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ABSTRACT: By solving appropriate diffusion equation we calculate the width of a 
Gaussian polymer chain in one direction and the radius of the circumscribing sphere, 
which is defined as the sphere around the center of mass which includes the whole 
chain and yet makes contact somewhere on the chain. Various quantities defining the 
size of a Gaussian chain are compared. 
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The statistical theory of polymer chains has 
made great progress over the past three decades. 
Theories have been developed, generally based 
on the detailed molecular structures of polymers, 
to construct partition functions of statistical 
mechanics. On the other hand, provided that 
the general statistical properties of polymer 
chains are of primary interest, we can adopt 
another approach, the method of the diffusion 
equation, which is more tractable in some in
stances. For example, the entanglement prob
lems have been treated by Edwards1 ' 2 and also 
by Saito and Chen3 using the diffusion equation. 
Furthermore Edwards 4 ' 5 discussed the excluded 
volume effect and the collapse of a chain by 
the method of Wiener integrals and the self
consistent field approximation, which led to a 
sort of diffusion equation. Saito, et al,,6 de
veloped a statistical theory of stiff chains from 
a diffusion equation derived by a Wiener inte
gral formulation. 

The purpose of the present paper is to give 
other examples of this approach and to calculate 
the spans or widths to a polymer chain. Usually 
the size of a polymer chain is estimated by its 
average end-to-end distance or its radius of gyra
tion around the center of mass. In addition to 
these conventional quantities, Hollingsworth 7 

defined an "average boundary" of a random 
coil chain, which is determined by the average 
distance between the first link and the link 
which is most distant from the first link. We 
here consider the average width of a random 
coil chain along one direction, defined by the 

average minimum distance between the two 
parallel boundary planes which enclose the 
entire chain in between (see Figure !). This 
quantity is calculated by the diffusion equation 
method. We learned recently that almost the 
same approach to this problem had already been 
published by Weidmann, Kuhn, and Kuhn. 8 

Their results are special cases of our present 
calculations; furthermore, our method of sum
mation of series using o function (see Appendix 
A) is different from and more widely applicable 
in various problems than theirs. Then we calcu
late the average minimum radius of a sphere 
around the center of mass which contains the 
whole chain. Finally, various quantities specify
ing the size of a polymer chain are compared. 

WIDTH OF A STATISTICAL CHAIN 
ALONG ONE DIRECTION 

Let W(r, n)dr be the probability that the 
vector from one end to the other of a poly
mer chain of n monomer units lies in the 
volume element dr around the vector r=(x, y, z). 
If the end-to-end distance of a polymer chain 
obeys a Gaussian distribution, the distribution 
function W(r, n) satisfies the following equation, 
provided that the degree of polymerization n is 
regarded as a continuous variable: 

aw =DJ12w 
on ( 1 ) 

where D=b2/6 and b is the statistical bond 
length. This equation tells us that a polymer 
chain can be described in terms of a diffusion 
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L 

Figure 1. The width of a polymer chain along 
one direction. 

Q 

F, 

Figure 2. The boundary condition. 

process when n is regarded as time, as will be 
done below. 

Now consider a pair of parallel planes F 1 and 
F 2 at a distance L1 apart along one direction 
(say the x-direction), as shown in Figure 2. 
The polymer chain, which reaches from the 
right at a point Q on the plane F 1 in the ter
minology of the diffusion process, is assumed 
to go back to the right with probability 1-p 
or to be adsorbed on F 1 with adsorption coef
ficient p. Then the probability flow 11 toward 
F 1 and the flow 12 away from F 1 satisfy the 
following relations: 

where Jc is given by the average length of a 
step in the x-direction: 

A= b cos() sin ()d()=-~
•H b 

o 2 
( 5 ) 

Eliminating 11 and 12 from eq 2-4 we have 
the boundary condition on F 1, 

pJc aw 
---aW=O, a 
ax (1-p)D 

similarly we have on F 2 , 

aw 
--+aW=O 
ax 

( 6) 

( 7) 

For p=l, the chain is completely adsorbed on 
F 1 and F 2, and thus W=O. The chain termi
nates at the degree of polymerization for which 
it touches the boundary. On the other hand, 
for p=O, the chain is completely reflected at 
F 1 and F 2 and thus aw;ax=O at the boundaries. 
The reasonable value of p is 1/2, because the 
boundary planes do not exist in real systems 
and thus the step of the chain always has equal 
probabilities for both + and - directions. The 
solution of eq 1 under the boundary conditions 
(5) and (6) is given by9 

Wp(x, n, L 1)= I: Ai exp [- a/ ~n ]=i(x) 
i=o L1 

( 8 ) 

where ai 's are the solutions 

2 -~-!!!:__ 
tan ai aL ai 

( 9) 

and 

z1(x)=- cos -x+- sm -x 1 { ai aL . a1 } 

Ci L ai L 
(10) 

[ a/+a2L2 aL ] 112 

Ci= 2 L+-2L 
2a1 ai 

(11) 

The arbitrary coefficients At's are determined 
by the initial condition. If we impose the 
condition that the starting point of the chain 
is distributed uniformly between the two planes, 
we put 

1 
( 3 ) Wp(x, 0, L1)= Li (12) 

On the other hand, 12 is equal to the "average 
emission velocity" Jc multiplied by Wat F 1, 

( 4) 
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Then we have 

for even l (13) 
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The function wp(n, L) defined by 

wp(n, L)= ~:Wp(x, n, L)dx 

4 ;, I-cos a1 ( a/Dn) = L.J ----- exp ---2-
1=1,odd a 1(a 1 +sin az) L 

(14) 

is the probability that the whole chain of n mo
nomer units is included between the two planes at 
the distance L apart. Consequently, the probability 
density fp(L) that the width of a polymer chain 
is precisely L is related to the function wp(n, L) 

as follows: 

_IJ\L-l)fp(l)dl=wp(n, L) 
L )o 

This yields the following equation: 

fp(L)=Lw/'(L)+2wp'(L) 

=4 I; . 5 {(2cosa1+l)a1 
= [ a/ sin2 a1 

l=l,odd L(a1 +sm az) 

-sin a 1(cos a 1 +2)) 

+2 a/(l-c~saz) {(2cosa1+l)a1 
L3(a1+sm a1/ 

-sin a 1(cos a 1 +2))Dn 

( 15) 

+ 4 azs(l-cos az) (Dn)2] ex [- a/ Dn] 
L\az+sin a 1)3 P L 2 

(16) 

By making use of this function fp(L), the first 
and the second moments of L can be obtained, 
as shown in Appendix A. In particular, for 
p= I and p= 1/2, 

<L)=2 / 2 -./nb (p=I) (17a) 'Y 3rc 

=2) 3~ -./nb(1-J; jn 
+-1- __ l_ + .. ·) 

3n 9n2 (p=~) (17b) 

and 

<L2)=¼(1n 2)nb2 =0.9242nb2 (p=l) (18a) 

=0.8864nb2 (n= 1000) (p=½) (18b) 

One sees that for large n, (17b) tends to (17a). 
Weidmann, et al., discussed the case of p=l, 
and obtained eqs 17a and 18a. The case of 
p=0 (a=0) is of no interest in the present 
connection, since in this case we always have 
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Figure 3. The probability densities, -./nbf1; 2(L) 
(solid line) and -./nbfi(L) (dashed line), as a func
tion of L/ -./nb. The probability density -./nbF(R) 
(dot-dashed line) as a function of R/-./nb. 

W(x, n, L)= 1/L, as is to be the case. The dis
tribution functions fp(L) for p= 1/2 and p= 1 
are shown in Figure 3. The difference is not 
large. From Figure 3, we obtain the value Lm 
of L for the maximum of fp(L). These values 
are, for n= 1000, 

Lm, 1=0.78-./nb for p=l 

Lm,112=0.76-./nb for p=½ 

Rubin10 considered the span of a lattice polymer. 
The average values of the span of the chain 
correspond to our eqs 17a and 18a in the limit 
n » 1, since he assumed completely absorbing 
walls at the boundaries. Later, Di Marzio and 
Rubin11 employed parameters a=(s-s0)/s and 
e0 (8=s/RBT) in their adsorption problem of a 
polymer chain on cubic lattices (such as bee, 
fee, and sc lattices) between two layers, where 
s and s0 are the coordination number and the 
number of nearest neighbors of the lattice, re
spectively, and s is the adsorption energy of the 
surface layers. Their parameters a and e0 are 
related to our p and A, as 

½a=A/b (20) 

One of the simplest cases, a= 1 (bee lattice) and 
8=0 (energetically neutral boundaries), corre
sponds to our case p= 1/2. 
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RADIUS OF THE CIRCUMSCRIBING 
SPHERE OF A POLYMER CHAIN 

Now consider the minimum radius of the 
sphere around the center of mass which con
tains the whole chain. Let si be the vector 
from the center of mass to the jth monomer 
(see Figure 4). In the Gaussian chain of n 
monomers, the distribution function of the 
vector si is also a Gaussian function: 12 - 14 

I 
I 
I 
I 
I 

I 
I 

\ 
\ 

\ 

/ 

' 

-/ -----/ 
/ 

'-- / 

------ / -- -- ---

/ 
/ 

Figure 4. The circumscribing sphere of a polymer 
chain around the center of mass. The vector s; 
is the vector from the center of mass to the jth 
segment. 

( 3 ) 3
1

2 
[ 3s .2 

] W(sj, n)= --2- exp ---\-
111:(si ) 2(si ) 

(21) 

with the second moment, 

(s-2)=- j-- +-b2 
{( n ) 2 n2 

} 
; n 1 12 

(22) 

If we choose J=n/1 and put r=sn12 (r=[r[), we 
have, 

and 

D'=~ 
72 

(23) 

(24) 

Consequently the distribution function W(r, n) 
obeys the following "diffusion" equation: 

aw =D'fl 2w an r 

=D'{ a2w +~ aw} ar2 Y ar (25) 
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Assume that the whole chain is included in a 
sphere of radius R around the center of mass 
of the chain. Since we have shown in the 
previous section that the effect of adsorption 
of the chain by the boundary becomes small 
in evaluating the width of the chain for large 
n, we adopt for simplicity the boundary con
dition (complete absorption) 

W(r, n)=0 at r=R (26) 

The solution of eq 25 under the boundary con
dition (26) and the initial condition 

W(r, 0: R)=o(r) 
is give by 

1 = 
W(r, n : R)=--2 I: l 

1rR 1=1 

(27) 

[ 1 ( hr ) 2 b2] . ( fr: ) xexp - 72 R n srn Rr 

(28) 

On the other hand, putting m=(j-n/1)2, one 
verifies the following equation for the function 
(21): 

aw b2 2 --= -fl •. W(s;, n) am 6n i 
(29) 

at m=0, si=sn;2=r and W(sn; 2 , n) is equal to 
the function W(r, n) given by (28). Therefore, 
W(sj, n : R) is given by 

W(sj, n: R)= \ P(sj, m: r, 0)W(r, n: R)dr 
Jo~r~R 

(30) 
where 

P(sj, m: r, 0)=--- I: exp --m ..!!___ 1 = [ b2 
(/ )

2
] 

111:sirR 1=1 6n R 

(31) 

is the elementary solution of (29) under the 
boundary condition 

W(s;, n)=0, at si=fsi[=R 

Thus we obtain 

1 = 
W(sj, n : R)=--2 I: l 

1siR 1=1 

(32) 
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Table I. Dimensions of the random Coil Chain 

Dimensions of the x-component of Width, L 
random coil end-to-end 

Radius of the Diameter of the 
circumscribing circumscribing sphere 

sphere around one around the center 
end, RwKK (p=l) of mass, 2R (p=l) chain distance, R. p= l/2h p= 1 

First moment 2 =0.46• 0.90 2~ 2 =0 92 l~rr3 
( v'nb) 3ir 3ir . 2 6 =l.14 

Root mean square 1 ~f ln2=0.96 ¼ 1,;(3)= 1. 18 of second moment [3 =0.58 0.94 
(vnb) 

a We mean (JR,J) for the average. 
b We consider here the case of p= 1/2, Js=b/2, and n= 1000. 

This function for m=(n/2)2, or in other words 
for either J=O or n, when integrated with re
spect to si over the sphere of radius R, is the 
probability that the part of the chain from n/2 
to n or from O to n/2 lies completely in the 
sphere of radius R. Therefore 

Wn(R) = ! D W(sn, n : R)ds,. +) W(s0 , n : R)ds0] 

= 2 I: (-1)1-1 exp [-nb2 (}!'__)2] 
1=1 18 R 

(34) 

is the probability that the whole chain is con
tained in a sphere of radius R around the center 
of mass. 

Consequently the probability density F(R) that 
the whole chain is contained in the sphere of 
radius R around the center of mass and just 
makes contact with the sphere can be obtained 
from wn(R) to be 

F(R)= awn 
aR 

= }:_nb2 I: ( -1 i-1 (/ir t exp [-nb2 (}!'__)2] 
9 1=1 R 18 R 

(35) 

We may call this radius R the radius of the 
circumscribing sphere around the center of mass. 
Figure 3 shows the relationship between v'nbF(R) 

and R/./nb. The first and the second moments 
of F(R) are obtained respectively (as shown in 
Appendix B), 

1 /7 1- 1-
(R)=6 'Vz v nb=0.66v nb 

(R2)=__]__t;,(3)nb2=0.47nb2 
18 
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(36) 

(37) 

where t;,(k) is the zeta function 

00 1 
t;,(k)= I; -k 

n=l n 

From Figure 3 the most probable value Rm, 
where F(R) takes the maximum value, is found 
to be given approximately by 

Rm=0.58\l'nb (38) 

This value is smaller than the first moment (eq 
36). 

DISCUSSION 

As mentioned in the preceding section, 
Hollingsworth considered the radius of the 
circumscribing sphere around one end of the 
chain. Weidmann et al. gave exactly the ex
pression of this radius (denoted as RwKK) for 
p=l. 

1 ~7 -(RwKK)=- - ./ n b 
2 6 

(39) 

(R~KK)= 2-t;,(3)nb2 
6 

(40) 

which can also be obtained by the present 
method (see Appendix C). The values (RwKK) 
and (R~KK)112 are v'3 times as large as the 
values (R) and (R2 ) 112, given respectively by 
eqs 36 and 37. In Table I various dimensions 
of the chain are compared. 

APPENDIX A 

The first moment of fp(L) is defined as 

(L)p= r Lfp(L)dL (A-1) 
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Substituting eq 16 into (A-1), we obtain 

(L)P= [(L2wp" +2Lwp1)dL 

=[L2wp 1(L)]f:o' 

= lim L 2wp' (L) 
L-= 

where 

w/(L)=4 I: [ sin ~1 3 
!=1,odd La1(a1+sm a1) 

(A-2) 

X {a/ sin a 1 +(cos a1- l)(a1 +sin a 1)} 

+ 2a/(1-cos a 1) Dn] ex (-!Y__{Dn) 
L3(a1+sina1)2 p L 2 

(A-3) 
From eq. 9 we have 

sin a 1 (A-4) 

(I, odd) 

These are expanded in powers of f3 1=az!aL, as 
follows: 

sin a 1=2/31(1-f3/ + /3/ + · · · )} 
cos a 1=-1 +2/3/-2/3/+ · ·. (A-S) 

Substituting (A-5) into (A-2), we have 

(L)p= hm I: - 2 - 2 -aL • 
00 

[ 16 { 1 
L-= !=1,odd a(aL+2) /3 1 

+(2aL-7+~- 12 )/3z2+···} aL+2 (aL+2)2 

16a2LDn {i (i 4 ) 2 
+ (aL+2)2 - - aL+2 /3i 

+( l- aL~2 + (a}:2)" )!3z4 + · · ·}] 

xexp(-f3/a2Dn) (A-6) 

Expansion (A-5) holds for /3 1 < 1, but by virtue 
of the presence of the factor exp ( - f3/a2 Dn), 
expansion (A-6) is valid over all the values of 
f3 1• In the limit of large L, we have 

a 1=(21+1)ir and /3 1 
(21+ l)ir 

aL 
(A-7) 

These enable us to evaluate the summations 
appearing in (A-6) as follows: 

i; exp (-f3/a2Dn) 
l=O 
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:::- I: exp - 2 Dnir2 1 00 
[ (21+ 1)2 

] 

2 z=-= L 

=- I: exp - - 2-(2x+1)2 -o(x-l)dx 1 00 00 
[ Dnir2 ] 

21=-= -= L 

= / [1+2I:(-l/exp(-__!l__t2)] 4v Dnir 1=1 4Dn 

(A-8) 
where use is made of the identity 

00 00 

I: o(x-l)=1+2I;cos2irlx (A-9) 
l=-co l=l 

in the integration of the second line. In the 
same way we have, for large L, 

i; f3i" exp [-f3/a 2Dn] 
1=0 

- 1 ;, (21+1)2 2 [ (21+1)2 D 2] 
-21="== a2L2 ir exp - L2 nir 

L [1+2 i; (-l/(1-__!l__t2) Sa2v ir( vDn) 3 1=1 2Dn 

xexp(- 4~nt2)] (A-10) 

I: f3z4 exp [ -f3i"a" Dn] 
l=D 

- 1 ;, (21+1)4 4 [ (21+1)2 D 2] 
- 21="=00 a4L 4 ir exp - L2 nir 

= 3L [1+2 i; (-1/{-1 (!l___t2)" 
16a4 vn(vDn)5 1=1 12 Dn 

- £__12 + 1} exp (-£12)] Dn 4Dn 
(A-11) 

Further we have 

(A-12) 

Substituting (A-8) and (A-10)-(A12) into (A-6), 
we obtain 
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The second moment of fp(L) is also defined as 

(L2)P= [L2fp(L)dL 

=[L3w/(L)]Z:'.0-[L2wp'(L)dL (A-14) 

The first term of (A-14) can be calculated in an 
expansion like (A-6), but the second term cannot, 
because a1 is now a function of the variable L. 
Numerical integration yields the valus 

for n= 1000 and p= 1/2. 
we can proceed further. 
given from (A-3) 

For p=l, however, 
The function w/ is 

w/= 16~n I: exp[- Dn( (2/+1)2] (A-15) 
L l=O L 

Then then first term of (A-14) is rewritten as 

Jim L 3w/(L)= Jim 16DnLI= exp [-4Dnir2x2]dx 
L-oo L-00 Jo 

= lim4 f Dn L 
L--too 'V 1C 

(A-16) 

The identity (A-9) enables us to rewrite the 
summation of w1(p) and calculate the integral 
of (A-14) as follows: 

L 2 '(L)- 8Dn = [ Dnir2 
( 2 l)2] w1 --- exp ---2 - x+ 

L -= L 

= 
x :z:; o(x-k)dx 

k=-00 

=4 /Dn +8 /Dn I; (-ll 
7r 7r k=l 

x exp [-~--L2] 
4Dn 

and 

l 00L 2w/(L)dL= lim4 /Dn L+8Dn I; (-ll_!_ Jo L-= 7r k=l k 

(A-17) 

Although the first term on the rhs of (A-17) 
diverges as L->oo, it cancels with the first term 
of (A-14), i.e. (A-16). Thus we finally obtain 

2 8 = lkl 41 (L ) 1=- Dn I; (- ) -=- n2nb2 
k=l k 3 

::::::0.9242nb2 (A-18) 
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APPENDIX B 

wn(R) (eq 34) is rewritten as 

Wn(R)= -2 I: exp [- bn2 (!!!__)2] cos fir 
1=1 18 R 

(B-1) 

Then we obtain the following relation: 

1-wn(R)= I: exp [- nb2 (fir)2Jcos fir 
z=-= 18 R 

= .f: 1= o(x-/)exp[-nb2 (!!._)2x 2 Jcosirxdx 
1=-=J-00 18 R 

6 ~ 2R2 "" [ 9 / 1 z z] B 2 = --2 I: exp - --2 (2 - ) R ( - ) 
irnb 1=1 2nb 

where use is made of the identity (A-9). Since 
wn(R)->l for R->oo, the normalization of the 
function F(R) is guaranteed. The first moment 
is calculated to be 

(R)= \=RF(R)dR= \""RowndR 
Jo Jo oR 

= - R-[1-wn(R)]dR ~
= d 
o dR 

= [[l-wn(R)]dR 

1 ~~./-- -vnb 
6 2 

(B-3) 

The last line follows from (B-2). Similarly the 
second moment is given by 

(R2) = ~~R2F(R)dR 

=2~~ R[l-wn(R)]dR 

_ 4 nb2 £ 1 
-9 !=1(2/-1)3 

7 2 2 = 18((3)nb =0.47nb (B-4) 

since I: l/(2l-ll=(l-l/2kK(k), where ((k)= 
l=l 

.f: 1/lk is the zeta function. 
!=l 

APPENDIX C 

The radius RwKK of the contact sphere around 
one terminal of the chain can be obtained 
when we consider eq 25 with D' =b2/6 under 
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the boundary condition (26) and the initial 
condition 

W(r, O)=o(r) (C-1) 

By a similar procedure, the probability wn(R)wKK 
that the whole chain is contained in a sphere 
of radius RwKK round one terminal of the chain 
is given by 

1-wn(RwKK) 

= 1-2 £ ( - I )z +i exp [- nb2 (___l!!___)2] 
Z=l 6 RwKK 

= 2 f 6R~KK I; exp [-~(2/-1 )2RiKK] 
\/ nb 11: l=l 2nb 

(C-2) 

and the first and the second moments are 
respectively 

(C-3) 
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