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ABSTRACT: The light scattered by a cornea occurs mainly at small angles. The 
patterns obtained experimentally showed a characteristic maxima at oo angles and a four 
lobe 0-90° pattern in the h mode and a two lobe 0-180° pattern in the In mode. A 
model system is presented here in which anisotropic rods (collagen fibrils) embedded in 
an isotropic medium (ground substances) form a two-dimensional assembly (lamellae) 
which are stacked in a nonrandom fashion (stroma). The light-scattering patterns from 
such a model system were calculated by varying a number of parameters, such as the 
length of the rod, its average orientation, etc. Thus the role of each parameter in the 
model in influencing light-scattering patterns in I+ and In mode was evaluated. Finally, 
the computer-simulated patterns were matched to the experimental patterns and the 
numerical values of the parmeters of the model were obtained. 
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The cornea of the eye is the only tissue with 
high collagen content (15%) that is transparent. 
It is composed of five layers lying parallel to 
the surfaces. These layers are, proceeding from 
anterior to posterior: epithelium, basement mem­
brane, stroma, Descemet membrane, and endo­
thelium. Of these, the stroma occupies about 
9/10 of the total thickness. 1 

The stroma contains a few hundreds of lamel­
lae, depending on the species. These lamellae 
are sheets in which collagen fibrils run parallel to 
each other. The collagen fibrils are surrounded 
by a ground substance of proteoglycans, which 
have a heterogenous distribution of keratan sul­
fate (2/3) and chondroitin-4-sulfate (1/3) chains 
on protein cores. The proteoglycans make up 
about 2% of the stroma; the rest is soluble 
proteins 4%, salts 1%, and water 78%. How­
ever, the proteoglycans are the molecules largely 
responsible for the swelling, hydration, and 
water retention in the cornea. 1 Thus the stromal 
lamellae can be depicted as a Wiener mixed 
body of the first type: long cylindrical fibrils 
embedded in a ground substance of different 
refractive index. 

The packing of lamellae are such that in each 
neighboring lamellae the collagen fibrils are run 
at various angles to one another. The lamellae 
are of different thicknesses and cells are scattered 
within the lamellae. 

One could expect that such a structure would 
behave optically similarly to a swollen collagen 
film. Such films have been studied extensively 
by Kawai and his coworkers2 ' 3 ' 4 and by Chien 
and Chang5 regarding their light scattering pro­
perties. All these collagen films exhibit rod-like 
scattering, 6 in which both the h(Hv) and the 
In ( Vv) patterns exhibit a four lobe type of scat­
tering but the two modes are displaced 45 o to 
each other. This means that if I+ is of the 
0-90° +-type the In is of the 45° X -type and 
vice versa. Theoretical models for these scat­
tering patterns have been worked out including 
optically anisotropic rods of finite length but 
infinitely thin with random orientation in 2 or 
3 dimensional space6 ' 2 ' 3 or rods with finite 
length and width oriented in 3 dimensional 
space. 7- 9 

Attempts to draw an analogy between collagen 
films and the cornea have a twofold importance. 
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From the point of view of ophthalmology it has 
been proposed10 that suitably modified collagen 
films can act as a substitute for damaged cor­
neas. If such transplants are feasible, the opti­
cal properties of the film must correspond to 
that of the cornea replaced. The second im­
portance of the analogy lies in the fact that if 
the light-scattering patterns of cornea and col­
lagen films are similar, we may learn about the 
structure of the cornea from the wealth of 
models proposed for collagen scattering. 

Unfortunately, this is not the case. Light­
scattering patterns of bovine11 •12 cornea in the 
h mode show a + arrangement in which one 
set of lobes is more prominent than the other 
set normal to it. Furthermore, the In patterns 
do not show a four lobe pattern at all, but an 
anisotropic pattern along the direction that was 
more intense in the I+ mode. Similar light 
scattering patterns were obtained on a few 
human corneas (unpublished results). 

Rabbit13 and rae4 corneas exhibit a cloverleaf 
arrangement with 5 maxima in the h mode. 
While the In mode of rabbit cornea13 is similar 
to that observed in bovine cornea, 12 the In mode 
of rat cornea14 is completely nondescript isotropic. 

Most of the light scattered by bovine cornea 
occurs at small angles11 ' 12 and we proposed that 
the scattering originates largely from the bire­
fringence of aggregates of collagen fibrils. The 
birefringence is partly due to the preferential 
orientation of optically anisotropic collagen fibrils 
in the different parts of the cornea that is sym­
metrically distributed and partly from form 
birefringence. 14 Similar considerations apply to 
rabbit13 and rae4 cornea. 

The fact that the scattering patterns of cornea 
were unlike those of collagen films indicate that 
a special model of rod-like structures must be 
designed to interpret the corneal scattering. 

In the following we attempt to develop the 
light-scattering theory of such a model and by 
matching experimental and computed theoretical 
light-scattering patterns we shall interpret the 
corneal structure in terms of the parameters of 
the theory. 

THEORETICAL 

We start with the model of two-dimensional 
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Figure 1. Model of an anisotropic rod: Z, the 
direction of polarization of the laser beam; s0 , the 
incident beam; s', the scattered beam. For the rest 
see next. 

assembly of anistropic rods which was developed 
by Rhodes and Stein. 6 Figure 1 shows the co­
ordinate system used to relate the scattered beam 
to the length of the rod L, to the orientation of 
the rod a, and to the direction of maximum 
polarizability w of the rod. The origin of the 
coordinate system is placed at the center of the 
rod. The rod is assumed to have infinitesimal 
thickness. The angle a measures the tilt of the 
rod as measured from the z axis. The ¢ is the 
angle between the x axis and the projection of 
the rod in the xy plane. When the rod is re­
stricted to lie in the yz plane, that is, for the 
two-dimensional model, the angle ¢ is equal to 
90°. The angle () and Q are the two angles 
that define the unit vector s' in the direction of 
the scattered radiation. The () is the angle be­
tween the scattered ray and the incident ray 
unit vector s0 along the x axis. The Q is the 
angle between the s' and the y axis in the yz 
plane and is measured from the y axis. The 
angle w is the direction of the maximum polar­
izability for the rod as measured from the long 
geometric axis of the rod and is confined to lie 
in the same plane as the angle a. 

In the following we make use of the deriva-
tions of Rhodes and Stein. The intensity 
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distribution of a two-dimensional nonrandom o = b1- b, ( 8) 

assembly of rods may be given by The b1 and b, are defined as 

p(a, ¢)A2 dad¢ ( 1 ) 

where P(a, ¢) is the distribution function. When 
the assembly of rods is restricted to a two­
dimensional collection, the angle ¢ becomes 90° 
and the distribution function P(a, ¢) reduces to 
P(a). A is the total amplitude of the scattered 
rays from the scattering elements within the rod, 
and is written as 

I 2rr d A=po J (M·O) cos -A-(r·s) r ( 2) 

In eq 2, p0 is the scattering power of a rod per 
unit length per unit incident field strength when 
the rod is oriented at a=0°. The 0 is a unit 
vector along the polarization direction of the 
analyzer. O=j for horizontal scattering, and 
O=k for vertical scattering. The s is the scat­
tering vector, which is defined by 

s=(s0-s1)=(l-cos O)i- (sin 0 cos Q)j 

+(sin 0 sin Q)k ( 3) 

In the above equation, the s0 =i, the unit vector 
along the x axis, and s' is the unit vector along 
the scattered ray: 

s=cos Oi+(sin 0 cos Q)j+(sin 0 sin Q)k ( 4) 

Then the expressions for I 11 mode (polarizer and 
analyzer are parallel) and for I+ mode (polarizer 
and analyzer are at 90° to each other) are ob­
tained by substituting eq 2 and 3 into eq 1. 
These equations are 

I 11 =p0
2 P(a, ¢)(M·k)2 

X D cos 2; (r·s) dr J dad¢ ( 5) 

and 

I+=p02 P(a, ¢)(M·j)2 

xD cos 2; (r·s) dr Jdad¢ (6) 

The total induced dipole moment M is ex­
pressed by the following equation: 

M=E0[o(cos a)(rfr)+b,k] ( 7) 

The o is the anisotropy, which is assumed to be 
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b!=b/ -b8 

bt=b/ -bs 

( 9) 

(10) 

where b/ is the longitudinal polarizability of the 
rod, along the direction of its maximum polar­
izability, b/ is the polarizability normal to b/ 
and bs is the polarizability of the surroundings. 
The equation for r is 

r=r[(sin a cos ¢)i+(sin a sin ¢)j+(cos a)k] (11) 

By substituting eq 3 and 7 into eq 5 and 6, 
and evaluating the integral over dr, the final 
expressions for I 11 and I+ for two-dimensional 
rods are: 

and 

2 d. I ') 2 I b )2 Iu =(poEoL) Jo a P(a (o cos a + t 

X [ J 
I E L 2 d I ') 2 • 2 I 2 I +=(po o ) Jo a P(a o sm a cos a 

(12) 

(13) 

where 

and 

a= -sin (a' +D) sin 0 

X=rrL/A 

a'=a+w 

(14) 

( 15) 

(16) 

The A is the wavelength of the radiation. The 
P(a')=l for a random distribution and P(a 1):;d 
nonrandom distribution. 

Unlike Rhodes and Stein, we have assumed 
that the optical anisotropy arises due to the 
presence of intrinsic and form birefringence. 
Thus, the o which measures the anisotropy is 
the sum of the two terms, 

(17) 

where o' is a measure of the intrinsic birefring­
ence and B is a measure of form birefringence. 

The reason for separating the two contribu­
tions to birefringence lies in the fact that during 
the small unidirectional stresses the intrinsic bi­
refringence changes with orientation while the 
form birefringence may stay constant. 16 On the 
other hand, when migration of water from 
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specific locus to locus rather than lamellar ori­
entation occurs during a stress or when the 
refractive index of the embedding medium 
changes, the form birefringence changes without 
effecting in intrinsic birefringence. The latter 
situation definitely arises when a large amount 
of scattering (clouding) occurs during corneal 
swelling.12 We assume that both B and a' are 
constants since the average shape and optical 
anisotropy of the individual collagen fibers are 
the same and only their average preferential 
orientation changes along the topography of the 
cornea. Thus, only b, and P(a') are dependent 
on a. 

The assumption of the constancy of a' is 
justified as a first approximation since the local 
optic axis of the cornea is an operative optic 
axis as discussed below. Replacing a in eq 12 
and 13 and rearranging, the equations for / 11 and 
h take the following form: 

2 \rr d I I I 2 I b 2 
/11 =(poE0L) )o a P(a )(a cos a + ,) 

x [ J + (p0E0L )2 da' P( a') 

x [B cos2 a' (B cos2 a' +2o' cos2 a' +2bt] 

(18) 

and 

2 ( 7r: ! I 12 · 2 I 2 I 
l+=(p0E 0L) )o da P(a )a sm a cos a 

da'P(a') 

X [B(2a' +B)] sin2 a' cos2 a'[ (19) 

In each of the above equations the second term 
exists due to the inclusion of the form birefring­
ence. If there is no contribution from the form 
birefringence, that is, for B=O, eq 18 and 19 
reduce to eq 12 and 13. 

The second innovation in our model is the 
introduction of a distribution function that can 
have its maximum at any a angle. The reason 
for this step lies in the experimental patterns,12 

which showed that the collagen fibrils took up 
an averaged specific orientation in the different 
parts of the cornea that were at some specific 
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a angle to the direction of the polarization of 
the laser beam. 

The distribution function selected is a zero­
order logarithmic distribution function (ZOLD), 17 

which has the form 

P( ')-{ [ (loga'-logaM)"]} a - exp - 2 ---
21T0 

--;--- { (2n-)112 IToaM[ exp (ITo 2 /2]} (20) 

In eq 20, a is the angle between the long axis 
of the rod and the Z coordinate axis (polariza­
tion of incident laser beam). aM is the value 
of a at the maximum of the distribution func­
tion and ITo is a measure of the width and skew­
ness of the distribution function. In our treat­
ment the distribution function is not normalized. 
This has no effect upon the computed scattering 
pattern since the normalization constant would 
be part of the multiplier in front of the inte­
grand in eq 18 and 19 and we are dealing with 
relative intensities in any case. 

The P(a 1) is an assymmetric distribution and 
thus, in principle, would not satisfy the physical 
requirement that two rods oriented at a and at 
a+1r angle should be indistinguishable. How­
ever, the nature of this distribution function is 
such that it remains fairly constant between 
a=O and a=21!" for particular values of x, w, 
ITo, aM, a and B. Therefore as a approximation 

one can replace da' with 2 da' and thus 

the physical requirement of twofold symmetry 
in the scattering patterns is preserved. 

Furthermore, in the treatment we assumed 
both positive and negative values of w are 
equally probable in eq 16. 

The parameter b, is a function of the tangen­
tial polarizability of the rod. If the rods have 
specific average orientation, b, itself will be a 
function of a. The reason for this assumption 
is as follows: Coulombre and Coulombre18 have 
proved that the optical axis of a cornea is more 
or less normal to the surface of the cornea. 
The laser beam normal to the surface sees the 
projection of the local optical axis into the 
plane of the cornea. This projection is then 
operative local optical axis. We take it that 
this is an intrinsic property of the cornea and 
it is a constant at a set location. The two­
dimensional rod model then will have two 
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mutually perpendicular components of this op­
erative local axis, b/ and b/, and their values 
will depend on the orientation of the rod. Thus, 
in contrtst to the Rhodes and Stein model, our 
bt is not an intrinsic property of the rod. In 
evaluating the angular dependence of bt, we 
selected a semiempirical method. Since the ex­
perimental patterns had the same angular depend­
ence12 we took the second derivatives with 
respect to a' of eq 18 and 19 and set them 
equal to zero. 

The bt thus obtained had the form 

3o cos4 a' 
(4 sin2 a' +cos2 a') 

(21) 

Using eq 18, 19, 20, and 21, we generated theo­
retical light-scattering patterns in a CDC 3600 
computer by feeding in different parameters of 

w, X, r1o, aM, o'' and B. The intensities of Ill 
and h modes were obtained as a function of 
two scattering angles () and Q. 

RESULTS AND DISCUSSION 

In evaluating the effect of different parameters 
in our model we used constant terms for the 
two kinds of birefringence. These were repre­
sentative values obtained experimentall/ · 15 al­
though as was proved the birefringence varies 
with the topographic location of the scattering 
units in the cornea. 15 We selected values of 
4 X 10-3 for form birefringence, B, and 2 X 10-3 

for intrinsic birefringence, since experiments 
indicated1·15 that the form birefringence is about 
2/3 of the total birefringence in a cornea. 

Figure 2 depicts the effect of the length of the 

Figure 2. Computer-simulated I 11 and h patterns as a function of length of the rod, x, 100, 130, 
160: B, 4x 10-3; !51, 2x 10-3; a, 2.0; aM, 120°; w 0 , 60°. On the first drawing the coordinates of the 
scattering patterns are given in numerical terms both for fJ and Q. In subsequent drawings the same 
numerical values are applicable. 
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rod on the light-scattering patterns. We selected 
values of 100, 130, and 160 for x=rrLj)., which 
is equivalent to 20, 26, and 32 p. lengths of a 
rod; here ). is the wavelength of the He-Ne 
laser, 632.8 nm. Two effects can be observed 
on the / 11 patterns: as the length of the rod 
increases the width as well as the length of 
the geometrically anisotropic pattern decreases. 
This means that as the length of the rod in­
creases, a set intensity of scattered light shifts 
to lower (} angles. The Q angle is also effected 
in the same way but to a much smaller extent 
than the (} angle. The corresponding intensities 
of L patterns at set (} and Q angles are about 
l j4 of the In patterns. The length of the rod 
has a similar although somewhat more pro­
nounced effect on the h patterns relative to the 
effect on the In. The larger the length of the 
rod, the smaller the (} angle at which the same 
intensity isochore will appear. The Q angle is 

I+ 

affected to a much smaller extent. 
In Figure 3, In and I+ light-scattering patterns 

are presented as a function of w angle. We 
varied the angle between the geometric long 
axis of the rod and the direction of its maximum 
polarizability between 30° and 75°, keeping the 
length of the rod at 26 p.. w affects mainly the 
Q angle of the In pattern. Going from 30° to 
60° values of w the elongated In pattern changed 
its orientation from 75° to 15° Q; upon increasing 
the w to 75°, the In pattern orientation moved 
back to 30° Q. At the same time as w increases 
the intensity of the In scattering pattern in­
creases; that is, the same intensity appears at 
wider (} angles. 

The effect of w on the h patterns is similar 
but somewhat more complicated than that on 
the In patterns. For one, a stronger set of the 
+ lobes moves to the same Q angles than oc­
curred in the fu pattern when w changed. This 

Figure 3. Computer-simulated In and h patterns as a function of w angle, w, 30, 60, 75°: B, 4 x J0-3; 
01, 2X J0-3; X, 130; a, 2.0; aM, !20°. 
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is however, inherent in the model and thus 
nothing unexpected. The intensity of the I+ 
pattern increases with incresing w angle, but 
only very slightly. Thus, changing w from 30° 
to 60° moves the 0.3 intensity isochore to an 
only slightly higher (I value and a further in­
crease to w=75° affects the position of the 0.3 
intensity isochore again only slightly. The most 
drastic effect of w is on the intensity of the 
weaker set of the + lobes of the pattern. As 
w increases the intensity of this set of lobes 
decreases; thus the same intensity isochore ap­
pears at lower (I values. 

The w does not affect the intensity ratio of 
the I 11 jh patterns, which stays at a value of 4. 

In Figure 4, the effect of the width parameter 
of the distribution function, a, is presented. 
The a chieflly influences the intensity of the 
scattering patterns. Changing a from 1 to 2, the 
intensity of the I 11 pattern at a set (I value de­
creases 10-fold; going to a=2.5 another 4-fold 

2.5 

decrease in intensity is calculated. The shape 
and the orientation of the I 11 pattern is not 
affected by a. In the h pattern, the decrease 
in intensity is somewhat less: when a= 1.0 
changed to a=2.0, the result was a 8-fold de­
crease in intensity; giving a the value of 2.5, a 
3.5-fold decrease in intensity was effected. The 
I 11 /h ratio of 4 was not affected by a. 

Figure 5, describes the influence of the 
i.e., the average orientation of the rod, on the 
light-scattering patterns. The main effect of aM 

is on the intensities of both I 11 and I+ patterns. 
As aM increases the intensity of the scattering 
pattern decreases, in other words, the same in­
tensity isochore appears at smaller (I values. 
This can be seen on both I 11 and h patterns. 
What is unique for aM is that it also changes 
the I 11 j I+ ratios at set (I values. This effect seems 
quite complex. For one, the ratio changes with 
(I angles within one set of I 11 and h pairs. 
For another, going from 120 to 135° affects 

Figure 4. Computer-simulated 111 and I+ patterns as a function of width of the distribution func­
tion, a, 1.0, 2.0, 2.5: B, 4x lQ-3; iY, 2x lQ-3; w, 60°; x, 130; aM, 120°. 
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1,. 

Figure 5. Computer-simulated /u and /+ patterns as a function of the average orientation of the 
scattering rod, aM, 60, 120, and 135°: B, 4 X 10-3; o'; 2 X w-s; w, 60°; X, 130; a, 2.0. 

the ratios at a set 0 more than moving aM from 
60 to 120°. 

After elucidating the effect of individual pa­
rameters on the light-scattering patterns calcu­
lated from our model the final equation was 
raised: "Can one match the experimentally 
obtained patterns with those of computer-simu­
lated patterns?" To answer this point we selected 
a set of I+ and / 11 experimental patterns obtained 
on bovine cornea. 12 These are reproduced in 
Figure 6, and the densitometric tracing of the 
photographs are given in Figure 7, together 
with computer-simulated patterns that are close 
though not identical with the experimental 
patterns. 

Although qualitatively the experimental and 
theoretical isochores correspond, the intensity 
ratios of / 11 /h are comparable only at small 0 
angles, 2° and below, and the wider the angle 
the more discrepancy is found between the real 
and the model system. This is, however, not 
unusual and similar attempts in reconciling ex-
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perimental data with model systems have been 
encountered in the literature. 2 •19 Model fitters 
are usually satisfied if the computer simulated 
patterns have the same angular distribution as 
the experimental patterns, without worrying 
much about discrepancies in intensities. 

Keeping this difficulty in mind, then, one can 
say that the numerical parameter obtained from 
such matching have reasonable good physical 
meaning. The length of the rod 1.26 p, as a scat­
tering center is reasonable. Small angle scatters 
are all in the 10 and above micron range. Laser 
diffraction patterns of bovine lenses at such angles 
also yielded dimensions between 10-20 fl that 
can be confirmed by electron microscopy. 20 The 
width of the distribution function of rod orien­
tation a=2.0 is also reasonably wide, indicating 
that the preferential orientation is really super­
imposed upon a random orientation. Similar 
conclusions were reached earlier. 11 • 12 

The most interesting result is that the main 
polarizability axis does not coincide with the 
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(a) 

Figure 7. In and h patterns of densitometric scan 
of Figure 6, and their matching computer-simulated 
patterns: X, 130; B, 0.004; o', 0.002; w, 60°; a, 
2.0; lXM, 150°. 

geometric long axis of our rod scatterer. The w 

angle obtained is 60°. This is in close agree­
ment with the results of Moritani, et al., 2 and 
also with that of Chien and Chang5 on collagen 
films. The former authors obtained a value 
between 50-70° and the latter 50°. Since the 
scattering unit is large, it cannot clearly be identi­
fied with a definite structural unit of collagen. 

(b) Supermolecular structures are involved, namely 
Figure 6. Experimental In and I+ patterns of bo- the tropocollagen molecules are built in proto-
vine cornea. fibrils and subsequently in fibrils and finally in 
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fibers. Although the collagen structure at the 
molecular level is well known, 23 the superstruc­
tures of collagen fiber in vivo are not well de­
fined as yet. Therefore, it is difficult to tell 
whether the w=60° represents the optical aniso­
tropy of the collagen molecules or the diagonal 
arrangement of the protofibrils and fibrils within 
our rod scatterer. Evidence for the latter struc­
ture was found by Bouteille and Pease,22 who 
proposed that tropocollagen aggregates of 30-
35-nm diameter wind in a helical pattern within 
the collagen fibrils with a gyre length slightly 
exceeding 1 ,urn. 

The finding that the average orientation of 
the rod scatterer in the cornea is at 150° angle 
to the polarization of the laser beam is not 
surprising at all. As a matter of fact this is a 
direct consequence of our experimental tech­
nique. In the laser scattering of a cornea, we 
wanted to minimize the secondary effect of 
birefringence on the experimental patterns. 23- 25 

Therefore, we aligned the polarization of the 
laser beam perpendicular to the local optical 
axis. Thus aM=150° is actually w+90°, where 
w=60°. 

In the final analysis the model of a two­
dimensional nonrandom assembly of optically 
anisotropic rods can account well for the light­
scattering patterns obtained on human and bo­
vine cornea at small angles and the physical 
parameters yielded by this model have definite 
significance in the analysis of the molecular 
superstructures. At the same time, we must 
bear in mind that this model is a simplified 
version of the real situation. (Further modifi­
cations may be introduced to account for the 
corneal light-scattering patterns of rats and rab­
bits.) The model assumes that the rods are 
independent scatterers and there is no correlation 
in the orientation. If correlation exists, the 
angular dependence of the scattering intensity 
will depend very much on the nature of the 
correlation function. Prud'homme and Stein26 

have worked out the mathematics for a few 
simple cases of correlations. Even in such simple 
cases, it is very hard to separate the correlation 
parameters from the rod parameters. However, 
such a correlation may be important at small 
angles (below 1.5°) where theory and experiment 
deviate most. 4 •9 
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The advantage of our simplified model is that 
it yields rod parameters. In essence, we deal 
with the correlation of rod orientation by assum­
ing that those rods which have perfectly parallel 
alignment to each other in the lamellae will 
cause destructive interference. 27 Therefore, they 
do not contribute to the angular distribution of 
the intensity of the scattered light. Since 9596 
of the light passes through the normal cornea, 
the majority of the rods belong to this group. 
The remaining rods are then taken as independ­
ent scatterers and their contribution is summed 
up in the experimental light-scattering pattern. 
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