from one fixed end, which is 
a special case of <S2), and their distribution 
functions. <S2) and the distribution function 
P(S2) of the square radius of gyration have been 
studied over the last several years by many 
workers. 15- 20 This is not unexpected because 
of the vital role that this distribution function 
plays in various aspects of polymer science. 
The problem of determining P(S2) for the linear 
chain has been approached from various points 
of view. Forsman and Hughes17 have formu­
lated the problem in terms of a series of con­
volution integrals in order to investigate the chain 
of a finite length, and have given approximate 
solutions for various ranges of S2• Fixman15 
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and Coriell and Jackson18 have obtained the 
Fourier (Laplace) transform of the distribution 
function P(S2 ) and used different mathematical 
techniques to give approximate solutions. 

Later, Fujita and Norisue21 have inverted 
Fixman's integral analytically in terms of Bessel 
functions for low and high values of S2/<S2) 0 

in three-dimensional space (where <S2) 0 is the 
unperturbed mean square radius of gyration). 
Koyama has evaluated it numerically on an 
electronic computer in three-dimensional space. 22 

It seems from these studies that the behavior 
of P(S2) and that of <S2) without interactions 
are known sufficiently. The important result is 
that the distribution function P(S2) is not, in 
contrast to P(R, L), a Gaussian distribution over 
the entire range of S2 • 

Therefore, it would be a very interesting 
problem to investigate the effect of interactions 
on non-Gaussian distribution functions. Such 
studies have not yet been presented, as far as 
the authors know. Though there have been 
some discussions restricted to perturbational 
approaches of the excluded volume for <S2), 

very little work has been reported on the per­
turbed distribution function P(S2). 1 · 23 

In this paper, we have applied the Feymnan 
path integral method to study the effect of intra­
chain interactions on P(S2 ) and the other non­
Gaussian distribution functions. The integration 
in function space (path integral) introduced by 
W . 24 d F 2s h 1ener an eynman as become a very 
powerful tool in many branches of physics. 26 •27 

To simplify the problem, in this paper we have 
discussed the distribution function of the square 
distance of the center of mass from one fixed 
end of a polymer chain, which has essentially 
the same nature as P(S2). 

First, the characteristic function (the Fourier 
transform of the distribution function) is repre­
sented by the path integral. Secondly, the path 
integral is evaluated with some suitable boundary 
conditions. Thirdly, the Fourier transform of 
the characteristic function is performed analyti­
cally and numerically in two-dimensional space. 
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FOUNDATION 

Path Integral Representation of the Characteristic 
Function 
Edwards2 and Freed26 have expressed every 

possible configuration of a single polymer chain 
which has the total length of L as a continuous 
space curve r 1, where rt is the d-dimensional 
position vector of a portion that is the contour 
length of t apart from the origin r0 =0 (t varies 
from O to L). They have given the Gaussian 
probability P[ri] for the particular configuration 
rt which lies between r1+or1 and r1• This is 
written as 

P[r1]or1ocexp [ - :Z [ dti-/ Jar1 ( 1) 

where l is the length of the segment. Hereafter 
d/2! is replaced by A. The particular probability 
that the end-to-end vector is R is given by the 
integration of eq 1 over all paths under the 
conditions that r0 =0 and rL=R. In this case, 
the distribution function P(R, L) is written in 
the form: 

P(R, L)oc \TL_=R §rexp (-A \L dtr/) ( 2) 
Jr0-o Jo 

The partition function Z(L) is also given by 

( 3 ) 

( 4) 

When there are interactions between segments 
which have the form of V(lr1-r.l), we must add 
an extra term of 

to the exponential argument in eq 4. Thus, 
eq 4 becomes 

Z(L)ocl ddR \rL_=R §rexp[-A \L dti-/ 
J Jr0-o Jo 

-B H: dtdsV(lrt-r.l)] ( 6) 

Further, if we want to calculate the distri­
bution function P(S2 ) of the square radius of 
gyration S2 or other statistical quantities, we 
must take into account other suitable conditions 
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when we integrate eq 6 over all paths, as first 
shown by Fixman. As an example, the square 
radius of gyration is given by 

( 7) 

Taking into account the above condition, we 
have 

for the distribution function P(S2), where B= 
1/212• Introducing characteristic functions K(R, 
L; r;) and K(L; r;), we may rewrite eq. 8 in the 
form 

with 

and 

K(R, L; r;)=\'L=R 9/rexp [-A \L dtrt" 
)r0=o Jo 
+ ir; 2 \IL dtds(r1-r,)2 

2L ))o 

-BB: dtdsV(lr1-r,!)] (10) 

K(L;r;)=~ddRK(R,L;r;) (11) 

If the interaction term of V(Jr1-r,J) does not 
exist, K(L; r;) can be evaluated directly without 
the calculation of K(R, L; r;) as shown by Fixman15 

and Coriell and Jackson. 18 The characteristic 
function K(R, L; r;) can also be calculated exactly 
with somewhat difficult procedures, but essentially 
the same procedures which will be mentioned 
in a later section. 28- 30 •38 ' 39 But we can make some 
simplifications without loss of generality, that 
is, we neglect the cross term of r1 -r, in eq 10 
and 1 l. The path integral representations de­
fined in such a way are equivalent to those for 
the characteristic function of the distribution 
function of the square distance of the center of 
mass from one fixed end of a polymer chain. 
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To distinguish these from eq 10 and 11, we 
denote these by adding the subscript argument 
G to give 

Ka(R, L; r;)=\'L=R 9/rexp [-A IL dtr/ 
Jr0=o Jo 
+!!L \L dtrt" 

L )o 

-BB: dtdsV(lr1-r,J)] (12) 

and 

The above expressions are those we will consider 
in a later section. 

CALCULATIONS 

Calculation of the Path Integral: Ideal Case 
If the interaction term of V(Jrt-r,J) does not 

exist, that is, in the case of the ideal chain, 
eq 12 and 13 are the path integral represen­
tations for the particle bound to the complex 
harmonic potential. This is an exactly soluble 
problem. We next have two formulas in d­
dimensional space (see Appendix 1): 

Ka 0(R, L; r;)=(xjsin x)d 12 exp [-( A:")x cot x] 

(14) 
and 

Ka 0(L; r;)=(l/cos x)d 12 (15) 

where x is defined by the equation 

x 2=ir;L/A (16) 

Here, we can consider the following three 
cases: 1) the linear chain with the end-to-end 
vector R fixed, 2) the ring chain given by R=O 
in eq 14, and 3) the linear random flight chain 
which is given from eq 15. For all cases, the 
moments <S2) can be calculated by the method 
of cumulants. The calculations are very easy, 
so we will not reproduce them here. 

Now, we will evaluate the distribution function 
Pa0(S2 ) by performing the Fourier transform of 
the characteristic function analytically. Case 1) 
is too complicated for us to be able to carry 
out the Fourier transform analytically. Case 2) 
reduces to the famous Fixman's result15 and has 
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been discussed by many investigators. Therefore, 
we consider case 3) by the use of a saddle point 
method and a contour integral. 

From eq 9 and 15, we have 

pGo(S2)= [+= d2r;e-;~s2KGo(L; r;) 
J-oo 'Ir 

+= dr;( 1 )d/2 2 = - -- exp (-df;x /4) 
-= 2ir COS X 

= _!}_ exp [ -g(r;)] ~
+= d 

-= 2ir 
(17) 

with 

g(r;)=df;x2/4+(d/2) In cos x (18) 

where f;=4AS 2/dL=2S 2/lL. 
If the saddle point x*(r;*) is determined for 

various ranges of f;, PG0(S2) is given by the 
following equation: 

PG (S )= - exp [-g(r; )-g (r; )(r;-r; ) 0 2 += dr; * If * * 2/2] 
-= 2ir 

=[2irg"(r;*)r112 exp [-g(r;*)] (19) 

We can consider three cases: they are f;=:: 1, f;» 
l, and f; « 1 for d-dimensional space. 

J. Near the Mean f;= I. The saddle point 
x*(r;*) is the root of the following equation: 

f;x-tan x=O (20) 

Put f;=l+s, and suppose s« 1. Then x* will 
be small. Eq 20 gives 

r;*=-3icA/L; x* 2=3s (21) 

Thus for f; > l, the saddle point is on the nega­
tive imaginary axis of the complex r; plane, and 
on the positive imaginary axis for f; < 1. By 
taking the contour passing through r;* parallel 
to the real axis, eq 19 becomes 

(S2)PG0(S2)=(d/4)(6/ird)112 exp [-3d(l-f;)2/8] 

(22) 

where (S2)=lL/2. 
2. Large S2; f; » 1. If f; is large, the root of 

eq 20 will occur near x=ir/2. In eq 20, put 
x=ir/2-lJ and suppose lJ to be small; then eq 
20 gives a saddle point at 

o=2/(irt;) (23) 

Since the contour can be deformed to pass 
through the saddle point without crossing any 
singular point or branch line, eq 19 gives 
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(S2)P G 0(S2) = (d/2)( l/ird)1':;.(2/irf;)-d12C 1 

xexp [-dir2f;/16] (24) 

3. Small S2; 0<!;« I. For f;« l, the saddle 
point is far out on the positive imaginary axis 
of the complex r; plane. Equation 20 yields as 
the saddle point 

(25) 

Therefore, the result of the steepest descent 
integration is, from eq 19 and 25, 

(S2)PG0(S2)=2d12(irdr1'2(d/2)C312 exp (-d/4!;) 

(26) 
for small f;. 

We will next derive rigorous expressions for 
(S2)P0 °(S2) valid for large f; and small f; in 
two-dimensional space by the use of the contour 
integration used by Fujita and Norisue21 and 
Sanchez and Frankenberg. 32 We may rewrite 
eq 17 in the following form in two-dimensional 
space (d=2): 

(S2)P0 °(S2)=-1-. \ dx(x/cos x) exp (-f;x2/2) 
2m Jr 

( 17') 

where I' is the path of integration as shown in 
Fig. 4 in Appendix 2. The asymptotic form of 
(S2)P0 °(S2) valid for small S 2 is given by the 
method of Fujita and Norisue. In their treat­
ment, the original path I' is deformed to 
U(S1K 1D 1D 2K 2S2) as is illustrated in Figure 4. 
This leads immediately to the following asymp­
totic form for d=2; 

(S2)Po0(S2)= I: (-lt(2n+ 1)(2/ir)112C 312 
n=O 

x exp [ -(2n + 1)2 /2!;] (27) 

The asymptotic form of (S2)P0 °(S2) valid for 
large S2 is given by the residue theorem. 32 In 
this case, we add the quarter circle of radius 
R' to the path I' as shown in Figure 4. In the 
region enclosed by I'1I'2S, the integrand in eq 
17' has poles at x=(n+½)ir(n=O, I, 2, · · ·) along 
the positive real axis. By the residue theorem, 
this leads to 

(S2)P0 °(S2)= I: (n+½)ir(- It 
n=O 

xexp [-(n+½/ir2f;/2] (28) 

The leading term of eq 27 agrees with eq 26, 
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which was derived by the method of steepest 
descent. But the leading term of eq 28 agrees 
with eq 24 only approximately. 

Calculation of the Path Integral: Non Ideal Case 
When the interaction term of V(lrt-r.l) exists 

in eq 12 and 13, these path integrals cannot 
be evaluated exactly; however, several mathe­
matical devices have been employed to calculate 
them. 2 •26 •27 We will apply one of them, which 
was originally proposed by Feynman in his 
theory of polarons. 31 We define a true action 
S by the equation, 

Ka(R, L; r;)= [:=:R 9Jr exp (-S) 

=\rL=R 9Jrexp[-A \L dtr/ 
)r0=o Jo 
+ ir; \L dtr/ 

L )o 

-BB: dtdsV(lrt-r,I)] (29) 

Introducing a trial action S0, we rewrite eq 29 
formally in the form 

Ka(R, L; r;)= 9Jre-1s-s01e-so 

=(e-1s-s01) 9Jre-so (30) 

where <, .. ) is an average by the path integral 

where an average is defined by eq 31, and V(k) 
is given by the equation, 

V(k)=~ I d(lft-fslW(lrt-fsl) exp ik(rt-r.) 
(2ir) j 

(35) 

Here, we rewrite the exponential factor in eq 
34 in the form: 

(exp -ik(f.-rr)) 

=D 9Jf exp (-A~: dtr/ + i [ dtr/ 

+ ik(r0 -rr)) ]/~ 9Jr exp -S0 (36) 

The numerator of the r.h.s. of eq 36 can be 
written in the form: 

I=~ 9Jrexp [ -A [ dtr/ + i [ dtr/ 

(37) 

with 
.ft=i-k-[o(t-a)-o(t-r)] (38) 

We have applied the method of Laplace to 
calculate the path integral I. Since the contri­
bution of path rt to I becomes most dominant 
when ft makes the exponential argument in eq 
37 stationary, we get ft as a solution of the 
following Euler-Lagrange equation: 

with S0, i.e., with 
(39) 

(40) <···)=~ 9Jr ... e-so/~ 9Jfe-s0 (31) 

Here, we make the approximation that 

<exp [ -(S-S0)])::::exp [-<(S-S0))] (32) 

Then, eq 29 can be calculated approximately, 
if an exactly calculable action S0 is being used. 
As a trial action S0, we choose 

S0=A dtrt -- dtrt ~
L • 2 ir; L 2 

o L o 
(33) 

Then, the factor <S-S0) in eq 32 is given by 

(S-S0)=BG~: dtdsV(lrt-r,1)) 

=B H ~: dtdsddkV(k)(exp ik(rt-f,)) 

(34) 
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a 2=-ir;/AL, and /3= 1/2A 

By taking this solution, I is given by 

I=[-roro+rLrL+½ [ dt.ft•rt] 

Now, the solution of eq 39 has the form 

(41) 

rt=Weat+Qe-at+(f3/2a) [ dsf.-e-alHI (42) 

where W and Q are constants determined from 
the boundary condition on rt subjected to fo= 
rL=0. This boundary condition corresponds to 
the case of the ring chain. From the cyclic 
boundary condition and the condition of ft being 
finite in the limit of L---HXJ, we obtain the result: 

ft=(ikf3/2a)[(e-ao -e-ar)e-at -(e-alt-ol _e-alt-rl)] 

(43) 
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under the condition of Re. a> 0 (Real part of 
a is positive). Substituting eq 43 into eq 41, 
we have 

l=exp {-(t3f4a)[2( 1-e-alo-,l)-(e-ao -e-a')2]k2} 

(44) 

Using eq 34-36, 44 and the pseduo-potential 
for V(r), that is, V(r)= Vo(r), we have 

<S-S0)= BVd \\\L dad,ddk 
(2ir) JJJ 0 

X exp {-(p/4a)[2(1-e-alo-,I) 

-(e-aa -e-a')2]k2} (45) 

Performing the integration over kind-dimensional 
space, we have 

<S-S0)= f~2 (4a/pt 12 \IL dad,[2(1-e-alo-,I) 
2 ir J Jo 
X (e-ao -e-a,)2rd12 (46) 

In the limit of L-HXJ, eq 46 can be approxi­
mated as 

<S-S0) 

= 2::~d2!/4a/p)d!2 ~: dy(l-y)[2(1-e-aLy)rd/2 

- BVL2 (a/r.i)d;2 (47) 
- (2ir t/2 I' 

where a must satisfy the condition of Re. a> 0. 
Now, from eq 16 and 40, the following rela­

tion can be derived: 

(48) 

Taking the condition of Re. a> 0 into account, 
we have the following two solutions: 

and 
a=-ix/L for Im. x>0 } 

a=+ix/L for Im.x<0 
(49) 

From these results eq 47 can be written in terms 
of x in the form: 

(50) 

where v=BVL14-d 112/(2irpt 12; (-) corresponds to 
the case of Im. x>0 and (+)to that of Im. x<0. 

As a final expression for the characteristic 
function K0 (0, L; r;) of the ring chain, from eq 
14, 28, and 50, we have 

K0 (0, L; r;)= (x/sin x)d12 exp [ -v(±ixt12] (51) 

2A4 

As seen from eq 51, we cannot calculate the 
Fourier transform of K0 (0, L; r;) analytically ex­
cept for d=2 and d=4. In four-dimensional 
space, we can carry out the same procedure as 
mentioned before. Apparently P0 (S2) does in 
effect behave like the ideal distribution function 
P0 °(S2). The second moments <S2) can be given 
by the method of cumulants as follows: 

<S2)=(¼+v)L/A (52) 

The dependence of <S2) on L is the same as 
for a Gaussian chain. The effect of interactions 
disappears in four-dimensional space in this 
approximation. In addition, since K0 (0, L; r;) is 
nonanalytic with respect to r; except at d=4, 

the mements <S2n) (n is an integer) cannot be 
obtained by the method of cumulants. It is 
required to perform the Fourier transform ex­
plicitly in order to obtain information about 
the moments of the distribution. 

RESULTS 

Fourier Trans/ orm of the Characteristic Function: 
Analytical 
From eq 9 and 51, the distribution function 

P0 (S2) can be written in the form: 

<S2)P0 (S2)=~ I dxx(x/sin x)d 12 
1211r Jr 
X exp [-d.;x2/12-v(±ix)d12] (53) 

where .;=6S2/lL, <S2 )=1L/6, and I' represents 
the path of integration (see Appendix 2). It 
will be impossible to calculate the above integral 
analytically except by using a numerical. calcu­
lation. But fortunately it can be evaluated ex­
actly in two-dimensional space (d=2) by the 
method of the contour integrations employed 
by Fujita and Norisue21 in three-dimensional 
space. Though these calculations are very 
tedious, we have obtained the following two 
asymptotic forms (see Appendix 2): 

<S2)P o(S2) =(6/ir)112[3( 1 +v)2.;-512 -.;-312] 

xexp [-3(1+v)2/2.;] (54) 

for small values of .;, and 

<S2)P0 (S2)=(1/3)ir2e-"2"16 cos (irv) 

+(v/4)(6/ir)112(g-s12 + (3/2)g-s12 

+ (21/8).;-712) exp (-3v 2 /2.;) (55) 
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for large values of f, respectively. These two 
expressions can be found to reduce correctly to 
those for the unperturbed distribution functions 
in two-dimenstional space if v->0 in eq 53. 32 •38 

We can see clearly the effect of the interactions 
on the unperturbed distribution function. 

Fourier Trans/ orm of the Characteristic Function: 
Numerical Ideal Case. 
Equation 171 has been calculated numerically 

for various values of f on an electronic com­
puter. The results are given in Figure 1 and 
Table I. In Figure, I, the distribution function 
(S2)P0 °(S2), which represents that of the square 
distance of the center of mass from one fixed end 
of the linear chain, is plotted against f; in order 
to compare the shape of the distribution of the 
linear cha.in and that of the ring chain, the 
distribution function of the ring chain which is 
given by putting v=O in eq 53 is also plotted 
on the same figure. As seen from this the dis­
tribution function of the linear chain goes to 
zero more slowly than that of the ring chain at 
large values off, but the peak of the distribution 
of the ring chain is farther out than that of the 
linear chain. The latter result is contrary to our 
expectations. 39 

1.0 

0c'.:"0,5 

1.0 

Table I. The numerical results of the integration 
of eq 17' and the comparison with analytical 

results from the leading term of eq 27 
and eq 28 in two dimensions 

<S2>PaO(S2) 

Num. eq 27 eq 28 

0.1 0.1697 0.1700 1.3884 
0.2 0.7321 0.7322 1.2273 
0.3 0.9169 0.9170 1.0848 
0.4 0.9031 0.9034 0.9589 
0.5 0.8291 0.8300 0.8476 
0.6 0.7431 0.7458 0.7492 
0.7 0.6602 0.6667 0.6623 
0.8 0.5847 0.5966 0.5854 
0.9 0.5172 0.5360 0.5174 
1.0 0.4573 0.4839 0.4574 
1.2 0.3573 0.3997 0.3574 
1.4 0.2792 0.3366 0.2792 
1.6 0.2181 0.2833 0.1182 
1.8 0.1704 0.2502 0.1704 
2.0 0.1331 0.2193 0.1332 
2.4 0.0812 0.1736 0.0813 
2.8 0.0496 0.1421 0.0496 
3.4 0.0236 0.1095 0.0236 
4.0 0.0112 0.0880 0.0112 

3,0 

Figure 1. The two dimensional unperturbed distribution functions <S2>P00(~) of a linear 
chain and a ring chain: curve A, linear (~=2S2/lL); curve B, ring (~=6S2/lL). 
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-<I/> 

'--" 
0... .,.__ 

N 
C/) 

0.5 -v 

Figure 2. The two dimensional perturbed distribution functions <S2)Pa([;) of a ring 
chain for various values of v: Curve A, v=-0.1; curve B, v=0.0; curve C, v=0.l; 
curve D, v=0.2. 

1.0 

N 

'--" 
0... ,,.._ 

N 
C/) ...,, 

0.5 

Figure 3. The two-dimensional perturbed distribution functions S 2Pa(S2)(=<S2)[;Pa([;)) 
of a ring chain: Curve A, v= -0.1; curve B, v=0.0; curve C, v=0.1; curve D, v=0.2. 

Non-Ideal Case. mensions (d=2). A positive value of v corre­
sponds to the case of repulsive interactions and 
a negative value of v to that of attractive interac-

Equation 53 has been calculated numerically for 
some values of v as a function of f; in two di-
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Table II. Results of numerical integrations 
of eq 53 in two dimensions 

<S2)Po(S2) 

.; v=0 v=-0.I v=0.l v=0.2 

0.1 0.0 0.0017 0.0 0.0 
0.2 0.1209 0.3915 0.0312 0.0066 
0.3 0.5100 1.0450 0.2194 0.0839 
0.4 0.8342 1.3256 0.4721 0.2419 
0.5 0.9737 1. 3309 0.6486 0.3969 
0.6 0.9754 1.1955 0.7290 0.5037 
0.7 0.9101 1.0292 0.7388 0.5574 
0.8 0.8137 0.8607 0.7065 0.5710 
0.9 0. 7137 0. 7137 0.6535 0.5578 
1.0 0.6162 0.4800 0.5916 0.5290 
1.2 0.4517 0.3922 0.4690 0.4517 
1.4 0.3273 0.2599 0.3637 0.3721 
1.6 0.2363 0.1702 0.2798 0.3016 
1.8 0.1703 0.1093 0.2150 0.2430 
2.0 0.1227 0.0681 0.1655 0.1956 
2.4 0.0636 0.0214 0.0995 0.1281 
2.8 0.0328 0.0007 0.0617 0.0862 
3.4 0.0121 0.0 0.0325 0.0509 
4.0 0.0044 0.0 0.0191 0.0329 

tions, respectively. The results are given in 
Figure 2 and Table II. In addition, S 2P0 (S2 ) is 
plotted as a function of /; in Figure 3. As seen 
from Figure 2 and Figure 3, the most probable 
peak of the distribution is pushed out and 
pulled in by repulsive interactions and attractive 
interactions, respectively. It can be shown that 
this numerical result is in close agreement with 
the analytical results from eq 54 and eq 55 in 
the regions where eq 54 and eq 55 are applicable. 

SUMMARY AND DISCUSSIONS 

We have obtained the closed characteristic 
function of the ring chain with intra-chain in­
teractions on the basis of the first-order pertur­
bation theory. The distribution function derived 
from the Fourier inverse transformation of the 
characteristic function can not be expressed in 
a simple function which covers the whole range 
of S2 • But in two dimensions analytical forms 
which are valid for large values of S 2 and small 
values of S 2 are given by eq 54 and eq 55. 
The complete solutions for arbitrary d (space 
dimensionality) will be given by numerical in­
tegrations of eg 53. 
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Here, we will calculate the second moments 
(S2) of the distribution using eq 54, which is 
applicable for small S 2• Then the second 
moment (S2) is given by the equation: 

(/;)=(6S2//L)= d/;/;P0 (/;) /~ d/;Po(/;) 

oc(l+v)2 (56) 

where v=BVL/(211:[,) and P0 (/;) is given by eq 
54. Therefore, the second moment (S2) is pro­
portional to L(l+2v+v2) in two dimension. This 
fact shows that even though the distribution 
function has a closed form, the second moment 
does not have a closed form. This result is 
based on the approximation of eq 32. In order 
to obtain a closed expression for the moments 
of the distribution, it is necessary that we use 
a trial path integral which contains a variational 
parameter and determine the variational pa­
rameter to give the minimum free energy of 
the chain. 33 ' 84 

Finally, we note that our results obtained in 
this paper can be interpreted in terms of the 
linear chain. For the characteristic function of 
the square radius of gyration for the linear chain, 
KL°(S2), has been derived by Fixman as KL°(S2)= 
(x/sin x)d12; our result agrees with his result if 
we put R=O in eq. 14. On the other hand, 
for the interacting case, nobody has ever derived 
PL(S2), which is the perturbed distribution 
function of S 2 for the linear chain. But the 
behavior of PL(S2) with interactions can be ob­
tained from eq 51, except for the numerical 
factor of the coefficient of v in eq 51. This 
is because the interaction dependence of eq 50 
is free from any boundary conditions. 

In the future, we will consider eq 10 explicitly 
and attempt to use a trial path integral which 
contains a variational parameter. 30 
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APPENDIX 1 

The method of the calculation of the path 
integral for the harmonic oscillator problem is 
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presented in standard papers26 ' 35 ' 36 and textbooks. 37 

Here, we derive the result by comparing eq 12 
and 13 with well-known formulas of the one­

dimensional harmonic oscillator: 

~
YL=R [ i (m ~L , 2 mw2 

~L 2)] .Py exp - - dty1 --- dty1 

Yo=O h 2 O 2 o 

[ mw ] 112 [imwR 2 
] = ----- exp --cos(wL) 

2irih sin (wL) 2h 

(Al) 

[ i (m ~L • 2 mw 2 
~L 2)] .Py exp - - dty1 --- dty1 

Yo=O h 2 0 2 0 

=[cos (wL)r112 (A2) 

where m, w, L, and h are the mass of a particle, 

the frequency of oscillation, time, and Planck 

constant, respectively. Equation A2 is derived 

by the integration of eqAl over R. By compar­
ing eq 12 with eq A 1, we obtain the following 

two equations: 

-im/2h=A; -imw2/2h=ir;/L 

Therefore, we have 

(A3) 

l.h.s. of eq 12 

= (A/irL)1 12[ ,,/ (ir;L/A)/sin ,,/ (inL/ A)]1 12 

xexp [-(AR 2/L)( ,,/ir;L/A) cot ,,/ir;L/A] (A4) 

l.h.s. of eq 13=[cos ,,/(ir;L/A)r112 (AS) 

An extra factor, (A/irL)112, eq A4 can be dropped 

by imposing a normalization condition of the 

form: 

pGO(S2)dS2= 1 (A6) 

on PG0(S2) in the case that the end-to-end vector 

R is fixed. Further, introducing x 2=ir;L/A, we 
have from eq A4 and AS, 

r.h.s. of eq A4=(x/sin x)1 12 exp [- A:2 x cot x] 

(A7) 

r.h.s. of eq A5=(cos x)-112 (A8) 

Since it is easy to extend these one-dimensional 
results to the higher dimensional cases, we can 

obtain eq 14 and 15. 

,<. 
' ' \ 

\~ 

'I -~--->-- /_ _Lj \ , R7 ___ , 
r 
u 
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y• 

Figure 4. The integration paths chosen for derivations of asymptotic expressions of eq 

27 and 28. The path I' is deformed to the path U represented by a dashed line for 
derivations of eq Al9 and 27. The quarter circle S is added to I' for the derivation 
of eq 28. 
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APPENDIX 2 

Asympotic Solution for Small ~- Equation 53 
can be rewritten in two-dimensional space (d=2) 
in the form 

(S2)Pa(S)=-;- I dx(x2/sin x) 
611r )r 
x exp [-~x2/6-v(±ix)] (A9) 

if we take I' as the path of integration in the 
complex x plane, as shown in Figure 4. As 
mentioned before, the sign (±) means that -
is taken when I' is in the upper half plane and 
+ is taken when I' is in the lower half plane. 

Now when is positive, the path I' can be 
deformed into the path U, which is shown in 
Figure 4 by a dashed line. The path U consists 
of two large arcs S1 and S2 of radius R, two 
horizontal lines K1 and K2 from the end point 
of S1 to y* and from y to the end point of S2 
respectively, where y is a pure imaginary pa­
rameter, and two vertical lines D1 and D2 on 
the imaginary axis from y* to O and from O to 
y respectively, as shown in Figure 4. It can 
be shown that the integrals along D1 and D2 
cancel each other and that the integrals along 
S1 and S2 tend to zero as the radius, R is 
increased without limit. Thus eq A9 can be 
reduced to the form: 

S2 s2 1 ( )Pa( )=~.(/1 +I2) 
6ir1 

(AlO) 

where 

/1=\ dx(x2/sinx)exp(-~x2/6-ivx) (All) 
)Kl 

12 = \ dx(x2/sin x) exp (-~x2/6+ivx) (Al2) 
JK2 

We consider / 2 • Along the path K2 , we have 
Je'"I < Je-i"I, so that the expansion 

(sin x)-1= -2iei" £ e2inx (Al3) 
n=O 

holds. Thus / 2 may be written as 

= 
f2=-2i I; Jn (Al4) 

n=O 

where Jn is given by the equation 

f y+= 2 2 
ln= JY dxx exp [ -~x /6+i(2n+ l)x+ivx] 

(Al5) 
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Takingy=3i(2n+l+v)/~, it can be shown that 
Jn is transformed to 

ln=[3(2n+ l+v)g]3 

xexp [-3(2n+ l+v)2/2~] [ dx(x+i)2 

xexp[-3(2n+l+v) 2x2/2fl (Al6) 

Then eq 14 becomes 

l 2=-2i £ [3(2n+ l+v)/~]3 
n=O 

x exp [ -3(2n+ l+v)2/2~] 

X [ dx(x+i)2 exp [-3(2n+ l+v)2x2/2~] 

(Al7) 

In exactly the same way we obtain 

l 1=2i I; [3(2n+l+v)/~]3 
n=O 

x exp [-3(2n+ 1 +v)2/2~] 

x [ dx(x-i)2 exp [-3(2n+ 1 +v)2x2/2~] 

(Al8) 

Adding eq A17 and Al8 and substituting the 
result into eq AlO, we finally have 

(S2)P a(S2)= (6/rr)112 I: [3(2n+ 1 +v)2~-s12 -~-a12] 
n=O 

xexp [-3(2n+l+v)2/2~] (Al9) 

By taking the term n=O only in eq Al9, we 
can obtain eq 54. 

When is negative, the path I' can be de­
formed into the path consisting of a large arc 
of radius R from the point on I' in the lower 
half plane to the point on the negative imaginary 
axis, i.e., point -iR, two vertical lines on the 
imaginary axis from -iR to O and from O to 
iR, and a large arc of radius R from iR to the 
point on I' in the upper half plane. Then, the 
integral along I' is equal to the integral along 
the new path, because the domains enclosed by 
these two paths do not have any singular points 
of the integrand, and the latter integral goes to 
zero since the integrals along the vertical lines 
cancel each other and those along the large arcs 
tend to zero when R---->oo 

Asympotic Solution for Large ~- If we put 
X---->-X, the path I'2 in the lower half plane 
changes into the opposite path I'/ in the upper 
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X 

r; 
Figure 5. The integration paths chosen for the derivation of the asymptotic expression 
of eq A23. 

half plane, as shown in Figure 5. To the paths 
I'1 and I'/ we add two large arcs S and s' of 
radius R and two paths C1 and C2, which go 
along the real axis except near the singular 
points xi and there go away from xi along small 
semicircles above and below respectively; each 
xi is a solution of sin x=O (except x=O), i.e., 
Xj=jrc(j= ± 1, ±2, ±3, ... ). The paths are illus­
trated in Figure 5. Thus, since the function of 
the integrand has only simple poles at x1, the 
integration along C2S' rz' I'1S clockwise is given 
by the residue theorem as follows: 

-2rci }: residue at xi 
j 

-2i _I: dx[x2 sin (vx)/sin x] 
"' {j+l)s-6 

3=0 in+O 

xexp (-gx 2/6)+2' (A20) 

where o is infinitesimal positive and 2' is the 
sum of the contributions from along the semicir­
cles. Similarly, the integration along C1s'rz'r1s 
clockwise, which avoids the poles, is given by 
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0= ~r dx(x2/sin x) exp (-gx2/6+ivx) 

"' ~{j+l)s-6 
-2i ,I: dx[x2 sin (vx)/sin x] 

3=0 Jc+o 

xexp(-gx2/6)+2" (A2l) 

By adding eq A20 and A21, and taking into 
consideration that the contributions of the two 
arcs S and s' and the sum of those of the small 
circles can be neglected when R-+oo and o-+0, 
respectively, we have the following equation: 

<S2)P0 (S2) 

=(1/3) I; (-It+ 1rc 2n2 cos(rcvn) 
n=O 

x exp (-rc2n2g/6) 

"' \ <J+li<-• 

+(1/3rc) l~o t<H dx[x2 sin (vx)/sin x] 

X exp (-gx2/6) (A22) 

For the second sum of j on the r.h.s. of eq 
A22, we can neglect all terms except j=O in 
the limit of g-+oo. Further, expanding x/sin x 
in powers of x and extending the integral region 
[o,rc-o] to [O,oo], we have 

<S2)P0 (S2) 

~(1/3) £ (-It+1rc 2n2 cos (rcvn) 
n=O 

X exp (-rc 2n2g/6) 

+(l/3rc) C dxx[l+(l/6)x2 

+(7 /360)x4] sin (vx) exp (-gx 2/6) (A23) 

By calculating integrals and taking the term 
n= 1 only in eq A 23 we have eq 55. 
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