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ABSTRACT: The helix-coil transition of a polypeptide is investigated for the case 
in which a tensile force is applied at the chain ends. The free energy is calculated by 
the use of a Green's function which was first introduced by de Gennes. The helix 
content, the mean end-to-end vector, and the mean length of the helical sequences are 
calculated as functions of the external force. It is found that in the coil region, the 
helical sequences continue to break as the external force increases. However, in the 
helix region, the external force first winds the polypeptide and produces longer helical 
sequences, but when the force becomes strong enough, the helical sequences break abruptly, 
and finally the polypeptide is brought to the random coil state. 
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The statistical mechanical theory of the helix
coil transition of polypeptides has been investi
gated by a number of authors. 1 Many charac
teristic features of the transition have been 
clarified, such as the change in helix content 
and the expansion of the polypeptide chain as 
functions of the PH or the temperature. 

In this paper, we shall focus our attention on 
the effect produced by an external force applied 
at the chain ends. This problem was first con
sidered by Birshtein2 using a one-dimensional 
model. She assumed that peptide units in the 
helical state are aligned in the direction of the 
applied force and those in the coil state arrange 
themselves, with different probabilities, either par
allel or antiparallel to that direction. Similar cal
culations have been reported by other workers3•4 

who were concerned with tension-length iso
therms in keratins. A more realistic three-di
mensional model was treated by Saito and Go,5 
who expanded the partition function of a poly
peptide subjected to a tension in powers of the 
applied force. Following their treatment, the 
problem is reduced to the calculation of the 
moments of the end-to-end vector (R2), (R4), ••• , 

the quantities which were discussed by many 
authors. 1 •6 •7 However, the calculation is very 
cumbersome even for the fourth moment, and 
for this reason their results are restricted to the 
case where the external force is very small. 
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In the present paper, we solve the problem 
without recourse to such an expansion method. 
The model considered here is the same as that 
used by previous authors in the computation of 
the moments. 1 • 7 The random coil part of the 
chain is regarded as a Gaussian chain and the 
helical part is assumed to be a rigid rod. The 
essential point is that we consider the partition 
function of these parts as functions of their 
end-to-end vectors. Such treatment was first 
introduced by de Gennes, 8 who applied the 
method to the helex-coil transition of poly
nucleotides forming a hair-pin-type helix. In 
comparison with the conventional treatment, 
the method seems to be more advantageous 
because of the simplicity of the calculation. 

We shall calculate the exact partition function 
of a polypeptide with tensions in the limit of 
large degree of polymerization, and discuss the 
change in the helix content and the mean end
to-end distance with the tensile forces. In par
ticular, the effect of large external forces is 
discussed. It will be shown that an interesting 
feature, which could not be predicted by the 
expansion method, appears in the presence of 
large external forces. 

PARTITION FUNCTION 

Let us consider the partition function Z(R) 
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cr:s> ~Cr,.~ cr:s> ~Cr'.sl 
G (r-r':s-s)= r--._ + r,.s2) + + 

cc (rj;) V (r,s) (r,s) 

Figure 1. Illustration of eq 4. The partition function is obtained by summing 
up all the statistical weights of various interupted helix states. 

of a polypeptide chain with a given end-to-end 
vector R. Since the polypeptide can be in any 
of the interrupted helix states shown in Figure 1, 
we must sum up all the statistical weights of 
these conformations. The statistical weight of 
a portion of the chain may be calculated as 
follows. 

For a random coil part of s peptide units 
starting at point r', and ending at point r, the 
statistical weight is given by 

Ge 101(r-r'' s) 

( 3 )3/2 ( = 2nb2 s e -us exp 3(r-r')2 )e(s) ( 1 ) 
2b2s 

with 

B(s)={l s~O 
0 s<O 

where b is the effective bond length of the chain 
in the random coil state and u is the free energy 
(divided by kBT) of a peptide unit. On the 
other hand, for a helical sequence of s peptide 
units starting at r' and ending at r, the statis
tical weight is expressed as 

Gh 101 (r-r', s)=[4n(as)2r\j(lr-r'l-as)l9(s) ( 2) 

where a is the length of a bond projected onto 
the helical axis. 

The above statistical weights are subject to 
the normalization conditions: 

~Gh101 (r, s)d3r=l 

~Ge101(r, s)d3r=e-u• 
( 3) 

if all the free energies are measured from the 
complete helix state. Thus, in what follows, u 

is taken as the free energy difference between 
the coil and the helix states. If u>O, the helix 
state is more stable than the coil state, so that 
we shall refer to u > 0 as the "helix region" 
and to u < 0 as the "coil region." 

Let us consider the part of the peptide chain 
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between the s-th peptide unit and the s' -th one, 
and let r and r' be the position vectors of its 
end peptides. When these terminal peptides are 
in the coil state, the statistical weight of the 
portion under consideration is given by (see 
Figure 1) 

Gee(r-r', s-s') 

= ,,,~/2" d3r1ds1 d3r2ds2 · · · d3r2,,,ds2,,, 

X [Ge 101 (r-r1 , s-s1)Gh 101 (r1-r2, S1 -s2) 

xGe 101 (r2-Y3, S2-S3)• • ·Ge 101 (r2,,,-r', S2,,,-s1)] 

( 4) 

where v is the statistical weight of the boundary 
between the helix and the random coil sequences, 
at which there is a lack of hydrogen bonding. 
The integral in eq 4 may be extended from 
minus infinity to plus infinity for both r and s 

because of the (9 function involved in eq 1 and 
2. Similarly, it is possible to define the statis
tical weights Ghh(r, s), Geh(r, s), and Ghe(r, s) 
for the portions of the chain whose terminal 
peptides are in helix and helix, coil and helix, 
and helix and coil, respectively. But we shall 
not discuss them further since only Gee is neces
sary for the following discussion. 

The sum in eq 4 can be evaluated by use of 
Fourier transforms. Let us consider the functions 

where 

GelOl(k, w)= ~d3rdseik•r-iwsGelOl(r, s) 

=(iw+u+¼b2k2)- 1 ( 5) 

GhlOl(k, w)= ~d3rdseik-r-iwsGhlOl(r, s) 

=-1-ln w+ka 
2ika w-ka 

k=lkl 

( 6) 

In these equations, we have used the same 
symbols Ge 101 and Gh 101 for the original statis
tical weights and their Fourier transforms. This 
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will cause no confusion because we shall use 
the variables k, k' and w, w', . , , for the argu
ments of the Fourier transformed functions. 
The Fourier transform of eq 4 gives 

Gcc(k, w)= ~d3rdsei1<-r-iwsGcc(r, s) 

= £ v2nGclOl(k, w) 
n=O 

x[Gh 101 (k, w)Gc 101 (k, w)r 

G0 10 \k, w) 

( 7) 

Since it has been assumed that the peptides 
at the chain ends are in the coil state, the par
tition function of the whole chain Z(R) is equal 
to the statistical weight Gcc(R, N), where N is 
the degree of polymerization. Thus 

Z(R)= \ dak ~e-ik-R+iwNG (k w) ( 8) J (2n-)3 2ir cc ' 

We now proceed to the case in which a con
stant force Fis applied at the ends of the poly
peptide. The partition function for this case 
is given by 

Q(F)= ~d3RZ(R) exp [ :~:] ( 9) 

Comparing this with eq 8, we obtain 

Q(F)=l~eiwNGcc(k= -iF, w) (10) J 21!' kBT 

or by use of eq 7 

Q(F) -~dwiwN[·+ lc2 v2 1 w-ifr]-l - -e zw u--, -- n---
2ir 6 2fr w+ifr 

(11) 
where 

f= !Fib and r=!1__ (12) 
kBT b 

Analytical properties of the integrand on the 
right-hand-side of eq 11 in the complex w-plane 
are illustrated in Figure 2. There are two poles 
P and P', and two branch points A and B on 
the imaginary axis. The contour of the integral 
is denoted by C. If we deform the contour C 
to C', the integral is evaluated as a sum of 
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B 
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Figure 2. The contour for the integral of eq 11. 

three contributions; two contributions from the 
poles P (=iv) and P' (=iv') and one contribu
tion from the cut AB (A= -ifr and B=ifr). 
The order of magnitude of these contributions 
is e-•N, e-•'N, and e•rN, respectively. Thus for 
sufficiently large N, the integral is predominated 
by the contribution from the lower pole iv. 
From eq 11, the equation for v is shown to be 

1 2 v2 I v-fr v-u+-f =-- n-- (13) 
6 2fr v+fr 

The integral is then evaluated to give 

-vN 

Q(F)= l+v2/~v2-(fr)2) (14) 

The second term multiplied by v2 in the de
nominator of eq 14 is associated with the effect 
of chain ends, which can be neglected when N 
is large. Thus we finally obtain 

(15) 

This simple relation is the starting point of the 
following analysis. Equation 15 implies that v 

is the free energy (divided by k 8 T) per peptide 
unit under the action of the tensile force F. 

APPROXIMATE EXPRESSIONS FOR 
THE EREE ENERGY 

Equation 13 is a transcendental equation for 
v, but it can be solved numerically. The result 
is shown in Figure 3, where v is plotted as a 
function of the reduced external force f. The 
values chosen for r and v are r=0.066 and 
v2=2X 10-4 (we shall use these throughout this 
paper). It is seen that in the coil region where 
u <0, v(f) is a smooth function (almost para
bolic), but that in the helix region where u > 0, 
v(f) appears to be composed of three parts: a 
parabolic part for small f, a linear part in the 
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shifts to the left. Since the graph of y 2 rapidly 
approaches the asymptotes y=0 and x=-fr, 
the solution of eq 13 is approximately determined 
as a function of ~. 

(a) The Case of Small External Forces 
In this case, we can solve eq 13 by expanding 

Ii(~) in powers of 

1i(~)=lio+A~2 (16) 

The odd order terms disappear because eq 13 
remains unchanged for the transformation~--~
Substituting eq 16 into eq 13 and comparing 

0.4 0.6 
FORCE Fb/ksT 

O.B 1.0 terms of the same order in ~. we obtain 

Figure 3. Free energy per peptide unit is plotted 
against external force. 

intermediate region, and again a parabolic part 
for large ~- To investigate in some detail this 
specific behavior of Ii(~) in the helix region, we 
consider the graphical solution of eq 13. 

In Figure 4, we have plotted the following 
two functions of x which appear on both sides 
of eq 13: 

Y1=x-u+M2 

v2 x+~r 
Y2=--ln--

2fr x-~r 

The two straight lines in Figure 4 represent the 
graph of y1 for the helix region (u>0) and the 
coil region (u<0). The graph of y2 is common 
to these two regions, and the points of intersec
tion give the solution of eq 13. As~ increases, 
the graph of y 1 shifts upward and that of y 2 

y 

(a) (b) 

li0=-½( ./u2 +4v2 -u) 

A -1i/+2/v2 

61io(lio 2 + v2) 

(17) 

The unperturbed term lio is the free energy per 
peptide unit in the absence of the external force. 
Note that for all values of u, v, and r, lio and 
A are negative. This should be so since if 
A> 0, the system would be unstable. 

(b) The Intermediate Case 
This case is illustrated in Figure 4b, where 

the point of intersection is close to the asymptote 
x= -~r, so that the solution is approximately 
given by 

(18) 

(c) The Case of Strong External Forces 
In this case, the point of intersection is close 

to the x-axis, as illustrated in Figure 4c. There
fore, the solution is approximately given by the 
equation y1 =0, which leads to 

y 

COIL 

X 

(c) 

Figure 4. Graphical solution of eq 13. 
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(19) Using eq 15, this may be written 

There is no definite borderline between cases 
(b) and (c), but we can estimate a critical value 
~c which may be used to distinguish the two 
cases. As observed in Figure 4, we may presume 
that, at the critical state between the cases (b) 
and (c), the graph of y1 passes the point (-~r, 0), 
and therefore ~c satisfies 

-~cr-u+lt~.2=0 (20) 
whence 

(21) 

It should be again stressed that the above 
approximate expressions for free energy, eq 16-
19, apply· only to the helix-rich state. On the 
other hand, in the coil-rich state, J.J(~) is ap
proximately given by eq 19, as is expected from 
Figure 4. In the following section, we shall 
make use of these approximate expressions for 
J.J(~)-

HELIX CONTENT AND MEAN 
END-TO-END VECTOR 

The mean end-to-end vector (R) is immediately 
obtained from eq 10 as 

I d3R exp ( F,R )z(R)R 
(R)= J kBT kBT a~ In Q(F) 

d3R exp ( )z(R) 
(22) 

Since (R) is always parallel to the vector F, 
we shall discuss only its magnitude R=[R[. 
Use of eq 12 and 15 gives 

(R)= -Nb~ (23) 
a~ 

In a similar manner, from eq 4, we can cal
culate the mean number of peptide units in the 
coil state 

<N0 )=[Q(F)r1 f: ld3R exp ( F,R) 
n=o) kBT 
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X d 3r1dS1 • • • d 3r2nds2n 

X (N-s1 +s2-s.+ · · · +s2N)v2n 

X G0 10l(R-r1, N-s1)Gh 101 (r1-r2, s1 -s2) · · · 

X Gc 10 \r2n, S2n) 

a =--lnQ(F) au (24) 

Therefore, the helix content is given by 

1-~ au 

(25) 

(26) 

The derivatives in eq 23 and 26 can be ex
pressed in terms of J.J. Differentiation of eq 13 
with respect to u yields 

a)) J.J2-C~d 
au J.)2+v2-(fr)2 

(27) 

Hence eq 26 gives 

J.J2+v2-(~d 
0 

v2 
(28) 

In a similar manner, from eq 13 and 23 we 
have 

(R) i-(~r)2 J.J-U J.JV2 ] 
Nb = i+v2-(~r)2 -~-+2- ~(J.J2-(~r)2) 

(29) 

Thus by using the curves for J.J shown in Figure 
3, it is possible to calculate the helix content 
and the mean end-to-end vector. The numerical 
results are shown in Figures 5 and 6. 

Helix Content 
As seen from Figure 5, a small external force 

either increases or decreases the helix content. 
This fact was first pointed out by Saito and Go. 5 

To investigate it in more detail, let us calculate 
0 by use of eq 16 and 26. The result is 

1.0 
CD 

'z:0.8 
w ..... 
§0.6 
u 1---------
::i O. 4 
w 
I 0,2F-_-~0.=...:02'--

u=0.03 

0.0t==-:'.::0.0=5::::i:======="'~~..:::J 
0.2 0.4 

Fb/k8T 

(30) 

Figure 5. The helix content is plotted against the 
external force. 
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0.3 

.Q 

y0,2 
z 
0 
t7i 
z 
w 
~0.1 
w 

U= 0.03 ---~ 

0.02 ------

0.2 0,4 / T0,6 
Fb ks, 

0.8 1.0 

Figure 6. The mean end-to-end distance is plotted 
against the external force. 

where 00 is the helix content in the absence of 
the external force, i.e., 

v2 
(31) 

Therefore the helix content either increases or 
decreases depending on 

(32) 

This property is closely related to the well
known fact that there is a minimum in the 
mean-square end-to-end distance plotted as a 
function of temperature6 (or u in the present 
case). To varify this, we note that 

-~=-1- a<R) (33) 
a~ a~au Nb au 

On the other hand, according to the linear re
sponse theory 

(34) 

where the angular brackets with suffix O refer 
to the average in the absence of external force. 
Hence eq 33 is written 

a0 F a<R2) 0 

a~ 3kBTNb au (35) 

which shows that 0 increases or decreases in 
accordance with the sign of a<R2 ) 0;au. 

As the external force increases, the helix con
tent continues to decrease in the coil region, 
whereas, in the helix region, the helix content 
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increases first to a maximum, and then begins 
to decrease abruptly as the external force be
comes large. This behavior may be qualitatively 
understood by the approximate free energies 
obtained in the foregoing section. In fact, eq 
16-20 and 26 give 

for (a) (~«I) 

(b) (~;S;~c) 

(c) (~;:2;~c) 

0=00-~~2 

au 
0=1 

0=0 

(36) 

These simple expressions for 0 agree closely with 
the exact numerical results for U=0.03. 

Mean End-to-End Vector 
In the coil region, the mean end-to-end dis

tance is proportional to the external force, and 
it is well described by the relation 

<R)= Nb2 F 
3kBT 

(37) 

However in the helix region, <R) shows a some
what complicated behavior. For small external 
forces, <R) is proportional to · F, but as F in
creases, <R) becomes almost constant, and for 
larger F, <R) abruptly approaches the curve 
given by eq 37. Such behavior of <R) is also 
predictable from eq 16-20 and 23, which give 

for (a) <R) =2A~ (38) 
Nb 

(b) <R) =r 
Nb 

(39) 

(c) <R) =_!_~ 
Nb 3 

(40) 

These expressions agree well with the curve for 
u=0.03 in Figure 6. 

The constant value of <R) given by eq 39 is 
Na, which is equal to the length of the com
pletely helical polypeptide. This fact suggests 
that the external force tends to produce a longer 
helical sequence, and that the increase of the 
helix content shown in Figure 5 is not a result 
of the appearance of new short helices but a 
result of the growth of the existing helices. 

To confirm the above picture of the helix
coil transition under tensions, we calculate the 
probability Ph(s) that a helical sequence consists 
of s peptide units. This probability is given by 
the statistical weight that a helical sequence is 
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followed by interrupted helices. Thus 

Ph(s)cc ~d3rd3r'Gh 101 (r', s) 

xGcc(r-r', N-s) exp ( F-r ) 
kBT 

Therefore 

P ( )_Csinh~rs •• 
hS- --~~e 

~rs 

(41) 

(42) 

where C is a normalization constant given by 

c-1= 1= ds sinh ~rs e"" 
)o frs 

=_!_ ln 1)-~r (43) 
2 I.J+~r 

The mean number of the peptide units in a 
helical sequence is thus calculated as 

<th)= 1= dsPh(s)s= 2 
2~r 2 ln ( 1.J-~r )]-1 (44) 

)o I) -(fr) I.J+~r 
In Figure 7, <th) is plotted against the external 

force ~- It is seen that the curve for u=0.03 
exhibits a very sharp maximum in the region 
(b). This clearly confirms the picture mentioned 
previously. Furthermore, in Figure 8, the mean 
number <nh) of helical sequences defined by 

(45) 

is illustrated. In the helix region, the number 
of helical sequences becomes very small for 
moderately strong forces. This implies the ex
istence of long helical sequences. As increases 
the curve of (nb) shows a peak, corresponding 
to the break of the long helical sequences. The 
critical force for the break can be estimated 
roughly be eq 21, yielding ~0 =0.67 (u=0.03) 
and ~0 =0.60 (u=0.02), which agree relatively 
well with the values for the peaks in Figure 8. 

DISCUSSION 

In the present paper, we have investigated 
effects of tensile forces on the helix-coil tran
sition of polypeptides. The results are summa
rized as follows. (i) In the coil region, the 
external force breaks the helical sequences, and 
both the helix content and the number of helical 
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~103 

v 
:c 
t5 z 
w 
..J 

I 
X 

a102 
:c 

10 

0.5 1.0 
Fb/k6T 

Figure 7. The mean number of the peptide units 
in a helical sequence is plotted against the tensile 
force. The length of the polypeptide chain is 
assumed to be infinite. 

0.2 0.4 0.6 0.8 1.0 
Fb/k8T 

Figure 8. The mean number of helical sequences. 

sequences decrease as the external force increases. 
(ii) In the helix region, the effect is somewhat 
complicated. The small external force winds 
the polypeptide and produces long helical se
quences. However, when the external force 
becomes sufficiently strong, the helical sequences 
break abruptly, and many short helical sequences 
appear, and at last the polypeptide tends to be 
completely randomly coiled. 
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Although the present theory is concerned with 
a single polypeptide chain, it may apply to poly
peptide fibrils in which the intermolecular inter
actions are unimportant. Since the critical force 
which breaks the long helical sequence into 
random coils is as small as 10-s dyn for the 
parameters used in this paper, there will be a 
possibility that the theoretically predicted effects 
of tensions are experimentally observed in such 
systems. 

The present calculation may also find an ap
plication in the case where a polypeptide mole
cule is subjected to a static electric field. Re
cently a theory for the helix-coil transition in 
this case has been worked out by Bean and 
Bennett9 based on the all-or-none model1 for the 
polypeptide. This model is appropriate for short 
chains, but for sufficiently long chains, the pre
sent theory should be more relevant. 

Suppose a polypeptide molecule is placed in 
an electric field E. Let µh and µc be the dipole 
moments of a peptide unit in the helix and coil 
states, respectively. We assume that the dipole 
moment Ph of a helical sequence (and Pc in case 
of a coiled sequence) is proportional to the end
to-end vector r of the sequence. Therefore we 
may write 

Then the partition function is given by 

Q(E)= nt V2n~ d 3r~ d 3r1dS1 • • • d 3Y2ndS2n 

x[GclOl(r-r1, N-s1)e-•E·lr-r1I 

X Gh 101(,1 -r2, S1 -s2)e-TE•E· lr1-r2I •.• 

XGc101(Y2n, S2n)e-•E·'2n] 
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(46) 

where 
_ Eµc e: le I _ aµh 

~E- akBT' '>E= 'iiE ' r.g- bµc (48) 

Equation 47 agrees with eq 12 if the parameters 
~E and rE are replaced by and r- Therefore 
the present method of calculation can be directly 
applied to the case under consideration. 
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