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ABSTRACT: Some recent experiments show that the intrinsic viscosities of ABA­
type triblock copolymers are sometimes smaller than those of the precursors B in the 0 
solvent for side blocks A. 

To explain this fact, a triblock copolymer is represented by three spherical segmental 
distributions connected with each other by four freely jointed sticks. 

The partition function is evaluated by the Bragg-Williams approximation with the 
lattice model. Expressions for the free energy and the volume-expansion factor of 
ABA-type triblock copolymers are obtained and conformational anomalies which have 
an effect upon the intrinsic viscosities are discussed by comparing the interaction 
energy and the unperturbed radius of gyration in the ring conformation with those for 
the averaged case. 
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During the past ten years or more many 
interesting experiments have been reported1- 10 

about the behavior of block copolymers in dilute 
solution. Much of the effort had been devoted 
since then to the synthesis and the isolation of 
block copolymers from the reaction product 
rather than to the solution properties, for it had 
been difficult to prepare polymers with narrow 
distributions in molecular weight and composi­
tion. 

Experiments about the dilute solution behavi­
or of AB-type (poly(methyl methacrylate)­
polystyrene) diblock copolymers were reported 
to suggest an intramolecular phase separation in 
a certain composition range under proper con­
ditions and even the formation of intermolecular 
aggregates. 9 ' 10 

Measurements of the intrinsic viscosity [r;] of 
ABA-type (poly(methyl methacrylate)-poly­
styrene-poly(methyl methacrylate)) triblock 
copolymers were made9 which implied also an 
intrachain phase separation: the ordinary random 
coil structure of the side-block copolymers col­
lapses in their (} solvents below the (} tempera­
ture, resulting in intrachain association, with the 
central block being closed to a ring conforma­
tion due to aggregated strands of the two side 
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blocks. For high-molecular-weight samples, the 
[r;] values of ABA-type triblock copolymers are 
reported to be smaller in the (} solvent for side 
blocks A than those of the precursors B, which 
possess only about half the molecular weight or 
chain length of the whole block copolymer chain. 

To explain this fact expressions for the free 
energy and the volume-expansion factor of 
ABA-type triblock copolymers are obtained and 
some conformational anomalies are discussed. 

Flory's equation11 

a 5 -a3=C(l -8/T)M112 ( 1 ) 

is used here, where M is the molecular weight, 
T is the temperature, (} is the function of the 
solvent quality, and a is the so-called volume­
expansion factor. 

One of the methods for determining the 
dimensions of macromolecules in dilute solutions 
involves the observation of the intrinsic viscosity 
number [r;] 

where (J) is a constant thought to be the same 
for all systems and [r;]8 is the intrinsic viscosity 
under (} conditions. [r;] increases monotonously 
with the molecular weight M. 
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THE ESTIMATION OF THE MODEL 

In order to make use of the lattice theory, a 
triblock is represented by three spherical seg­
mental distributions connected to each other by 
four sticks (Figure 1). One end of each stick 
is at the center of a sphere and the other is 
freely jointed with the next stick to connect 
two neighboring polymer blocks. This model 
has been suggested by Chujo and Yamamoto. 12 

The radius of each sphere is presumed to be 
equal to the radius of gyration of the cor­
responding polymer block, that is, (nb2 /6)1/ 2 for 
side blocks and (mb 12/6)1 12 for the central block, 
where n, b, m, and b' are the number of seg­
ments and the bond length of polymer A and 
of polymer B, respectively. To avoid unneces­
sary complication, we assume here that the 
numbers of segments in the two side blocks are 
the same. The length of a stick is taken to be 
equal · to the root-mean-square distance between 
the center of mass and an end of each polymer 
block. 

( 3) 

The calculation of the mean-square radius of 
gyration of a diblock copolymer for a similar 
model shows the same value as the exact one. 

The mean-square radius of gyration of an 
ABA triblock copolymer for this model can be 
calculated to be 

<s2)={2n2MA(4nMA +3mMB)b2 

+m(4n2 MA 2 +6mnMAMB 

+m2MB2 )b12 )/6(2nMA +mMB)2 ( 4) 

B 

where MA and MB are the segment masses of 
polymers A and B, respectively. For a homo­
polymer (b' =b, MA =MB), the value of eq 4 
should be equal to the exact value of (m+2n)b2/6, 
independent of the choice of m and n. The 
ratio of the value of eq 4 to the exact one 
becomes 

l -2a/(a+2)3 ( 5) 

where a=m/n. This depends on a and is not in 
general equal to unity. However, it is between 
1 and 25 /27, the minimum value at a= 1, and 
we can consider this model as rather suitable 
in our approximate treatment. 

THE PROBABILITY DENSITIES 

In order to discuss the statistical behavior of 
the model, we must consider the normalized 
probability density of the occurrence of the 
center of a side block at a position r from that 
of the central block. Taking the center of 
mass of the central block as the origin of the 
coordinate system, the end of the vector r moves 
in the shell between two spheres of radius B-A 

and B+A (Figure 2). Point P, the end of 
vector B, moves with equal weight on a spheri­
cal surface of radius B centered around point 
0. Point Q, the end of vector A, moves on a 
spherical surface of radius A centered around 
point P with equal weight on the surface. 
Taking B to be fixed, a conformation is 
determined by one position of Q. The shell 
between two spheres of radius r and r+dr 
intersects the spherical surface P resulting in the 

Figure 1. A triblock copolymer which is represented by three spherical segmental 

distributions connected to each other by four sticks. 
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Figure 2. The vanishingly small hatched zonal area where the shell between two spheres 
of radius r and r+dr and the sphere P intersect. 

zonal area 21rr-dr-A/B (see Appendix). Viewed 
from point 0, the probability that Q occurs at 
a position r is in proportion to this vanishingly 
small hatched zonal area. The occurrence prob­
ability density per unit volume is proportional 
to A/2Br. So the normalized probability density 
of the occurrence of a side-block center at a 
position r is given by 

It can be shown that this result is applicable 
to both the case of B>A and of A>B. 

On the assumption of a Gaussian distribution 
of the segments around the center of mass of 
each chain block, the normalized probability 
density for polymer segments at a position 
(r, [}, <p) in a fixed conformation is given by 

p(r, [}, <p)=vA +vB 

l/(81rABr) ( 6) where 

A 

B 

Figure 3. The positions of the two side blocks 
taking the center of mass of the central block as 
the origin of the coordinate system. 
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1 ( 9 ) 3
/

2
{ [ 9R/] [ 9R/]} 

J.IA=2 nnb2 exp - nb2 + exp - nb2 

( 9 ) 3
/

2 
[ 9r2 

] 
J.IB= nmb'2 exp - nb2 ( 7) 

are the normalized probability densities of the 
polymer segments A and B (see Figure 3). 

THE PARTITION FUNCTION AND 
THE FREE ENERGY 

The partition function Z for a small volume 
element dV is evaluated by Bragg-Williams 
approximation with the lattice model. The sizes 
of an A-segment, a B-segment, and a solvent 
molecules C are all assumed to be the same and 
a lattice cell corresponds to either a segment 
or a solvent molecule. 

The interaction energies between polymer seg­
ments and solvent molecules AA, BB, CC, AB, 
BC, and CA are denoted by 

0 11, 022, 033, 012, 023, and 031 • 

If the volume element dV consists of N1 A-
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segments, N2 B-segments, and N3 solvent mole­
cules C (N=N1 +N2+N3), and the numbers of 
the pairs are 

M11, M22, Maa, M12=(z-2)Xa, 

M23 =(z-2)X1, M31 =(z-2)X2 

with the coordination number z, then the total 
potential energy LJE in d V can be written as 

L1E=(z-2){(N1s11 +N2s22+N3s3a)/2 

+(X3Lls12 +X1Lls2d-X2Lls31 )} ( 8) 

where 

Lhij= Ll•ji =•;j-(s;; +•jj)/2 

is the excess interaction energy for forming an 
i-j pair. 

By the Bragg-Williams approximation the 
partition function Z in d V becomes 

Z=( z-_~)N1+N2~ 
N Na! 

[ 
z-2 

X exp - -2.kT (N1°11 +N2•22+Na•aa) 

z-2 (N1N2 A N2Na A NsN1 A )] 
- k T ---N- 1.J • 12 + ----;,.;-- 1.J • 2a + ----;,.;-- 1.J •a 1 

( 9) 

The free-energy density f in this Volume 
element is given by 

fdV= -kTin Z (10) 

The mixing free-energy density Ll/M, the re­
mainder of f after the summation of pure ones 
has been subtracted, is 

LlfMdV=(z-2)(N:2Ll.12+ N:3Lls2a 

+--1.Jc31 + n~ NsN1 A ) kT I Na 
N N 

={2n(61-kT)'))A +m(62 -kT)'))B 

+4n2l3(-61 +kT/2)'))A2 

+m2l3(-02+kT/2)'))B2 

+2mnl3(612-61 -62+kT)'))A'))B) 

x r2 sin ,9drd,9dsa 

where we use the relations 

N 1=2n'))AdV, N 2=m'))BdV, 

d V = r2 sin ,9drd,9dsa 

N=dV/!3 , 

( 11) 

(12) 

with the lattice constant l. We denote the (}­
value for each pair by 

61=(z-2)Llsa1, 62=(z-2)Lls2a, 612=(z-2)Lls12 

(13) 
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Substituting eq 7 into ')) A and '))B and integrat­
ing Llf M over the whole space, the total mixing 
free-energy ,dFM at a fixed conformation becomes 

LJFM= r~:[LlfMdV 

10 

=2n(61 -kT) +m(62-kT) 

+ ,,;\ n2!8(-61 +kT/2)(9/1rnb2 )312 

X {l +exp [-9R2/2nb2]) 

+ _ ~-m2l3(-02 +kT/2)(9/1rmb12 )312 
2v 2 

+27mnl3(612-61-62+kT) 
X ;r -a/2(nb2 +mb'2)-a;2 

X {exp [ -9r//(nb2 +mb12 )] 

+exp [ -9r//(nb2 +mb12 )]) (14) 

~" . 
T *5 .___, 

-- Ring 

---- B 

2xrn 

2 3 
a 

Figure 4. The volume expansion factors expanded 
around unity for m=anat T=303°K with61=308°K, 
6)2=0°K, and 612=303°K-350°K. The subscription 
R indicates a ring conformation. 
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where of the blocks, after introduction of the volume­
expansion factors of the blocks A and block B 

in the solution, a 1 and a 2 (b~a1b, b' ~a2b'), the 
conformationally averaged mixing free-energy 
LlFMc is obtained as 

(Figure 4) 

Making use of eq 6 for the normalized prob­
ability densities of the position of each center 

LlFMc= r [IA+Blr rxr f2rr(-1-)2- 1-JFMr/ sin ..91dr1d..91d\01r/ sin ..92dr2d..92d\02 
JJ1A-BIJJ0JJ0 811:AB r1r2 

=2n(01 -kT)+m({J2 -kT)+9n2l3(-01 +kT/2)/v'6rr312 A3a 13 

+(n2f3/8rr3/2)(-01 +kT/2)/A2B2a12a/[ (Aaif v'6){2e-6 -2+2e-61B2a22/A2a121 -e-6IBa2/Aa1-112 

'{ r J"ij" r V6(Ba3/ Aa1l r V6(Ba2/ Aacll 
-e-BIBa3/Aai+112}+2 2Aa1 Jo e-t2dt+2Ba2 Jo e-t2dt+(Aa1-Ba2) Jo e-t2dt 

r VO(B«2/Aa1+ll t2 }] 2 3 - 3 2 3 3 
-(Aa1 +Ba2) Jo e- dt +(9m l /2v' 6 rr 1 )(-02+kT/2)/B a 2 

+( v'T mn/3/211:312)(012-01 -02+kT)/ABa1a2(A2a12 +B2a 22)112 

X {exp [-3(Aa1-Ba2)2/(A2a/+B2a/)]-exp [-3(Aa1 +Ba2) 2/(A2a/ +B2a/)]} (15) 

Apart from this m1xmg free-energy, there is 
another component of the free energy, that is, 
the excess elastic free-energy L1F01 due to the 
conformational entropy. According to Flory's 
theory we have 

by the minimum condition on the free energy 

oL1F/oa1=oL1F/oa2 =O (18) 

Unfortunately LlFMc is so complicated that eq 
18 cannot be solved exactly without any ap­
proximation. Therefore we are compelled to 
use the linear approximation with respect to 
(a1-l) and (a2-l). After the calculation the 
solution may be rounded into the well-known 
Flory's expression. Carrying out a lengthy and 
tedious calculation, we have 

LlF01=2 X jkT(a/- I)-2kT In a 13 

+JkT(a/-1)-kTin a/ (16) 

The total free-energy change LlF due to dis­
solution is given by 

( 17) 

THE VOLUME-EXPANSION FACTOR 

a/-a/=¢1(1-81*/T) 

a/-a/=¢2(1-82 * /T) (19) 

The values of a 1 and a 2 can be determined where 

360 

81 *=(P181 -Q1812)/(P1 +2Q1) 

8 2 *=(P281 +Q282-R2812)/(P2+Q2+2R2) 

p 1 =9 ,y16 n2/3/Zrr3;2 As +(n2t3/8rr3/2 A2 B2{ (A/v'T){Ze-s -Z+ze-s1B2;A2i -e-BIB/A-112 -e-slB/A+112} 

{ r Jo r V6(B/Al r V6(B/A-ll r V6(B/A+l) }] 

+2 2A Jo e-t2dt+4B Jo e-12dt+(A-2B) Jo e-12dt-(A+2B) Jo e-t2dt 

Q1 ={ v'T mn/3/211:312 AB(A2+B2)5l2}({(2A2+B2)(A2 +B2)+6AB(A2-B2)} exp [-3(A-B)2/(A2 +B2)] 

+{-(2A2+B2)(A2+B2)+6AB(A2-B2)} exp [-3(A+B)2/(A2+B2)]) 

Polymer J., Vol. 6, No. 5, 1974 
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p 2=(n2/8/411:3/2 A2 B2{ (A/v'°6){2e-6 _ 2+ 2e-61B2/A2J -e-GIB/A-112 -e-6IB/A+112} 

f ,/5 f Va(B/A) f V6(B/A-1) f V61B/A+l) _ 2 ] 
+4A Jo e-t2dt+2BJ

0 
e-12dt+(2A-B) Jo e-t2dt-(2A+B) Jo e t dt 

Q2=9v'6 m2t3/411:312B3 

R2=-{v'3 mnt3/211:312 AB(A2 +B2)512}({-(A2+2B2)(A2 +B2)+6AB(A2-B2)} 

xexp [-3(A-B)2/(A2+B2)]+{(A2+2B2)(A2+B2)+6AB(A2-B2)} exp [-3(A+B)2/(A2+B2)]) 

(20) 

In terms of eq 4 and 19, the volume-expansion factor for the whole block copolymer is 
calculated to be 

2 
IX 

2n2 MA(4nMA +3mMB)b2a 12 +m(4n2 MA 2 +6mnMAMB+m2 MB2)b12a22 

2n2MA(4nMA +3mMB)b2 +m(4n2MA 2 +6mnMAMB+m2 MB2)b12 
(21) 

For the special case of a homopolymer B, 
eq 19 results in 

aB5 -aB 3 =27 x 2-5/ 211:-312m112(1-82/T) (22) 

This is, of course, just the same as Flory's 
result. 

DISC:USSION 

Below the 0 temperature for the side blocks, 
they may coagulate to make the whole co­
polymer a ring and so restrict the whole con­
formation into a smaller radius of gyration. In 
order to discuss this point, the excess free-energy 
.JFR in the ring conformation is evaluated and 
compared with the average free-energy .JF for 
all conformations. 

The free energy in the ring conformation is 
given by 

L1FR=2n(01-kT)+m(02-kT) 

+(3v'6n2t3/n312)(-01 +kT/2)/A3a~R 

+(3v'6 m 2t3/411:312)(-02+kT/2)/B3a;R 

+(v'T mnt3/211:312 )(0;2-01-02+kT) 

/ ABarna:2R(A2 af R + B2a;R)112 

X {exp [ -3(Aarn-Ba:2R)2/(A2aiR +B2a;R)] 

-exp [ -3(Aarn +Ba2R)2/(A2aiR +B2a;R)]} 

+2xFT(aiR-l)-2kTln a;R 

+}kT(a;R-1)-kTin a!R (23) 

where a:rn and a2R are volume-expansion factors 

of the blocks A and the block B in the ring 
conformation. Equation 23 gives a special case 
where r1=r2, {}1={}2, and <p 1=<p2, as shown in 
Figure 3 . 

.JFR is different from .JF only in the term 
proportional to the square of the segmental 
density v A of the block A. 

It is not so difficult to see that .JFR is 
certainly smaller than .JF below the 0 tempera­
ture for the side blocks, because the volume­
expansion factors near the 0 state can be 
regarded as close to unity and the exponential 
terms and the error functions in the coefficient 
of (-01+kT/2) in .JFMc are much smaller than 
the others. An ABA-type triblock copolymer, 
in such a case, would reasonably make a ring 
with the following volume-expansion factors 
a:rn and IX2R 

IX~R -IX~R =<f1R( 1-fJ[R/T) 

where 

¢rn=(Prn+2Q1R)/12, ¢2R=(Q2R+2R2R)/6 

etR=(PrnB1 -QrnBrnl/(Prn +2Q1R) 

BiR=(Q2RB2-R2RB12)/(Q2R+2R2R) 

P1R=9v'6n2l3/11:312A3 , Qrn=Q1 

P2R=0 , Q2R=Q2 , R2R=R2 

(24) 

(25) 

The unperturbed radius of gyration in the 
ring conformation for this model is calculated 
to be 

4n2MA(6nMA+5mMB)b2+m2MB(14nMA+3mMB)b 12 +4nmMAMBlmb'2-nb2I 

18(2nMA +mMB)" 
(26) 
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The volume-expansion factor for the whole block copolymer in the ring conformation becomes 

4n2 MA(6nMA +5mMB)b2aiR +m2 MB(14nMA +3mMB)b12a~R +4nmMAMB!mb12a~R-nb2aiRI 
4n2MA(6nMA + 5mMB)b2 +m2 MB(14nMA +3mMB)b12 +4nmMAMB!mb12 -nb2 ! 

(27) 

From eq 4 and 26, the ratio of <s2)R to <s2) 

for this model is given by 

<s2)R 3a3 + 14a2 +20a+24+4ala-1 I (28) 
<s2) 3(a3 +6a2 +10a+8) 

where b=b', MA=MB, and m=an. 
between 1 and the minimum value 
a=l. 

This is 
61/75 at 

Experiments were made with nearly equimolar 
block copolymers of the ABA-type (poly(methyl 
methacrylate)- polystyrene- poly(methyl meth­
acrylate )) at 30.0°C in p-xylene whose 0 tempera­
ture for the side blocks A is 35 °C. 9 

Expanding the volume-expansion factors 
around unity, eq 19 and 24 are reduced to 

2x1 =1Jf'1(1-8//T), 2x2 =1Jf2(1-8//T) 

2xrn=1J!'rn(l-8i'R/T), 2x2R=1Jf2R(1-8;R/T) 

(29) 

The results of substitution of the values of 
eq 25 for m=an into eq 29 at 8 1=308°K and 
T=303°K are shown in Figure 4 for the various 
values of a. Asp-xylene is a moderate solvent 
for the central polymer, polystyrene, 8 2 is 
assumed to be 0°K. It is reasonable to regard 
2012/k, the polymer-polymer 0 temperature, as 
fairly high, but it makes little difference in each 
volume-expansion factor whether 2012/k is taken 
to be 303°:K or 350°K. 

Below a= 1, a 2R is slightly smaller than a 2 , 

while the volume-expansion factor in the ring 
conformation of a isolated chain is generally 
larger than that of the linear one. 13 This is 
because of the existence of the side-block 
copolymers which are immersed in their 0 
solvent. Unlike the general isolated chain also, 
2X1 and 2Xrn are not always negative below 
their 0 temperature, because of the intervention 
of the other parameters, 8 2 and 8 12 • 

The intrinsic viscosities [ r; ]B of the parent 
homopolymer B and [r;]R for the ring conforma­
tion are evaluated by eq 2, 22, 26, and 27, 
assuming that b'::::.b 1 and MA'::::.MB, due to the 
nearly equal molecular weight M 0 of each 
monomer of methyl methacrylate and styrene. 
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Figure 5. The intrinsic viscosities :: [r;]B of the 

parent homopolymer B and :: [r;]R for the ring 

conformation at T=303°K with l91=308°K, 192= 
0°K, and 1912=303°K-350°K. 

The numerical values of [r;]B and [r;]R for the 
various values of a are plotted in Figure 5 for 
n= 1000, where m=an means that the molecular 
weight of the parent homopolymer B is a X n and 
that of the ABA block copolymer is (a+2)n. 

Below a'::::.2.6, [r;]R is always smaller than 
[r;h, which possesses a smaller molecular weight 
than [r;]R- This tendency is more emphasized 
with decreasing a value and becomes most 
pronounced at a= 1 where the ratio of <s2)R to 
<s2) comes to a minimum. Small a values 
mean a large molecular-weight ratio of the side 
blocks A to the central one and then the 
intramolecular attraction of the side polymers 
below the 0 temperature becomes dominant and 
accelerates the decreasing of the intrinsic 

Polymer J., Vol. 6, No. 5, 1974 
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viscosity. The reason why even [r;]R can not 
be smaller than [r;]B above a::2.6 seems to be 
that the side polymers' interaction can only 
make a slight contribution to the decrease of 
[r;]R due to the small molecular-weight ratio of 
the side, though the conformational effect makes 
[r;]R somewhat smaller. 

It is reasonable to say, in this sense, that the 
intrinsic viscosity becomes smaller because of 
the small unperturbed radius of gyration in the 
ring conformation, apart from the effect of the 
interaction energy which would heighten the 
decrease of the viscosity, and that the side 
blocks A in the ring conformation restrict the 
allowable conformation of the central block B 
so much as to make the intrinsic viscosity of 
the whole block copolymer smaller than that of 
the precursor B below the vicinity of a=2.6. 
A similar tendency appears for the other values 
of n, e.g., 100 or 10000. 

APPENDIX 

Increasing r by an vanishingly small amount 
dr, a shell between two spheres of radius r and 
r+dr can be drawn. This shell and the sphere 
P intersect at an infinitely small zonal area on 
the spherical surface of sphere P (Figure 2). The 
width of this zone is dr/sin ,9'. So this area 
becomes 

r Sill fJdf-. - =-. --, 2irrdr=-2irrdr 
2• • dr sin ,9 A 

O Sill ,9 Sill ,9 B 

The integral 

~
IB+AIA 2 

-2rrrdr=4rrA 
IB-AIB 

gives the spherical surface area of sphere P. 

Polymer J., Vol. 6, No. 5, 1974 

This situation occurs at any point Q on the 
spherical surface of radius r centered around 
point 0. The volume increase in the space due 
to dr is 4irr2dr. Normalized by the spherical 
surface area 4irA2 of sphere P, the probability 
density per unit volume becomes 

A I 1 1 
- 2irrdr--2 --2-=--­
B 4irA 4irr dr SirABr 
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