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ABSTRACT: Contributions of relaxation mechanisms with long relaxation times 
were examined for the shear stress ir;~(t, ir;) after a sudden stop of steady shear flow of 
a 20-% polystyrene solution in chlorinated biphenyl, where " is the rate of shear and 
t is the time of stress decay. The longest relaxation time r-m(ir;) and the corresponding 
strength l'}m(ir;) were evaluated from the slope and the intercept at t=O, respectively, of 
the asymptotic straight line at large t in the plot of log ~(t, ir;) vs. t. Those for the 
second longest relaxation time, r-m-i(11:) and 1/m-1(ir;), were obtained in a similar manner 
from the plot of log [~(t, ir;)-l'}me-t/,m] vs. t. The relaxation times r-m(ir;) and T"m-1(11:) 
were found to be independent of " and the ratio r-m(ir;)/r-m-1(ir;) was about 3. At the 
limit of zero rate of shear, 1/m(ir;) and 1Jm-1(ir;) were approximately 30 and 45%, respec­
tively, of the zero shear viscosity 1)0• As " increased, 1/m(ir;) and 1Jm-1(ir;) decreased more 
rapidly than the steady shear viscosity l'}(ir;) did; the difference 1J(ir;)-1Jm(ir;)-1Jm-1(ir;) was 
almost independent of ir;. It was concluded that the nonlinear behavior, such as the 
shear-dependent viscosity of the polymer solution, is mainly due to the nonlinear be­
havior of the few relaxation mechanisms with long relaxation times. 
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Tobolsky and Murakami have pointed out 
the importance of the relaxation mechanism 
corresponding to the longest relaxation time 
(the longest relaxation mechanism for short) in 
the study of flow properties of polymers at the 
limit of small strain.1' 2 They have examined 
the contributions of mechanisms of long relax­
ation times to the r~axation moduli for un­
diluted polystyrene and shown that about 70% 
of the zero shear viscosity is due to the longest 
relaxation mechanism. Recently we have sug­
gested that the strength of the longest relaxation 
mechanism is proportional to the third power 

of concentration for concentrated polystyrene 
solutions while those corresponding to the time 
scale of the rubbery plateau region are propor­
tional to the second power. 3 , 4 , 5 

In the case of large strain, the contribution of 
the longest relaxation mechanism has been investi­
gated for the strain-dependent relaxation modulus 
of a concentrated polystyrene solution. 6 It was 
found that the longest relaxation time is not 
affected by varying the strain, while the strength 
decreases very rapidly with increasing strain. 

In the present paper, the contribution of the 
longest relaxation mechanism is examined for 
the shear stress after a sudden stop of steady 
shear flow in a polymer solution. The purposes 
of this study are to show that the contribution 
may be evaluated over a wide range of rate of 
shear and to examine the detailed nature of 
the rate-dependent shear viscosity for a typical 
polymer solution. 
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METHOD 

The stress decay function rj(t, IC) we are con­
cerned with here is the ratio of the shear stress 
to the rate of shear after time t following a 
sudden stop of steady shear flow of rate of 
shear IC, This function may be expanded in a 
series of exponential functions as 

'ij(t, IC)=I: 7Jp(1C)e-t/<p 1' 1 , (Tm>Tm-1> ·· ·) ( 1) 
p 

where 7/p and Tp are functions of IC, When IC is 
very small, the relation of linear viscoelasticity 
applies 

7Jp=TPGP (IC small) ( 2) 

where GP is the strength of p-th relaxation 
mechanism; T P and GP are independent of IC in 
this case. On the other hand, 'ij(t, IC) reduces 
to the viscosity 71(1C) at the limit of t 0, 

7J(1C)= _E 7Jp(1C) ( 3) 
p 

The contribution of the longest relaxation 
mechanism may be estimated with a simple 
method provided that the longest relaxation 
time Tm is much longer than the next longest 
Tm-i and that 7/m is not much smaller than 
7/m-i· Under these conditions, the single term 
r;m(1C)e-tf,m 1• 1 due to the longest relaxation 
mechanism is much larger than the sum of the 
rest of the terms on the right hand side of eq 1 
in the range of large t. The plot of log 'ij(t, IC) 
vs. t gives a straight line in this time scale. 
The intercept of the straight line at t=0 gives 
r;m(IC) and the slope, -2.303/Tm(IC), gives Tm(IC). 
The contribution of the second longest relaxation 
mechanism may be estimated in a similar manner 
provided that Tm-i is much longer than Tm-2 
and that 7/m-i is not much smaller than 7/m-2· 
In this case, log [rj(t, 1C)-r;m(1C)e-t/•m1" 1J is to be 
plotted against t. Detailed criteria for this 
method have been given by Tobolsky and 
Murakami, 1 •2 who applied the method to the 
relaxation modulus G(t) in linear viscoelasticity. 
It may be noted that 'ij(t) ( =lim rj(t, 1C)) is in 

,-o 
principle more suitable than G( t) is for evalua-
tion of Tm and Gm in linear viscoelasticity 
because r;m/7/m-i is always larger than Grn/Gm-1, 
according to eq 2. 

Contributions of relaxation mechanisms of 
long relaxation times to 'ij(t, IC) were evaluated 
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from previous data obtained for a 20-% solu­
tion of polystyrene (standary sample 14a from 
Pressure Chemical Company) in Aroclor 1248 
(partially chlorinated biphenyl from Monsanto 
Chemical Company). 7 

RESULTS 

Examples of the plot of log rj(t, IC) vs. t are 
shown with open circles in Figure 1 for the 
data of rj(t, IC) at variovs rate of shear obtained 
at 35°C. Apparently, the data points at long 
times (t> 1500 sec) lie on a straight line at 
each rate of shear. The straight lines corre­
sponding to various rates of shear are approxi­
mately parallel to each other, indicating that 
the maximum relaxation time is not affected by 
the varying rates of shear. On the other hand, 
the intercept at t=0, or 7/m(IC), decreases as IC in­
creases. The filled circles in Figure 1 represent 
the plot of log [rj(t, 1C)-r;m(1C)e-t/•m1" 1J vs. t, where 
values of r;m(1C)e-t/<m 1' 1 are evaluated from the 
straight lines mentioned above. The points at 
relatively long times (t > 350 sec) seem to lie on 
a straight line at each rate of shear. Again 
the straight lines corresponding to various rates 
of shear are approximately parallel to each other 
and the intercept at t=0 decreases with increas­
ing rate of shear. This result indicates that the 
second longest relaxation time Tm-i(IC) is in­
dependent of IC, while 7/m-i(IC) is a decreasing 
function of IC. 

0 1000 2000 
t (sec) 

Figure 1. log i; (open circles) and log (i;-e-t/•m) 
(closed circles) plotted against time t for 20-% 
polystyrene solution in chlorinated biphenyl at 
35°C. Rates of shear are 4.60x 10-4, 3.61 x 10-3, 

and 8.86 x 10-3 sec-1 from top to bottom. 
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Table I. Steady shear viscosity TJ, the longest 
relaxation time rm, corresponding relaxation 
strength TJm, and those for the next longest 
relaxation time, -rm-i and TJm-1, for 20-% poly­
styrene solution in chlorinated biphenyl 

1r:, sec-1 TJ, poise TJm, poise 

(30°C) 
4.60x 10-4 4.3 X 106 722 1.3 X 106 

8.65 X 10-4 4. 3 X 106 718 1.25 X 106 

2.30x 10-s 3.3 X 106 773 7.8 x105 

3.6lxlQ-s 2.8 X 106 767 4.9 xl05 

8.86x 10-6 1.9 X 106 772 l. 85 X 105 

(400C) 
8 .65 X lQ-4 2.05 X 106 398 6.6 X 105 

1. 92 X lQ-3 l. 90 X 105 352 5.3 X 105 

3.6lx10-s l.70xl06 346 4.0 X 105 

8.86 X lQ-3 1.25 X lQ6 348 l. 65 X 105 

l.95x 10-2 9.2 X 105 352 8.5 X 104 

3. 67 X 10-2 5. 7 X 105 328 4.7 xl04 

Tm-1, 

sec 

242 
242 
254 
246 
252 

124 
126 
129 
125 
115 

1]m-1, 
poise 

l.95x 106 

l. 95 X 106 
1.3 xl06 
l.15xl06 
6.1 X 105 

8.8 X 105 

7 .1 X 105 

5.0 X 105 

2.6 X 105 

l .45x 105 

Similar figures are obtained for 'ij(t, K) at other 
rates of shear at 35°C and also for those ob­
tained at 40°C. The results for 1}m, Tm, 1Jm-1, 
and Tm-i are shown in Table I. At 45°C and 
50°C, the precision of 'ij(t, K) is not high enough 
to allow the evaluation of Tm-i(K) and 1Jm-i(K), 
because of the very low shear stress in the 
measurements of 'ij(t, K)- The results of 'ij(t, K) 
at 30°C turned out to include slight errors at 
long times due to the poor stability of the 
recorder employed in the measurements; thus 
unique straight lines were not obtained in the 
plot of log 'ij(t, 1r:) vs. t. The results given in 
Table I may be reduced to these temperatures, 
if desired, with the method of reduced variables 7 

for 'ij(t, K): zero shear viscosities r;0 at 30, 35, 40, 
45, and 50°C are 1.05 x 107, 4.3 x 106, 2.05 x 106, 
l.4x 106, and 8.0x 105 poise, respectively. 

Figure 2 shows the plots of -rm(K)/r;0 and 
-rm-i(K)/r;0 vs. rate of shear reduced to 30°C, 
Kllr=Kr;0/r;°(30°C). It is seen that -rm(K)/r;0 and 
Tm-h)!r;0 are not affected by varying the tem­
perature. This result is consistent with the 
time-shear rate-temperature reduction rule re­
ported for 'ij(t, K) in a previous paper. 7 It is 
also observed that -rm(K) and Tm-i(K) are in­
dependent of K and the ratio -rm(K)/-rm-i(K) is 
about 3. 

Figure 3 shows r;(K)/r;0, 1Jm(K)/r;0, and 1Jm-h)!r;0 

Polymer J., Vol. 6, No. 2, 1974 

-is 
10-5 

,o-3 ,o-2 

K"ar (sec-1) 

Figure 2. Reduced relaxation times rm/TJ0 and 
rm-1/7J0 plotted against reduced rate of shear 1r:ar 
for 20-% polystyrene solution in chlorinated 
biphenyl. Reference temperature is 30°c and 
directions of pips indicate temperature of measu-
rement; pip up, 35°C, and pip right, 40°C. 
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Figure 3. TJ/T/0, TJmlTJ0, and TJm-i/T/0 plotted againit 
reduced rate of shear 1r:ar for 20-% polystyrene 
solution in chlorinated biphenyl. Reference tem­
perature is 30°C and direction of pips indicates 
temperature of measurement; pip up, 35°C, and 
pip right, 40°C. Closed circles represent contribu­
tion of short relaxation mechanisms (TJ-7Jm-7Jm-1)/ 
T/0 to steady shear viscosity. 

plotted against rate of shear Kllr reduced to 
30°C. The shear rate-temperature reduction 
rule is apparently applicable to r;m(K) and 1Jm-1(K) 
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in agreement with the previous result for rj(t, ,r,). 7 

At the limit of ,r, - 0, r;m(,r,)/r;° and 7Jm-1(,r,)/r;0 

are about 0.3 and 0.45, respectively. As ,r, in­
creases, r;(,r,), r;m(,r,), and 7Jm-1(,r,) all decrease. 
The relative rate of decrease of r;m(,r,) is the 
largest and that of r;(,r,) the smallest. The dif­
ference [r;(,r,)-r;m(,r,)-r;m-1(,r,)] represented with 
filled circles is almost independent of the rate 
of shear, indicating that the dependence of the 
viscosity on the rate of shear is mostly due to 
the large dependences of r;m(,r,) and 7Jm-1(,r,) on ,r,. 

DISCUSSION 

Strengths of Relaxation Mechanisms 
As seen above, Tm/'rm-i and r;m/7}m-i are ap­

proximately 3 and 2/3, respectively, at the limit 
of ,r, - 0 for the present solution. These values 
seem large enough to assure the appropriateness 
of the estimation of the longest relaxation 
mechanism. In fact almost the same set of 
values were obtained for r;m(,r,), Tm(,r,), 7Jm-1(,r,), 
and 7Jm-1(,r,) when the extrapolation procedure 
of Figure I was performed independently by 
several persons. However, the ratio Gm/Gm_1 :::_ 

2/9 as calculated with eq 2 is not very large 
so that evaluations of Gm and Tm from the re­
laxation modulue G(t) are apt to involve large 
errors. Actually, previous values6 for Gm and 
Tm obtained from G(t) are respectively about 2 
and 0.6 times as large as the present values 
obtained from rj(t, ,r,). The large errors of the 
previous result may be due partly to the small 
value of Gm/Gm-i and partly to the instability of 
the recorder at long times, as mentioned above. 

For the present system, r;m(,r,) and 7Jm-1(,r,) are 
approximately 30 and 45%, respectively, of r;° 
at the limit of ,r, - 0. This result is in sharp 
contrast with that of Tobolsky and Murakami, 
whose r;m is as large as 70% of r;° for undiluted 
polystyrenes. 1 •2 This discrepancy probably re­
presents the difference in shape of a box-type 
relaxation spectra for an undiluted polymer and 
a concentrated polymer solution: The spectrum 
for a concentrated solution decreases gradually 
as the relaxation time increases in the long time 
range while that for an undiluted polymer is 
approximately constant until it drops sharply 
when the relaxation time exceeds the longest 
relaxation time. 4 This difference may be caused 
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by the very strong concentration dependence of 
the strengths of the long relaxation mechanisms, 
as reported earlier. 3 ' 4 ' 5 However, further studies 
are required for a definite conclusion since a 
weak relaxation mechanism of very long relax­
ation time might originate from a contamination 
of the polymer with a small amount of high 
molecular weight component. 

Effect of High Rate of Shear 
It is evident from the results given above that 

the study of long-time relaxation mechanisms 
is very important in the investigation of non­
linear behaviors of polymers. In a previous 
study6 we have examined the effect of shear 
strain s on the longest relaxation mechanism 
of the shear relaxation modulus G(t, s) for this 
polymer solution. Here we will compare the 
effect of ,c and of s on the longest relaxation 
mechanisms of rj(t, ,r,) and G(t, s), respectively. 
The results obtained so far may be summarized 
as follows: 

(i) The longest relaxation time Tm(s) evaluated 
from G(t, s) is independent of strain sand Tm(,r,) 
evaluated from rj(t, ,r,) is independent of ,r,. 6 

(ii) For this polymer solution6 the relaxation 
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Figure 4. 7Jm(,r)/7Jm(O) (small circles) and Gm(s)/ 
Gm(O) (large circles) plotted against Krm and s, 

respectively, on the same scale for 20-% poly­
styrene solution in chlorinated biphenyl. Dashed 
line represents the relation Gm(s)/Gm(O) = 1/[l + (as)2] 
with a=0.5. 
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strength Gm(s) as obtained from G(t, s) is a 
decreasing function of s and when s is large 
the decrease is proportional to s-us. 

(iii) The quantity r;m(K) is a decreasing func­

tion of "· 
Figure 4 compares the effects of varying s 

and " on Gm(s) and r;m(K), respectively. In this 
figure Gm(s)/Gm(0) (large circles) and r;m(K)/r;m(O) 
(small circles) are plotted against s and K7:m, 

respectively. As mentioned above, reported 
values of Gm(s) include large errors. However, 
the ratio Gm(s)/Gm(0) is expected to be fairly 
precise because it has been found approximately 
equal to G(t, s)/G(t) over a wide range of long 
times for this polymer solution. 6 It follows 
that ratios Gp(s)/Gp(0) for a few long relaxation 
mechanisms are approximately equal to one 
another and the evaluated ratio Gm(s)/Gm(0) 
may not involve serious error. A reduced rate 
of shear K7:m is employed in order to bring two 
types of data in the same range on the same 
abscissa. It may be seen that r;m(K)/r;m(O) as a 
function of K7:m is approximately identical with 
Gm(s)/Gm(0) as a function of s. The dashed 
line represents a function of a form 

Gm(s)/Gm(0)= 1/[l +(as)2] (4a) 

or 
r;m(K)/r;m(O)= 1/[ 1 + (a7:mK)2] ( 4b) 

which is often employed in constitutive equa­
tions. 8 The parameter a is chosen as 0.5 to 
attain a good fit of the curve to the data for 
relatively small s values. It may be obvious 
that Gm(s) or r;m(K) does not decrease as rapidly 
as in eq 4 does with increasing s or "• re­
spectively. 

On Constitutive Equations 

A most promising group of constitutive equa­
tions for polymer concentrates are of a single 
integral type written as 

o(t)= [=µ(t, t')S(t') dt' ( 5) 

where o(t) is the stress tensor at time t and 
S(t') is a tensor derived from the strain tensor 
at t' defined in reference to the state at t. 

Various forms have been proposed for the 
memory function µ(t, t'). 8 The simplest func­
tion that can describe nonlinear behaviors of 
polymers to some extent is of the type8 
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µ(t, t')=µ(t-t', A(t'; t)) ( 6) 

Here A(t'; t) is a scalar derived from the tensors 
of rate of strain at time t' or of strain at t' 

defined in reference to the state at t. This 
type of memory function is very simple in the 
sense that the value of µ(t, t') is determined if 
only one state t' is specified in addition to the 
state at t. It has been found that the memory 
function of eq 6 with A(t'; t) derived from the 
tensor of strain is able to describe interrelations 
among the strain-dependent relaxation modulus 
G(t, s), the stress relaxation after application of 
double-step strain, and the stress development 
function rj(t, K) in the ranges of relatively small 
strain and rate of shear. 7• 9 

The result of Figure 4 may be obtained from 

µm(t, t')=[Gm(s(t'))/1:m]e-lt-t'l/rm ( 7) 

where µm(t', t) is the part of the memory func­
tion corresponding to the longest relaxation 
mechanism, 7:m is a constant, and Gm(s(t')) is a 
function of s(t'), the shear strain at t' defined 
in reference to t. s(t') may be derived from 
the invariant of strain. It may be remarked 
that, when expanded in terms of exponential 
functions, eq 7 is an almost unique function 
of the type of eq 6 which is consistent with 
the result of Figure 4 and the properties (i), 
(ii), and (iii) shown in the preceding subsection. 

Recently Takahashi and coworkers examined 
memory functions of the form10 

µ(t, t')= I; [Gpfp(A(t'; t))/1:p] 
p 

xexp[-[dt"/1:pgp(B(t"; t'))] (8) 

where GP and 1:p are constants and fp and gP 
are functions of A(t'; t) and B(t"; t'), respec­
tively. Here A(t'; t) has the same meaning as 
above and B(t"; t') is a scalar derived from the 
tensor of rate of strain at t" or of strain at t" 

defined in reference to the state at t'. It may 
be noted that all the states for the period of 
time t'-::;, t"-::;, t have to be specified to determine 
a value of µ(t, t') in this case. This type of 
function may represent one reasonable method 
to extend the very simple form of eq 6. In 
fact it includes almost any current constitutive 
equations8 as special cases. The nonlinear be­
haviors of Gm(s), r;m(tc), 7:m(s), and 7:m(tc) as 
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mentioned in the preceding subsection are con­
sistent with eq 8 only when A(t'; t) is derived 
from the strain tensor and B(t"; t') from the 
rate-of-strain tensor, according to the results of 
Takahashi, et al. 10 The result of Figure 4 is 
not obtained if A(t'; t) includes JC; -rm depends 
on s or JC if B(t"; t') includes s. In this case, 
however, eq 8 is no more able than eq 6 is to 
describe the stress relaxation after application 
of a double-step shear strain. 9 •10 
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