Dilute Solution of Bisphenol A Polycarbonate

Abstract

Narrow-distribution fractions of bisphenol A polycarbonate in tetrahydrofuran (THF) and chloroform were studied by light-scattering, sedimentation velocity, and viscosity measurements over the range of molecular weights from 4×103 to 5×105. The asymptotic values of a dimensionless quantity A2Mw/[η] and the interpenetration function Ψ Where significantly lower than those usually expected for flexible polymers, suggesting a certain stiffness of the polycarbonate chain. Here A2 is the second virial coefficient, Mw is the weight-average molecular weight, and [η] is the intrinsic viscosity. Data for statistical radii ‹S21/2, sedimentation coefficients SO, and [η] in THF were analyzed in terms of the wormlike chain model. First, the three parameters q, ML, and d characterizing the wormlike cylinder were estimated by using a recent theory of SO by Yamakawa and Fujii and assuming that the hydrodynamic volume per gram is equal to the partial specific volume of the polymer. Here q is the persistence length, ML is the shift factor defined as the molar weight per contour length, and d is the diameter of the cylinder. The results were q=18 A, ML=26 daltons/A, and d=6.6 A. It was then shown that these molecular parameters and small expansion factors for the excluded volume allowed a consistent interpretation of the experimental data for SO, ‹S2›, and [η]. The consistency between the intra- and inter-molecular excluded-volume effects were also examined by use of the perturbation theories for αs (expansion factor for ‹S2›) and for A2 of the wormlike beads. An important finding from the present study is that, while αs of the polycarbonate in THF is rather small, the binary cluster integral between a pair of monomers is quite large (about 170×10−24cm3).

References

  1. 1

    G. V. Schulz and E. Penzel, Makromol. Chem., 112, 260 (1968).

  2. 2

    E. Penzel and G. V. Schulz, Makromol. Chem., 113, 64 (1968).

  3. 3

    L. J. Fetters and H. Yu, Macromolecules, 4, 385 (1971).

  4. 4

    M. Fujii, K. Honda, and H. Fujita, Biopolymers, 12, 1177 (1973).

  5. 5

    H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper & Row, New York, N.Y., 1971.

    Google Scholar 

  6. 6

    H. Yamakawa, Pure Appl. Chem., 31, 179 (1972).

  7. 7

    G. V. Schulz and A. Horbach, Makromol. Chem., 29, 93 (1959).

  8. 8

    G. Sitaramaiah, J. Polym. Sci., A, 3, 2743 (1965).

  9. 9

    G. C. Berry, H. Nomura, and K. G. Mayhan, J. Polym. Sci., A-2, 5, 1 (1967).

  10. 10

    W. R. Moore and M. A. Uddin, Eur. Polym. J., 5, 185 (1969).

  11. 11

    W. R. Moore and M. A. Uddin, Eur. Polym. J., 6, 121 (1970).

  12. 12

    H. Yamakawa, J. Chem. Phys., 45, 2606 (1966).

  13. 13

    Gj. Dezelic and J. Vavra, Croat. Chim. Acta, 38, 35 (1966).

  14. 14

    J. P. Kratohvil, Gj. Dezelic, M. Kerker, and E. Matijevic, J. Polym. Sci., 57, 59 (1962).

  15. 15

    G. C. Berry, J. Chem. Phys., 44, 4550 (1966).

  16. 16

    A. de Chirico, Chim. Ind. (Milan), 42, 248 (1960).

  17. 17

    M. L. Huggins, J. Am. Chem. Soc., 64, 2716 (1942).

  18. 18

    D. F. Mead and R. M. Fuoss, J. Am. Chem. Soc., 64, 277 (1942).

  19. 19

    R. L. Baldwin, Biochem. J., 55, 644 (1953).

  20. 20

    H. Fujita, “Foundations of Ultracentrifugal Analysis,” Interscience Publishers, Inc., New York, N.Y., 1975.

    Google Scholar 

  21. 21

    J. E. Blair and J. W. Williams, J. Phys. Chem., 68, 161 (1964).

  22. 22

    H. Murakami, T. Norisuye, and H. Fujita, Polym. J., 7, 274 (1975).

  23. 23

    O. Kratky and G. Porod, Rec. Trav. Chim., 68, 1106 (1949).

  24. 24

    H. Yamakawa and M. Fujii, Macromolecules, 6, 407 (1973).

  25. 25

    H. Yamakawa and M. Fujii, Macromolecules, 7, 128 (1974).

  26. 26

    R. Bonart, Makromol. Chem., 92, 149 (1966).

  27. 27

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  28. 28

    A. D. Williams and P. J. Flory, J. Polym. Sci., A-2, 6, 1945 (1968).

  29. 29

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsuji, T., Norisuye, T. & Fujita, H. Dilute Solution of Bisphenol A Polycarbonate. Polym J 7, 558–569 (1975). https://doi.org/10.1295/polymj.7.558

Download citation

Keywords

  • Bisphenol A polycarbonate
  • Flexibility
  • Wormlike Chain
  • Persistence Length
  • Dilute Solution
  • Light Scattering
  • Sedimentation Coefficient
  • Expansion Factor
  • Second Virial Coefficient

Further reading

Search