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ABSTRACT: A method is presented to calculate the relaxation spectra of nonlinear 
polymers. Actual calculations are made for the star, comb, and Cayley tree type 
molecules, and also for the regular network of polymer chains. Sum rules for the 
eigen relaxation times are proved. It is found that none of the calculated relaxation 
spectra exhibit a box-type spectrum. 

KEY WORDS Relaxation Spectrum Eigenvalue Problems / 
Branching / Random Network / Sum Rules / 

It is now well known that the relaxation 
spectrum H(-r) of undiluted polymer solutions 
has a characteristic shape very different from 
that of dilute solutions. For the short time 
region the shape is the same as that of the 
linear chain, called a wedge type spectrum, but 
in the long time region there is a hump some
times approximated to be a box-type spectrum. 
The box-type spectrum is considered to arise 
from the entanglement effect, but no successful 
theory has been given to explain the shape of 
the spectrum. 

The entanglement effect is the topological 
constraint that the chains cannot intersect each 
other. However, the effect is often discussed 
on the basis of "nontopological" models. For 
instance, Ham1 investigated the possibility of a 
permanent cross-linkage model to describe the 
entanglement effect. Yamamoto" proposed a 
constitutive equation of undiluted polymer solu
tions based upon a temporary cross-linkage 
model. Chompff, Duiser, and Prins considered 
a system in which the polymer chains are inter
acting on each other at fixed imperfect slipping 
points.3 •4 Very recently Yamamoto6 calculated 
the relaxation spectrum of a linear chain whose 
friction coefficient varies along the chain. 

In any case, when we adopt these models, 
we encounter the problem of nonlinear and in
homogeneous polymer chains whose structure 
is in general random. The detailed calculation 
of the relaxation spectrum of such polymers is 
a very difficult problem, but in general the fine 
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structure of the spectrum is not of interest since 
it cannot be obtained from experiments so ac
curately. In the present paper we attempt to 
clarify the following two points: (i) Can we 
obtain the box-type relaxation spectrum based 
upon such nontopological models? (ii) How 
can we calculate the longest relaxation time, 
which plays the dominant role in the viscoelastic 
properties of the chain? 

First we present a method to calculate the 
relaxation spectrum and next apply it to the 
problem of some typical branched polymers. 
Some general properties of the relaxation spec
trum are discussed and sum rules of the relax
ation spectrum are proved. Finally we shall 
discuss whether the permanent cross-linkage 
model can exhibit the box-type spectrum. 

FORMULATION 

In this section we present a method to cal
culate the relaxation spectra of branched poly
mers. Our method is a direct extension of the 
Rouse-Zimm theory. 12 ' 13 We neglect the hydro
dynamic interaction between the submolecules 
throughout this paper so as to avoid additional 
difficulty. 

First, let us consider a linear chain. Let ri, 
r2 , ••• , rNt be the coordinates of the submole
cules. To find the normal mode, we consider 
the equations of motion of the submolecules: 

(.j_l'_,,_= -F.+F.+1 ar (a=l,2, ... ,Nt) (1) 
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where (. is the friction coefficient of the a-th 
submolecule (here we consider a general polymer 
whose friction coefficient and bond length vary 
along the chain), and F. is the thermodynamic 
force exerted by the (a-1)-th submolecule on 
the a-th one. These can be explicitly written as 

(a=2, 3, ... , Nt) ( 2) 

and 

( 3 ) 

where k is the Boltzmann constant, T is the 
temperature, and b. is the bond length between 
the (a-1)-th and a-th submolecules. Let us 
now regard the parameter a as a continuous 
variable. Then eq 1 and 2 are rewritten as 

((a) :/(a, t)=a~F(a, t) ( 4) 

3kT a 
F(a, t)=b\a) -217/(a, t) ( 5) 

Let the relaxation time be , and put r(a, t)= 
<J,(a)e-tfr; then from eq 4 and 5, we obtain 

d 3kTd¢ ( , 
da 7T da = - -;- <p ( 6) 

In the above equation, we have simply written 
the vector <J,(a) as ¢(a) because the three com
ponents of ¢ are equivalent and independent. 
The boundary condition at the chain end is also 
rewritten as 

d¢=0 
da 

(at the chain end) ( 7) 

In case that b(a) and ((a) are constant along 
the chain, eq 6 reduces to a simple form 

with 

QP=prr 
Nt 

and the eigen relaxation time is 

with 

N/ 
'tmax==n;? 

(12) 

(13) 

(14) 

These results agree with those of the Rouse 
theory for long relaxation times. 

Now let us turn to the problems of nonlinear 
polymers. In contrast to linear polymers, the 
submolecules of the nonlinear polymer cannot 
be designated by a single continuous parameter, 
so we must employ another appropriate way of 
designation. Let us define the "subchain" of 
the nonlinear polymer as the portion between 
the two branching points (or chain ends). We 
specify the submolecule by two parameters 
a=(a, s), where a and s indicate respectively 
the subchain and the submolecule of the sub
chain. Then an argument similar to that for 
the linear chain can be made and eq 4-7 also 
hold, if we understand that d¢(a)/da now means 
dcp(a, s)jds. 

The effect of the branching is taken into 
account by the boundary conditions. Let 
a1 , a2 , ••• , an be the submolecules meeting at a 
branching point. Then we obtain the following 
two boundary conditions at the branching 
points. The first condition is that all the sub
molecules must be at the same point 

The second is that the sum of the forces acting 
( 8 ) on the branching point must vanish 

where 

Q2= __ 1_ 
D, 

D-~_k_T_ 
- b2[,, 

( 9) 

(10) 

Therefore the normal mode, which we shall 
call the eigenfunction from now on, is readily 
obtained by considering the boundary condition 7. 

±-!2 ~11 ±4 ± ... ±4 deft[ =0 
b da a~a1 b da a~a 2 b da a~an 

(16) 

The sign in eq 16 should be chosen either plus 
or minus corresponding to the case that the 
branching point is the starting point (s=0), or 
the end point (s=length of the subchain*). 

* In this paper, the term "length" means the 
number of the submolecules contained between the 

(11) two points of the chain. 
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Equation 6 with the boundary conditions 7, 
15, and 16 determines completely the eigen
function <pp(a) and the corresponding eigen 
relaxation time '<p· According to the normal 
mode analysis, 7 the intrinsic viscosity is given by 

[17(w)]= NAkT J:,.--_!l2___ (17) 
M170 P 1 + zwr P/2 

where M is the molecular weight, NA is 
Avogadro's number and 170 is the viscosity of 
the solvent. Then the relaxation spectrum h(r) 
defined by 

(18) 

is given as 

h(r)= NAkT L,. !_P_o(r--"P_) 
M17 0 P 2 2 

(19) 

However, to avoid unnecessary complications, 
we introduce a simplified function 

H(r)=r J:,. o(r-rp) (20) 
p 

and call this also the relaxation spectrum. 
In case that b(a) and ((a) are constant along 

the chain, eq 8 gives the eigenfunction 

<j>(a, s)=Aa cos Qs+Ba sin Qs (21) 

Substituting this into the boundary conditions 
7, 15, and 16, we obtain a homogeneous linear 
equations for the Aa and Ba's. By setting the 
determinant of the coefficient matrix equal to 
zero, we obtain an eigenvalue equation for Q. 
This equation is a transcendental equation con
sisting of cos QNa and sin QNa's. In the follow
ing section we will attempt to solve the eigen
value equations. Here we will show that the 
relaxation spectrum H(r) takes a universal form, 
irrespective of the type of branching, in the 
short time region. 

Let us denote the density of the eigenvalues 
of Q by D(Q) 

Q(Q)= J:,. o(Q-Qp) (22) 
p 

where the Qp's are the solutions of the above 
mentioned eigenvalue equation. By using Q(Q), 
H(,) is expressed as 

H(,)=,[Q(Q) dQ] 
dr Q= ID< ;-1/2 

_ [Q(Q)fo=w,1-1/2 
- 2(D,)1;2 (23) 
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Since the eigenvalue equation contains only 
cos QNa and sin QNa's, the eigenvalues Qp's are 
distributed almost periodically. Therefore Q(Q) 
is also an almost periodic function, the period 
of which can be approximated by 21r/Ns, where 
N. is the characteristic length of the subchain. 
Then from eq 23 we find that H(r) is also an 
oscillatory function. As r approaches zero, the 
oscillation period decreases according to the law 

the oscillation period= I~ I . 21r oc,3/ 2 

dQ Ns 

Therefore in the short time region, we can 
replace the rapidly oscillating function H(r) by 
the smooth function 

H(,)- Q(Q) 
-2(Dr)112 (,«N;/D) (24) 

where Q(Q) is the averaged function of Q(Q) 
in the interval of 2rr/Ns, which is estimated from 
the following consideration. 

Let us consider the following three types of 
boundary conditions for ¢: 

(a) The first are the pertinent ones given by 
eq 7, 15, and 16. 

(b) The second are those for the free chain 
end 

(at the branching points 

and chain ends) (25) 

(c) The third are for the fixed chain end 

<J>=O (at the branching points 

and chain ends) (26) 

We denote the set of the eigenvalues determined 
from the above boundary conditions by {rp1a>i, 
{rp1b1), and {rp 101 ), respectively. We may assume 
that these are ordered as 

r/al ::C:,/•I 2 ... , r/bl ::C:,/bl 2 ... , 

r/c1 2 r 21c1 2 ... 

Then the following inequality can be proved 
by using the variational principle associated with 
eigenvalue problems. 8 

(p=I, 2, 3, ... ) (27) 

This inequality can be rewritten into a more 
convenient form. Let H.(r), Hb(r), and H 0 (r) 
be the relaxation spectra obtained from these 
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eigen relaxation times. Then eq 27 is equivalent 
to the following inequality, which holds for any 
time r. 

because 

[ Hc(r') d In r':::; [ Ha(r- 1
) d In r' 

:::; [ Hb(r') d In r' 

100 H(r') d In r' = 100 I; a(r' -rp) dr' 
)r Jr P 

=number of eigenvalues 

larger than r . 

(28) 

The relaxation spectra Hb(r:) and Hc(r) are 
easily obtained because they are the sums of 
those for the independent subchains. Since 

we obtain 

-- -- N,, Nt 
Qb(Q)=Qc(Q)= 1:-=-

a 7r 7r 

21r(Dr)112 
(29) 

where Nt is the total length of the branched 
polymer. 

Therefore by comparing eq 24, 28, and 29, 
we reach the final result: 

H(r) 
21r(Dr)112 

(r«N//D) (30) 

This property will be used in the following 
section. 

Before ending this section, we show that our 
formulation is equivalent to Ham's. To prove 
this, we consider the function defined by 

f(a)= d¢ 
da 

(31) 

Then from eq 8, f( a) satisfies the differential 
equation 

d2~=-Q2/ 
da 

(32) 

together with the following boundary conditions; 
at the chain end 

f(a)=O 

and at the branching point 
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(33) 

(34) 

±f(a1)±f(a2)± · · · ±f(a,.)=0 (35) 

Equations 33-35 are derived from eq 7, 15, 
and 16 respectively. Equations 32-35 are just 
the same as those given by Ham. 

CALCULATION OF THE RELAXATION 
SPECTRUM 

In this section the relaxation spectrum is cal
culated for some typical branched polymers. 

Star Molecule 
First we consider the star molecule shown in 

Figure 1. The relaxation spectrum of this poly
mer has been calculated by many authors, 1 •5 •9 

but we consider it here as the simplest applica
tion of our method. Let N1 , N2 , ••• , N1 be the 
lengths of the subchains. We choose the chain 
end as the starting point of each subchain. 
Then the solution of eq 8 satisfying the bound
ary condition at the chain end is written as 

¢(a, s)=Aa cos Qs (35) 

The boundary conditions at the branching 
point give the equations 

A 1 cos QN1=A2 cos QN2= · · · =A1 cos QN1 } 

A1 sin QN1 +A2 sin QN2+ · · · +A1 sin QN1=0 

(36) 

By eliminating A,,'s, we obtain 

f 

I; tanQNa=O 
a=l 

(37) 

This equation can be solved graphically. The 
solution Q=O corresponds to the uniform trans
lation mode. The smallest positive solution 
Qmin, which gives the longest relaxation time, 
is estimated as follows. Let N1 and N 2 be the 
lengths of the longest two subchains. By con
sidering the graph of the left hand side of eq 

Figure 1. The star molecule. 
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37, the following inequality can readily be 
verified: 

TC . [ TC TC ] 
21v;<Qmin<Mm Ni_' 2.N~ 

We also find that when N 1 »N2 , Qmin approaches 
TC/N1, and when N 1-:::::.N2 , Qmin becomes approxi
mately TC/2N1. From these observations we 
evaluate Qmin by TCj(N1 +N2). Therefore it is 
concluded that the longest relaxation time of 
the star molecule is nearly equal to that of the 
linear chain consisting of the longest two sub
chains of the star molecule. Note that this 
longest relaxation time is not so much longer 
than that of each subchain. Then it is also 
concluded that the relaxation spectrum of the 
star molecule is given by eq 30 for almost the 
whole time region. 

Caylay Tree Molecule 
Next let us consider the molecule shown in 

Figure 2. We call a molecule of this type 
Caylay tree molecule. This molecule has a 
center denoted by 0 in Figure 2, which we call 
the branching point of "zero rank." The center 
is connected with f subchains of "first rank" 
and each first rank subchain is connected with 
f "second rank" subchains and so on. When 
all the subchains are of equal length, the eigen
values are obtained by the transfer matrix 
method. 

For convenience, we indicate the subchain by 
two parameters o:=(k, a), where k and a indicate 
respectively the rank and the subchain belonging 
to the same rank, (hence 1-.s,a-.s,fk). The solu
tion of eq 8 in the (k, a)-th subchain in written as 

<ft(k, a, s)=Ak,a cos Qs+Bk,a sin Qs (38) 

Let n be the rank of the subchain containing 
the chain end. Then from eq 7, the boundary 
condition at the chain ends is 

Figure 2. The Cayley tree molecule. 
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(39) 

At the branching point of the (n-1, 1)-th sub
chain, the boundary conditions give the equations 

An-1,1=An,l cos QN 

=An,2 cos QN= ... =An,f cos QN (40) 

Bn-1,1=-(An,1 +An,2+ · · · +An,1) sin QN (41) 

where N is the length of the subchain. Similar 
equations to the above ones should be written 
for the branching point of the (n-1, 2), (n-1, 
3), ... (n-I, r-1)-th subchains. 

Here different analyses are necessary according 
to the following two cases: 

(i) The case that A,,_1,1 c;t,O. In this case, 
from eq 40 and 41, we obtain 

An,1=An,2= • • • =An,f (42) 

An-1,1=A,,, 1 cos QN (43) 

B,,-1,1=-fAn, 1 sin QN (44) 

We call this the symmetric case. 
(ii) The case that A,,_1,1 =0. In this case we 

find 

cosQN=0 (45) 

and A,,,/s (i= 1, 2, ... , /") are independent of 
each other. We call this the nonsymmetric case. 

In the nonsymmetric case, we obtain an 
eigenvalue equation without considering any 
other boundary conditions, whereas in the sym
metric case we must take into account the 
boundary conditions at the lower rank branch
ing points. To continue our analysis in the 
symmetric case, we consider the boundary con
ditions at the branching point of the (n-2, 1)-th 
subchain. Then the same circumstance arises: 
We encounter the nonsymmetric case and the 
symmetric one. In the former case, the eigen
value equation is obtained and no further 
analysis is necessary. But in the latter case we 
must again consider the boundary conditions at 
the branching point of the (n-3, 1)-th subchain 
and so forth. 

Therefore let us consider the general case 
where the symmetric case occurs at the (n-1), 
(n-2), ... , (p+ 1)-th rank branching points. 
Then we can prove by mathematical induction 
that all A's and B's of the same rank are equal. 
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Ak,1=Ak, 2 = • • • =Ak,1k (46) 

Bk,1=Bk,z= · · · =Bk,1k (47) 

(k=n, n-1, ... ,p+2) 

Further it can be proved that these values are 
proportional to An,i· To show this, we con
sider the boundary conditions at the k-th rank 
branching point, which are written as 

Ak.l=cos QNAk+1,i +sin QNBk+1,i (48) 

Bk.l=-/sin QNAk+1,i +/cos QNBk+1,1 (49) 

where we have used the relations 46 and 47. 
Equations 48 and 49 can be conveniently written 
in a matrix form as 

( Ak,1 )= T( Ak+1,1 )=Tn-k( A,.,1) 
Bk,1 Bk+1,1 0 

(50) 

where T is a matrix defined by 

T=( cos QN, sin QN) (5l) 
-/sin QN, /cos QN 

The boundary conditions at the p-th rank 
branching points are 

AP, 1 =cos QNAp+1,i +sin QNBp+1,i= • • • 

=cos QNAp+i,J+sin QNBp+i,1 (52) 

BP, 1=-(Ap+i,i+ ••• +Ap+1,f)sinQN 

-(Bp+1,i + · · · +Bp+1,1) cos QN (53) 

If the nonsymmetric case occurs at this point, we 
have AP, 1=0. This condition can be written as 

Ap, 1 =cos QNAp+1,i +sin QNBp+1,i 

=T1,1(Tn-p-l)i,1An,l + T1,2(Tn-p-l)2,1A .. ,1 

(54) 

hence 

(55) 

The eigenvalues determined by this equation 
are JP-fold degenerate because there are JP 
degrees of freedom in the choice of the coef
ficients Aa and Ba's. On the other hand, if the 
symmetric case occurs, we find from eq 52 and 
53 that 

Ap+1,1=Ap+1,2= •.. =Ap+l,JP+l (56) 

Bp+1,1=Bp+1,2= ... =Bp+l,JP+l (57) 

This argument provides a proof of eq 46 and 47. 
Thus we find that the eigenvalue equation 

is given by eq 55 if the first nonsymmetric case 
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occurs at the p-th rank branching point. If the 
symmetric case occurs at all the branching 
points, the eigenvalue equation is obtained 
from the boundary condition at the center. This 
condition is written as B0 , 1=0; hence from eq 
53, we obtain 

(58) 

The above eigenvalue eq 55 and 58 are ex
plicitly written in terms of Q, by diagonalizing 
the matrix T. Let ).1 and ).2 be the eigenvalues 
of T. From eq 51, we obtain 

).1=[(1+/)+{(l+/)2 cos2 QN-4/}112]/2} (59) 

A2=[(1+ /)-{(l +/)2 cos2 QN-4/}112]/2 

After some calculations, we find that eq 55 
and 58 reduce respectively to 

(60) 

(61) 

Since we are interested only in small eigenvalues, 
we calculate the solution by expanding eq 60 
and 61 in terms of Q. From eq 59, we obtain 

A1=/( 1+ ;~! (NQ)2) (62) 

A2=1++ ;~! (NQ)2 (63) 

where we have assumed NQ« 1. Equation 61 
does not have such a solution, but eq 60 does. 
Substituting eq 62 and 63 into eq 60, we obtain 

Q 2 (/-1)2 (64) 
P -N2fn-p+1 

(65) 
where 

N2fn+1 
-r --~~ 
max-D(f-l)2 (66) 

Let us now consider the relaxation spectrum. 
For the long time region, the eigen relaxation 
times are given by eq 65, which is JP-fold de
generate. Then the relaxation spectrum is cal
culated as 

H(-r)=JP-r1~1 
d-rp rp~r 

_ _L "tmax 

Inf -r 
(67) 
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slope -1/2 

µ -:c 
C 

slope -1 

In -c 
Figure 3. The relaxation spectrum of the Cayley 
tree molecule. 

On the other and for ,«N2/D, the relaxation 
spectrum is given by eq 30, where Nt= 

N(f+f2 + · · · +J'"')=[(r+1-f)/(f-l)]N, then 

(r+l-J) 1 H(,)= --- (68) 
2n(f- l) (D, )112 

Note that eq 67 and 68 give almost the same 
value at ,-N2/D. In Figure 3 the relaxation 
spectrum is illustrated schematically. 

Comb Molecule 
As the final example, we discuss the comb 

molecule shown in Figure 4. This molecule 
consists of one main chain and several side 
chains. For the sake of convenience, we do 
not divide the main chain into subchains. The 
submolecule in the main chain is denoted by 
a=(m, s), where s is the length measured from 
the chain end of the main chain, and m is the 
suffix to denote the main chain. 

Let (m, sa) be the branching point where the 
a-th side chain branches. The submolecule in 
the side chain is designated by (a, s), where s 
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I I 
a) random type 

C 

b) regular type 

Figure 4. The comb molecule. 

is the length measured from the chain end of 
the side chain. The solution of eq 8 in the a-th 
side chain can be written as 

¢(a, s)=Aa cos Qs (69) 

Then the boundary conditions at the branching 
point give 

¢(m, sa)=Aa cos QNa (70) 

d¢(m, s) I _ d¢(m, s) I 
ds s=•a+0 ds s=sa-0 

= -QAa sin QNa (71) 

where Na is the length of the a-th side chain. 
By eliminating Aa, we obtain 

it I •=•a+0 - :! I s=sa-0 = -Q tan QNa</J(m, Sa) (72) 

Therefore d¢/ds is discontinuous at the branch
ing point. This discontinuity is included in the 
differential eq 6 by adding a "potential term" 
of delta function form: 

Thus our problem is reduced to the eigenvalue 
problem of the electron gas under the effect of 
the random potential of delta functions, which 
is well known as the random Kronig-Penny 
model. This problem is in general a difficult 
one and is now being widely investigated.10 

Here we are interested only in the long wave 
length mode and in that case the following 
simple treatment is possible. 

For the long wavelength mode, where the 
wavelength is much longer than the interval 
between the neighbouring branching points, the 
local structure of the random potential is not 
important, and the random potential is approxi
mated by an averaged potential J7 defined by 

V=~1~ (m ds I: Q tan QNao(s-sa) 
Nm Jo a 

1 Q2 
=-N I: Q tan QNa~- I; Na (74) 

m a Nm a 

where Nm is the length of the main chain. The 
above approximation will be good if the length 
of the side chain is short enough compared 
with that of the main chain. Substituting eq 
74 into eq 73, we obtain 
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[ Q2( I +J:N:a ) + ::2 }=0 (75) 

The eigenvalue is then readily obtained. The 
results is 

Tmax (76) Tp=-2-
p 

with 
Tmax=Nm(Nm+ I; Na)/rr2D (77) 

a 

This result can be intuitively understood as 
follows. As is shown by Rouse, 12 the choice 
of the submolecule does not affect the long 
eigen relaxation times. So we may divide the 
comb molecule into two submolecules. Then 
the friction coefficient of each submolecule is 
t;,(Nm + I: Na)/2, and the bond length between 
them is Nmb2 • Then the longest relaxation time 
can be estimated as 

-µ .._, 
I 
C 

Figure 5. The relaxation spectrum of the comb 
molecule. 

where 

K - rrp__ 
p- nN 

(81) 

(p=0, I, 2, ... , (n-1)) (82) 

and the function /(s) is periodic 

f(s+N)=f(s) (83) 

(78) From eq 8 and 81, /(s) is given as 

This agrees with eq 77 except for the numerical 
factor. 

The relaxation spectrum is now easily ob
tained. Let Ns be the characteristic length of 
the side chain. For r»Ns2/D, the relaxation 
spectrum is obtained from eq 76: 

H(r)=r:I dp I =J_[Nm(Nm/ I; Na)]l/2 (79) 
drp ,p~, 2 71: Dr 

On the other hand, for ,«N.2/D, H(r) is given 
by the general formula 30 

/(s)= /ieilQ-Kpls + / 2e-ilQ+Kpls 

Then from eq 70, 71, and 83, we obtain 

(84) 

/1 + f2=f1e;1Q-KP1N + f2e-i1Q+Kp1N =A cos MQ (85) 

f1-f2=iA sin QM+ / 1eilQ-KPIN -f2e-ilQ+KpJN (86) 

By eliminating / 1 , / 2 , and A, we obtain the 
following eigenvalue equation: 

cos KPN=cos QN-J_sin QNtan QM (87) 
2 

H(,)-~__!!t ___ - Nm+I: Na 
- 2(rr2Dr:)1;2 - 2(1r2D,)1;2 

To check the calculation, let us put M=0, then 
(80) eq 87 is readily solved, giving 

Therefore, it is seen that the relaxation spectrum 
suffers a rather abrupt change at r-N.2/D. Note 
that the relaxation spectrum cannot have a hump 
for the comb molecule. In Figure 5, the relax
ation spectrum is schematically illustrated. 

If the side chains branch regularly, an exact 
treatment is possible by the use of Bloch's 
theorem. Let n be the number of the branch
ing points. We denote the length of the side 
chain by M and the interval between the neigh
bouring branching points by N. According to 
Bloch's theorem, the eigenfunction in the main 
chain can be written as follows: 

Polymer J., Vol. 6, No. 2, 1974 

Q =K +2krr = (2pn±k)rr 
p,k P- N nN (k=0, 1, 2, ... ) 

(88) 

The result agrees with that of the linear chain. 
For the case M=t=0, the long relaxation times 

are obtained by expanding both sides of eq 87 
with respect to Q and K. The result is 

{N(N+M)) 112 
rrp 

{N(N+M)n2)112 
(89) 
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£1--- Sx _P 

" \ 
Sy 

I 
V 

Figure 6. The two-dimensional network of poly
mer chains. A submolecule P is designated by 
(sx, Sy) shown in the figure. 

which agrees with the general one given by eq 
77, where Nm=nN and r; Na=nM. 

The above treatment can readily be extended 
to the case of the regular network of the poly
mer chain. Here we shall briefly discuss the 
relaxation spectrum of the network. 

As an example of the two dimensional net
work, we consider a "network of square 
lattices," obtained by connecting the lattice 
points of the square lattice by subchains (see 
Figure 6). Let N be the "lattice constant" of 
the network. According to Bloch's theorem, 
the eigenfunction of the network is written as 
follows: 

K _ irpz 
z- nN 

(92) 

(p.,py=l, 2, ... , (n-1)) (93) 

where (sz, sy) is the (x, y) coordinate in the net
work space. For the long wavelength mode 
(Q « ir/N), f(sz, sy) can be regarded as almost 
constant. Therefore the eigenvalues are deter
mined by the lattice momenta, Kz and Ky 

2 

µ 
:i: 

C 

Figure 7. The relaxation spectra of the regular 
network of the polymer chain: 1-d, regular comb 
molecule; 2-d, two-dimensional regular network; 
and 3-d, three-dimensional regular network. 

n2N H(-r)---~ 
- 2ir(D-r)112 

(97) 

Note that the right-hand-sides of eq 96 and 97 
are equal at -r-N2/D. Therefore the relaxation 
spectrum is continuous at -r-N2/D. 

In the case of a three-dimensional network, 
the relaxation spectrum is also calculated in a
way similar to that given above. The result is 

H-r - (nN)3 
( )= 2ir(D-r)312 

n3N H(-r)---~ 
-2ir(D-r)112 

(-r»N2/D) (98) 

(-r«N2JD) (99) 

These relaxation spectra are shown in Figure 7. 
It is seen that in all cases, the relaxation 

spectrum of the branched polymer has no hump. 
Therefore we may conclude that the character
istic shape of the relaxation spectrum cannot 
be explained on the basis of the permanent 
cross-linkage model. 

Q2- K 2+K 2_ ir ( 2+ 2) = z Y - (nN)" Px PY (94) SUM RULES 

Then the state density Q(Q) is given by 

Q(Q)~(~:)2.Q 

Therefore from eq 23, we obtain 

H(-r)=(nN)2 
2irD-r 

In the previous section, we calculated the 
longest relaxation time by solving the eigenvalue 

(95) problem. We can estimate the longest relax
ation time much more simply as 

(100) 

(96) 

where <S2) is the mean square radius of gyration. 
On the other hand, for Q»ir/N, H(-r) is given 
by eq 27 

The foundation of eq 100 is the following 
sum rule. 
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I: = Ntr,, <S2) 
P Tp 3kT 

(101) 

In this section we shall discuss sum rules of 
this type. 

A physical proof of eq 100 was given by 
Chompff, 5 based upon the assumption that the 
steady state intrinsic viscosity calculated by the 
Rouse theory12 should be equal to that given 
by Debye.14 Mathematical proof was also given 
by Ham for molecules which contain no loops. 
Here we shall give a complete proof of eq 101 
in a generalized form. The polymer we con
sider here may contain loops and the friction 
coefficient and the bond length may vary along 
the chain. 

The sum rule which we shall prove is 

(102) 

where is the translational friction constant 
of the polymer 

~= da((a) (103) 

and <S2), is the mean square radius of gyration, 
the weighting factor of which is not the mass, 
but the friction coefficient of the submolecules 

<S2),=+~ da((a)<(r(a)-rd) (104) 

r_,=+ da((a)r(a) (105) 

In the above equations, the integral da means 
the sum of the integrals contributed from each 
subchain, that is 

(106) 

Before going into the proof of eq 102, we 
shall first prove an important relation. Con
sider a static correlation function of the positions 
of the submolecules defined by 

then it can be proved that ¢ satisfies the 
following differential equation 
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together with the boundary conditions; 
at the chain end 

~¢=0 
aa (109) 

at the branching point where the submolecules 
ab, ab', . . . meet 

(110) 

±-\- j</1_1 ±~\ ~ti ± ... =0 (111) 
b aa a=ab b aa a=ab' 

and at the point a2 

(112) 

The sign in eq 111 must be chosen in the same 
way as in eq 16. Note that the boundary 
conditions for ¢(a) are just the same as for 
¢(a), except eq 112. 

The above equations are proved by using the 
fluctuation theorem. Since the correlation func
tion ¢(a; a1, a2 ) is invariant under the uniform 
translation of the chain, we can assume without 
loss of generality that the position of the sub
molecule a2 is fixed. Let us consider a weak 
force F, directing along the z-axis and acting 
on the submolecule a1 • In the absence of an 
external force, the mean position of the sub
molecule is equal to r(a2 ), but the force displaces 
the submolecule to a new position. The dis
placement of the submolecule, which we denote 
by u(a), is proportional to F and can be written 

( 113) 

According to the fluctuation theorem, x(a; a1 , a2) 
is related to the static correlation function 

x(a; a1, a2) 

1 = kT <(rz(a)-<rz(a))) · (r,(a1)-<rz(a1)))) 

1 =-3kT <(r(a)-r(a2)) · (r(a1)-r(a2))) (114) 

where we have used the fact that all of the 
three components of the Cartesian coordinates 
are equivalent. 

To determine x(a), we consider the force 
balance equation. We must note that the ex
ternal force is acting not only on a2 but also 
on a1 to keep the position of a2 fixed. The 
force acting on a2 is equal to -F, and the 
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tensile force 
(3kTjb2)(au/aa). 

of the chain is given by 
Therefore the force balance 

equation is written as 

a 3kT au 
- ~ 2- --=-Fo(a-a1)+Fo(a-a2) (116) 
aa b aa 

By using eq 113 and 114, we obtain eq 108. 
Further, repeating the same argument as dis
cussed in connection with the equation of 
motion, we can easily verify the boundary con
ditions 109-111. The condition 112 is self
evident. 

It is of interest to consider the above results 
in comparison with electrical network theory. 
Consider an electrical network whose topological 
structure is equal to the pertinent branched 
polymer, and whose network element is a resis
tance equal to the square of the effective bond
length of the corresponding submolecule. Then 
eq 108 is nothing but the equations satisfied 
by the electrical potential of the network, when 
there exists a unit source of electrical current 
at a1 and a unit absorption sink of current at 
a2 • The boundary condition 109 means that 
the electrical current vanishes at the chain end. 
Equation 110 is the continuity condition of the 
electrical potential at the branching point and 
eq 111 is the conservation condition of the 
electrical current. Thus it is proved that 
¢( a; a 1, a 2) is equal to the electrical potential at 
point a. In particular, it is proved that the 
mean square of the separation between the two 
submolecules is equal to the driving point im
pedance, because <(r(a1)-r(a2))2)=¢(a1; a1, a2 ) is 
equal to the potential difference between the 
two source points of the electrical current. 

Now let us prove the sum rule. Following 
Ham, 1 we shall make use of the Green's func
tion. Let {qlp} be the orthonormal set of the 
eigenfunctions of eq 6. The orthonormal con
ditions are written as 

da((a)¢/(a)¢p,(a)=i3P,P' (117) 

I; ((a)¢/(a)¢p(a1)=i3(a-a1 ) (118) 
p 

Among these eigenfunctions, we must pay special 
attention to the uniform translational mode ¢0(a) 
because its relaxation time is infinite, correspond
ing to the vanishing eigenvalue. From the 
normalization condition we obtain 
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¢o(a)=f;-1;2 (119) 

Let us now introduce a Green's function 
defined by 

From eq 117 and 120, we obtain 

-rp= dag(a, a) 

(120) 

( 121) 

From eq 6, it is found that g(a, a') satisfies the 
differential equation 

a 3kT a , , * , -a ~b2 -a g(a, (J )= - I; ((a)((a )¢p (a)qlp(a ) 
(J (J p,,sO 

= -((a')(a(a-a')-(~)) (122) 

together with the boundary conditions of eq 7, 
15, and 16. 

Let us first prove that g(a, a') is related to 
the correlation function <(r(a)-r,)-(r(a')-rg)) 
through the equation 

g(a, a')= iii C(a, a') (123) 

where we have abbreviated ((r(a)-rs)·(r(a')-r.)> 
by C(a, a'). 

To prove the above relation, we show that 
C(a, a') satisfies the same equations as does 
g(a, a'). From eq 105 and 107, we have 

I I \ 
C(a, a )=fJ da1da2 

X ((r(a)-r(a1)) · (r(a1)-r(a2)))((a1K(a2) 

= : 2 da1 da2 

X (¢(a, a', a1)-¢(a; a2, a1)K(a1K(a2) 

(124) 

Then by using eq 104 and 108, we obtain 

a 1 a cc ') 
aa fJ aa a, (J 

=-;-J da1 da2{~-;- ~¢(a; a', a1) 
f; J aa b aa 

a 1 a } - aa fJ ai(a; a2, a1) ((a1K(a2) 

= : 2 da1 dai-a(a-a1)+a(a-a2)K(a1K(a2) 

= -i3(a-a1)+ ((a) (125) 
f; 
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Further, it is readily seen that C(a, a') satisfies 
the same boundary conditions as those for 
g(a, a'). Comparing eq 125 with eq 122, we 
obtain eq 123. 

Now it is very easy to prove the sum rule. 
From eq 121 and 123 we obtain 

I: r P= dag(aa) 

= _l_( da((a)((r(a)-rd) 
3kT) 

=~!;-(S2), 
3kT 

(126) 

In a similar manner, the sum rules of I: r/ 
and I: r/ are obtained, for example 

I: r/= da da' g(aa')g(a' a) 

=~~\ da da'((a)C(a') 
(3kT) ) 

X {((r(a)-r0) • (r(a')-r,)) }2 (127) 

DISCUSSION 

In this paper, we have presented a method 
of calculating the relaxation spectrum of a 
branched polymer in case of the free draining 
limit. It is found that the calculation reduces 
to an eigenvalue problem defined in the net
work space of the polymer chain. The relax
ation spectra of some typical branched polymers 
were calculated. In general, however, such a 
calculation will be difficult, although not im
possible, for a polymer chain with general 
topological structure. Therefore it seems of 
importance to discuss some general properties 
of the relaxation spectrum which hold irrespec
tive of the type of branching. 

In the present paper, the following three 
points are clarified: 

(i) For the short time region, the relaxation 
spectrum takes a universal form given by eq 30. 

(ii) The longest relaxation time is closely 
related to the mean square radius of gyration 
and is estimated by eq 100. 

(iii) The relaxation spectrum satisfies the 
inequality 28. 

Unfortunately, we could not make any definite 
statement on the relation between the shape of 
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the relaxation spectrum in the long time region 
and the topological structure of the branched 
polymer. It remains still open to question 
whether a branched polymer, or a permanent 
cross-linkage model in case of the entanglement 
problems, exhibits a box-type relaxation spec
trum. However, from the observation of the 
calculated results made in the foregoing section, 
we presume the spectrum of such polymers 
cannot show any humps. This presumption is to 
some extent supported by the following theorem. 

(iv) Let Ht(r) and H 1(r) be respectively the 
relaxation spectrum of the branched and linear 
polymers with the same molecular weight; then 
the following inequality holds for any time r 

[ Hb(r') d ln r':::;; [ H 1(r') d In r' (128) 

This theorem can be proved in the same manner 
as was used to show eq 28. If we assume that 
the above inequality is satisfied under the 
stronger condition 

(129) 

we can conclude that Hb(r) cannot have a hump, 
because Ht(r) is equal to H 1(r) for the short 
time region and eq 129 should hold for the 
whole time region. 

In conclusion we may say that the permanent 
cross-linkage model will not be a good model 
for undiluted polymer solutions. 
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