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ABSTRACT: As a continuation of a previous paper, an analysis is made of the 
diffusion-controlled ring closure reaction of a harmonic spring model of polymers for 
the case of finite k (k being an intrinsic second-order reaction rate constant). The 
upper bound and the lower bound for an apparent first-order reaction rate constant k1 
are calculated by the variational principle of Rayleigh-Ritz and that of Doi respectively. 
These bounds are found to have very close values, and with the use of them, the error 
produced by the closure approximation is estimated for all values of k. 
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discussed for all values of k. 

BASIC EQUATIONS 

In a previous paper1 (to be referred to as I), 
we have discussed an intramolecular reaction 
of a harmonic spring model of polymers for the 
purpose of examining the validity of the closure 
approximation of Wilemski and Fixman.2 • 3 We 
have calculated an apparent first-order reaction 
rate k1 exactly by an integral equation method 
and compared this with the result of the closure 
approximation. However, rigorous solutions 
were obtained only for the case of the diffusion
controlled limit, i.e., the case where an intrinsic 
second-order reaction rate k is infinite. For 
the general case of finite k, we have no rigorous 
solutions to be compared with the closure 
approximation; however, certain bounds for k1 

can be obtained by variational principles. 

We consider a pair of active sites bound by 
a harmonic spring with mean square length L 2 • 

The active sites are assumed to react on each 
other with the intrinsic second-order reaction 
rate constant k if their separation is within a 
distance R. Then the distribution function 
P(r, t) of the unreacted site pair obeys the 
diffusion equation: 2 • 3 

In the present paper, we calculate the upper 
and the lower bounds for k1 and compare these 
results with those of the closure approximation. 
As was shown by Doi, 4 k1 is related to the 
smallest eigenvalue of a certain Hermitian 
operator. Then the upper bound is easily 
obtained by the conventional method of Rayleigh
Ritz. 6 The lower bound for k1 is calculated by 
the method proposed recently by Doi. 4 

These bounds are found to have very close 
values and may be regarded as almost the exact 
values. From these values, the deviation 
produced by the closure approximation is 

( 1 ) 

.Y'(r)=-D- --+-a ( 1 au a) 
or kBT or or 

( 2) 

(potential energy of the spring) 

( 3) 

( 4 R3
)-

1 
S(r)= + H(R-[r[) 

=l(~R"f ( 4) 

([r[ >R) 

where D is a relative diffusion constant of the 
pair and kBT the Holtzman constant multiplied 
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by temperature. 
The unreacted fraction of the active pair x(t) 

at time t is obtained from P(r, t) as 

x(t)= d 3rP(r, t) ( 5) 

Usually, x(t) decreases in a simple exponential 
law:1 

x(t)::: exp (-k 1t) ( 6) 

The rate constant k1 is the apparent first-order 
reaction rate constant and the quantity of most 
importance. 

To utilize the variational principle, let us 
rewrite the problem in an Hermitian form. We 
introduce an operator 9(r) defined by 

P04(r)5fl(r)(<p(r)/ P 04(r))= !f(r)<p(r) ( 7 ) 

with 

( 3 ) 312 ( 3 2) Peq(r)= 21rL2 exp - 2L2JrJ 

(equilibrium distribution function) ( 8) 

that is, 

a2 D au a 
§(r)=-D or2 + kBT or or ( 9 ) 

The operator 9 becomes Hermitian if the scalar 
product between any two functions <p and <p 1 is 
defined as the average of the product <p<p 1 over 
the equilibrium state, i.e., 

(rpJ9rp1)= (5fl<pj<p 1) (10) 

where 

I \ d3 p I I (<pJ<p )= j r 04(r)<p<p =(<p<p ) (11) 

Let <p,, * be eigenfunctions of the operator 

9+kS: 

{9(r)+kS(r))<p,, *(r)=•n *<p,, *(r) 

(.,, *: eigenvalues) (12) 

Then P(r, t) can be solved as 

P(r, t)= l: <p,, *(<p., *)Peg exp (-c,, *t) (13) 

" 
Here the system is assumed to be in equilibrium 
at t=O. From eq 5, 11, and 13, we have 

x(t)= l: (<pn *>2 exp(-.,, *t) (14) 
" 

Equation 14 indicates that the asymptotic 
decaying rate k1 is equal to the smallest 
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eigenvalue •o * (see eq 6). Thus our problem is 
reduced to calculating the smallest eigenvalue 
of the operator § + kS. 

UPPER BOUND 

First, we apply the variational principle of 
Rayleigh-Ritz5 to eq 1. If <p(r) is an arbitrary 
function, the variational principle reads 

k <I [<p] = (<p(5fl+kS)<p) 
1- R (<p2) (15) 

This inequality gives the upper bound for k1 • 

Here the difficulty is how to choose the trial 
function <p(r). Trial functions expressed in a 
linear combination of the eigenfunctions of 9 
are not appropriate because such trial functions 
yield /R[<p]->oo as k->oo. Ari appropriate trial 
function can be obtained as follows: we decom
pose 9+kS as 

9+kS=5fl0+§1 

a2 
9 0(r)= -D-2 +kS(r) 

or 

D au a 3D a 
9 1(r)=-- · -=-r·-

kBT or or L 2 or l (16) 

Note that 9 0 is the diffusion operator for the 
free particle system under reaction. For this 
system, there exists a steady state which satisfies 

5flo<p=0 

Solution of this equation is4 

with 

{ 

sinh Kf 

ucosh KR 
<p(r)= 

1_Ra 
r 

(r:c;,R) 

(r>R) 

-(1- tanh KR) _ ./6B 
Cl'- --- ' IC---' 

KR L 

L2 (41rRs)-1 
B=k- --

6D 3 

(17) 

(18) 

(19) 

We employ eq 18 as the trial function of eq 15. 

By use of eq 17, eq 15 is reduced to 

( <p(3D/L 2)r(d/dr)<p) 
(<p2) 

(20) 

As in I, we use the dimensionless variable 
r= ./3/2 R/L, assuming it to be small. Then 
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the r.h.s. of eq 20 can be expressed in a power 
series of r. For example, 

(</) = ( d3r Peq(r)( sinh Kr ) 2 

)r,;;R Krcosh KR 

+ ( d 3r P0q(r)(l- Ra ) 2 

Jr>R r 

= d3r Peq(r)( 1- Rra Y +0(/) 

= (l)-2a( )+a2
( ~ 2)+0(/) 

1 4 22203 = - -Vrrar+ a r + (r ) 

Similarly, we have 

with 

1 tanh KR 
/3= (KR)2- (KR) 3 

Then eq 20 becomes 

with 

tanh2 KR 
3(KR)2 

Table I. The reaction rate: k1 • (L2/6D) 

r=0.05 

(21) 

(23) 

B Rayleigh 
-Ritz Doi 

Closure Radiation 
approxi- boundary 
mation condition 

1 0.0000935 0.0000935 0.0000935 0.0000933 
103 0.0196 0.0195 0.0190 0.0220 
105 0.0280 0.0278 0.0238 0.0286 
00 0.0289 0.0287 0.0239 0.0287 

r=0.2 

0.00556 0.00555 0.00555 0.00534 
103 0.114 0.111 0.0977 0.118 
105 0.123 0.120 0.0993 0.121 
00 0.124 0.121 0.0993 0.121 
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(25) 

The numerical results for k 1r-0 are listed in 
Table I. 

Equation 24 has the following asymptotic 
forms: For the diffusion-controlled limit, i.e., 
k-+oo: 

(26) 

which coincides with the asymptotic form of 
the exact results obtained in I. On the other 
hand, for k-+0, we have 

k 4/ 5 
1-ro= 1-B+O(r) 

3-v ir 
(27) 

which is equal to the equilibrium reaction rate 
given by 

k 10q=kP0 q(R)-:::..k --3 = ~-B-(r« 1) (28) ( 3 )3/2 4 3 1 
2irL 3 v ir r-o 

LOWER BOUND 

Next we apply the variational principle of 
Doi4 to eq 1. His variational principle is 
stated as follows: Let <p(r) be an arbitrary 
function and In[ <p] be defined as the smallest 
solution of the equation 

( 'P(s+ks 1 s)<p)=o (29) 
9-In[<p] 

Then it is proved that 

(30) 

provided that k1 is smaller than the second 
smallest eigenvalue of 9. As was shown by 
Doi, 4 the closure approximation of Wilemski 
and Fixman2 ' 3 is equivalent to the choice of 
the trial function as <p(r)= 1. 

Equation 29 may be rewritten in terms of the 
eigenfunctions of 9(.9'<pp=•p<pp) as 

(S<p2)+k I: (S<pp<p)2 0 (31) 
p Sp-fn[<p] 

where I: means the sum over all eigenstates. 
p 

Since the trial function <p(r) can be chosen as 
spherically symmetric, only the spherically 
symmetric eigenfunctions are included in eq 31. 
These are1 
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<p (r)= f -v' n n! L 112(31 /2L2) 

" 'V 2I'(3/2+n) " 

(L,.112 : the Laguerre polynomials) 

s,.=n/r:0 

Thus we have 

(n=O, 1, 2, ... ) 

(32) 

(33) 

We choose the trial function as rp(r)=rm and 
determine the exponent m so as to maximize the 
functional In[rm]. 

Since In[rm] is supposed to be very small 
compared to 1/r:/, we expand eq 33 in a power 
series of In: 

where 

=D 
Ci= I; --f 

n=l n 

(35) 

(36) 

The maximum In can be obtained by solving 
eq 33 (or 34) and ain[rm]Jam=O simultaneously. 
Since this procedure is cumbersome and the 
results do not strongly depend on m, as will be 
shown below, we solved eq 34 by employing an 
approximate value of m determined by the 
following procedure: In the case of r« 1, we 
can obtain an analytic expression for In as 

In[rm], 0 

_ 4B/(2m+3)(2m+5) 
- -v'n (m+3)2(2m+5)+8-v'n B/(m+3)(2m+3) 

(r « 1) (37) 

whose derivation is described in Appendix I. 
Equation 37 takes a maximum at the value of 
m satisfying 

SB/ 
2m(m+3)(2m+5)2 

(2m+3)" 
(38) 

As an example, In solved from eq 34 by 
retaining up to the term 1=5 in the summation 
is shown in Figure 1 for the case of r=0.2 and 
B=5000. It is observed that the variation of 
In near its maximum is rather small and that 
the maximum In is well predicted by the value 
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0.120~----------------. 

0.100 

0 20 40 
m 

60 

,=0.2 
B=sooo 

80 100 

Figure 1. Solution of eq 34 as a function of m 

(maximum In predicted by eq 38 corresponds to 
m=25.8). 

m determined by eq 38 (the arrow shows the solu
tion of eq 38). Thus the value m given by eq 38 
may be used even when r is not very small. 
Utilizing this approximate m, we calculated the 
maximum In as a function of B for several 
values of r- Calculations were also performed 
for the case of the closure approximation (m=O 

in eq 34). The results are also included in 
Table I. 

In the case of small r, we can show that eq 
37 with eq 38 yields the exact asymptotic values 
of k1 : In the limit of B-+co, eq 37 takes the 
maximum value of 

(r«l,B~l) (39) 

at m=co. This coincides with the asymptotic 
expression of the exact solution1 and also with 
eq 26. On the other hand, for small B, eq 37 
gives 

l r: _ 4/ (2m+3)B 
Do- -v'n (m+3)2 (r« 1, B« 1) (40) 

which takes its maximum 4/B/3-v'"ir at m=O; 

then we recover eq 28. Finally, if we set rp=l, 
i.e., m=O in eq 37, we obtain the asymptotic 
expression of the closure approximation: 1 ' 6 

20B/ 
-v'n (15+24B/) 

(r« 1) (41) 

If we take the limit of B-+0 in eq 41, we 
recover the exact result (eq 28). This is quite 
natural because the closure approximation gives 
the exact results in the limit of k-+0. 2 • 3 
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DISCUSSION 

In the present paper, we have calculated the 
upper bound and the lower bound for k1 by 
employing the variational principle of Rayleigh
Ritz and that of Doi. 

As is observed from Table I, these bounds 
have very close values. The deviation is never 
more than 2.5%, Therefore these may be 
regarded as almost the exact values. Table I 
shows that the closure approximation produces 
good results in the range of small k, as expected 
from its nature. The deviation becomes larger 
as k increases, however, it never exceeds 20% 
even for the case of k---->oo. Thus we again 
confirm the previous conclusion that the closure 
approximation is relatively satisfactory even if 
k is very large. 

It is also observed that the two bounds 
become closer as r---->0. In fact, we can 
show that in the limit of r---->0, k1 is exactly 
given by 

(42) 

where k2 is the second-order reaction rate of the 
free particle system: 4 

k 2=4rrDR( 1 ta:~KR)( K= ) ; • ( 4;R3r1 
) 

(43) 

Euation 42 has a very simple meaning: if the 
potential U(r) is flat near the reaction region, 
the particle behaves as a free particle. Then 
the first-order reaction rate k1 is given by the 
product of k 2 and the local concentration, Peq(O), 
near the origin. Equation 42 holds for any 
spherically symmetric system provided that its 
potential U(r) is not singular near r=O. The 
proof of eq 42 is given Appendix II. 

So far, our discussion has been limited to 
eq 1 because our purpose is to examine the 
validity of the closure approximation. However 
the finiteness of k can be taken into account 
by using a more tractable equation. If k is 
finite, the third term on the 1.h.s. of eq 1 
represents the situation that some fraction of 
the reactive sites in the reaction region can 
react. Physically, this is equivalent to including 
the fractional reflection of the reactive sites 

Polymer J., Vol. 8, No. 3, 1976 

upon collision and can be expressed by the 
radiation boundary condition: 7•8 

kP(r, t)=4rrr2n-J at !r!=R (44) 

where n,J is the normal component of the flux 
at the reaction surface and k in eq 44 has the 
same meaning as k in eq 1. 2 As was suggested 
by Wilemski, 9 the problem in this form can be 
rigorously solved by the method of I. This is 
simply discussed in Appendix III. 

Acknowledgment. The authors appreciate the 
kindness of Dr. Gerald Wilemski of Dartmouth 
College, who sent them his unpublished work 
and suggested the applicability of their previous 
method to the case of the radiation boundary 
condition. 

APPENDIX I 

Here, we derive the analytic expression for 
In in the limit of r---->0. In this limit, In 
becomes very small, 1 hence we may safely retain 
only the term l= 1 in the summation in eq 34. 
Then In is solved as 

(r«l) (Al) 

The r.h.s. of eq Al can be again calculated 
analytically for the case of r---->0: in a similar 
manner to that in eq 21, we have 

To calculate C,, we utilize the relation1 

"' I; P0q(r2)<pn(r2)<pn(r1) exp (-nt/1:o)=G(r2 , r1 , t) 
n=O 

(A4) 

Then we can obtain the following identity 
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= :
0 

~; d{~ d3r1 d3r2So(r1)So(r2)S(r1)S(r2) 

x G(r2 , r1, t)P.q(r1) 

-{ d3rSo(r)S(r)So0(r)Peq(r)} 2] (A5) 

In the integral of eq A5, the contribution of 
the short time region is dominant in case of 
r«l, 6 so we can replace the Green's function 
by that for the short time form: 

G (r r t)=(~)a12 exp ( 3-rolr2-rif2) 
r 2 ' 1 ' 2nL2t 2L2t 

=(-1 ) 312 ex (- lr2-ri[2) 
4nDt p 4Dt 

(t« 1) (A6) 

which has the same form as that of a free 
particle. Further, in this limit of r-0, the 
second term of the integral can be neglected (it 
is of the order of r6). Thus 

C1 :::::_!_ f"" dt( 41rRa)-2 f d3r1 f d 3r2r1mrt' 
'1'o Jo 3 J1,1JS:R J1r21S:R 

X Gr(r2, r1, t)P0q(r1) 

=(41rRa)-2 f dar1 f dar2r1mr2m 
3 J lr1IS:R J lr2IS:R 

xP (r)(~3-)a12-v6irL 1 
eq 1 2nL2 3 lr1-r2I 

18 R2m-s s 

=~2-Vn (m+3)(2m+5{ (r« 1) (A7) 

Substituting eq A2, A3, and A7 into eq Al, 
we obtain the analytic expression for I0 (eq 37). 

APPENDIX II 

In this Appendix, we prove that in the case 
of R«L= ./ (r2), eq 42 holds for any spherically 
symmetric system, provided that its potential 
U(r) is not singular near the origin. For this 
purpose, we shall show that the upper bound 
IR (see eq 20) 
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I D dUdSo) 
k <I - \SokJdr~ 
l= R- (\02) (AS) 

and the lower bound Io 

k >I kD0 (c- = " (S\Op\0)2
) 

1- 0 2 - 1- L.J 
- (SSo > +kC1 p Sp 

(A9) 

become equal if we take the distribution func
tion of a free particle system under reaction 
(eq 18) as the trial function. Equation A9 is 
derived in the same manner as eq Al. 

First we calculate IR. In the following, the 
trial function So for r< R is denoted by Soi and 
that for r>R by Soo· Substituting eq 18 into 
eq AS, we have 

/ So_!!_ dU dSo)= f darP.q(r)Soi_!!_ dU dSoi 
\ kBTdrdr Jr>R kBTdr dr 

+ f darPeq(r)Soo_!!__ dU dSoo 
Jr>R kBT dr dr 

=DI darPeq(r)-l_dU R~ +O(R2/L2) 
J kBTdr r 

=-4nDRa1 00 drdPeq +O(R2/L2) 
Jo dr 

=41rDRaP0 q(0)+O(R2/L2) (AlO) 

(So2)= I d3rPeq(r)So.2 + \ d3rP0 q(r)So/ 
Jr<R Jr>R 

=(l)+O(R/L)= 1 +O(R/L) (All) 

Then IR becomes 

Similarly for eq A9, we have 

tanh KR) 
KR 

(A12) 
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a 1 
X d r2\/J;(r1)\0/r2) I I 

lr21;;;R r1 -Y2 

-( 4:rrR3)-2 Peg(0) 8:rr2 

- -3- -4:rrD 7 
x (-KR tanh2 KR-3 tanh KR+3KR) (Al5) 

In the calculation of C1 , we have used the 
technique of Appendix I. From eq A9, Al3, 
A14, and Al5, / 0 becomes 

10 =4:rrDRaPeq(O)+O(R/L) (A16) 

Thus eq 42 is verified. 

APPENDIX III 

With a sink function p(r, t) representing the 
reaction rate on the reaction surface (lrl =R), 
the diffusion equation in I reads 

{:, +2"(r)}P(r, t)=-p(r, t) (A17) 

In I, p(r, t) was chosen as p=o(lrl-R)~(t); 
however, as is pointed out by Wilemski, 9 the 
simplest choice will be p=o(r)~(t), which also 
enables P(r, t) to satisfy the boundary condition 
at Jr/=R. 

A formal solution of eq Al 7 can then be 
written as 

P(r, t)= d 3rG(r, r', t)P(r', 0) 

- ~: ds d 3r'G(r, r', t-s)o(r')~(s) 

=Peq(r)- ~:dsG(r, 0, t-s)~(s) (Al8) 

where G is the Green's function (eq A4) and 
P(r, O)=Peq(r) has been assumed. 

The radiation boundary condition (eq 44) in 
a spherically symmetric form now becomes 

kP(r, t)=4:rrr D -+ 2 P at r=R -2 (oP 3r ) 
or L 

(Al9) 

Substituting eq A18 into eq Al9, we obtain an 
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integral equation for ~(t): 

Peq(R)=~: ds[(1-2~)B(t-s) 

- 4~~B'(t-s)}(s) (A20) 

where the definitions of B (eq 19) and r (below 
eq 20) has been used and 

B(t)=G(R, 0, t) 

B'(t) oG(r, 0, t) I 
or r=R 

(A21) 

(A22) 

Taking the Laplace transform of eq A20, we 
have 

~(P)= r dt~(t)e-pt 

_Peg(R) 1 

-~P--[(i-2-)jj(p)-~B'(p)] 
2B 4r2B 

(A23) 

As in /, k1 is given by the largest (or the 
smallest in the absolute value) root of the 
equation: 

( 1-2-)B(p)-~B' (p)=O 
2B 4r2B 

(A24) 

In terms of the eigenfunction expansion of the 
Green's function (eq A4), eq A24 is reduced to 

(t-2-)(£ Bn )-~(£ Bn' )-o 
2B n=op+n/,0 4r2B n=op+n/,0 -

(A25) 

where 

(A26) 

B , oPeq(r)\On(r) I (A27) 
n or r=R 

In case of small r, we can obtain an analytic 
expression for k 1 in a manner similar to that 
used in Appendix I: 

r 
~lie 

k1,o= 3 3 

l+2B + 4r2B 

(r « 1) (A28) 

As is easily seen, eq A28 has exact asymptotic 
forms in both limits of k-->0 and k--->co (see 
eq 26 and 28). 

For the general case, we solved eq A25 
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numerically by employing a similar procedure 
to that used in I. The results are listed in 
Table I. It is observed that k 1 of the radiation 
boundary condition is very close to the exact 
value. Thus we may use this formalism to 
calculatie k1 because it is more tractable. 
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