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ABSTRACT: The network theory developed by Yamamoto (J. Phys. Soc. Japan, 11, 
413 (1956)) is applied to explain at least qualitatively some of the nonlinear viscoelastic 
behavior of concentrated polymer systems in shearing flow, with the assumption that 
the probability of chain-breakage is proportional to the square of the end-to-end distance 
in the chain. It is shown that the shear-rate dependence of the steady viscosity is 
similar to the frequency dependence of the absolute value of the complex viscosity. 
The so-called stress overshoot at the beginning of shearing flow, the stress relaxation 
after the stoppage of flow, the ordinary stress relaxation under large deformation, and 
the superposition of a small oscillation upon steady shearing flow are treated; the results 
are in good qualitative agreement with the experiment. The rate-dependent and the 
deformation-dependent relaxation spectra are derived from the time dependence of the 
stresses in the two kinds of stress relaxation. 

KEY WORDS Network Theory / Nonlinear / Viscoelasticity / Shear 
Flow / Concentrated Polymer System / 

Concentrated polymer solutions and melts 
show some interesting rheological phenomena 
such as non-Newtonian flow, the Weissenberg 
,effect, and stress overshoot at the beginning of 
flow. Recently both experimental and theoreti
cal investigations have been extensively develop
ed on various nonlinear viscoelastic properties 
of these systems. Since Oldroyd's paper,1 many 
authors have given phenomenological considera
tions in order to construct constitutive equations 
to describe these properties. Recently Tanaka, 
Yamamoto, and Takano2 have developed a 
molecular theory of non-Newtonian flow based 
upon a molecular model of Graessley, 3 combined 
with the three-dimensional generalized Maxwell 
model proposed by Lodge4 and other authors. 5 

On the other hand, Yamamoto 6 has proposed 
the so-called network theory based on a mole
cular model which is sufficiently general that it 
may be applicable to nonlinear viscoelasticity. 
In this paper we will investigate on the basis 
of this network theory the nonlinear viscoelastic 
properties of concentrated polymer systems, such 
as non-Newtonian viscosity and transient stress 
behaviors, as well as superpositions of a small 
oscillation upon a steady shearing flow. 

According to Yamamoto's theory, the stress-

deformation-time relation in integral form is 
given by 

u(t)= [= r(t, t') · T(t, t') ·r+(t, t')dt' ( 1 ) 

T(t, t')= r: r r r (hh) (~ d<J)) G(h, N, t') 
N J J J r dr r=lr<t,t'>hl 

X exp [-[ p(r( t", t')h, N)dt"] dh ( 2) 

where u(t) is the stress tensor at the time t, and 
r(t, t') is the relative deformation tensor at the 
time t with respect to the system at the time 
t'. (r(t, t')=r(t)·r-\t') and therelativeCauchy
Green strain tensor is given by C(t, t')=r+(t, t') · 
r(t, t')). G(h, N, t) is the chain-reformation func
tion, p(h, N) the chain-breakage coefficient, and 
<P(!hl, N, T) is the free energy of a chain (N is 
the number of segments, h the end-to-end 
distance of the chain between two network 
junctions, and T the absolute temperature). If 
any chain in the polymer network is represented 
by a Gaussian chain, its free energy is given by 

<P(!hl, N, T)=(3~T)(~~r) ( 3) 

where k is the Boltzmann constant and a is the 
effective length of a segment. 
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THEORETICAL 

Assumptions 
For the sake of simplicity in the calculation, 

the following assumption are used: 
(1) The distribution of N is neglected. 
(2) Reformation of chains occurs in the 

natural state of the chains, i.e., the chain
reformation function is given by 

( 3h2 
) G(h, N, t)=G0 exp ---2 

2Na 
( 4) 

(3) The probability of chain-breakage is 
proportional to the square of the end-to-end 
distance, i.e., 

p(h, N)=(J;2 ) h2 ( 5) 

Assumption (3) is essential to our calculation: 
it gives the nonlinearity of the mechanical 
properties. This functional form is presumed 
for the convenience of calculation. The main 
results obtained are not essentially affected by 
such a assumption. 

Relaxation Spectrum in the Equilibrium State 
We consider the periodic simple shear deforma

tion with the deformation tensor 

[
1 reiwt ol 

r( t) = o 1 o (r « 1) 
0 0 1 

( 6) 

where w is the frequency and i=v=r. Using 
the above-mentioned three assumptions the 
complex rigidity is obtained from eq 1, 2, and 6: 

G*(iw)= 0"12= f oo Po-7/2-r-5/2(2po-r+3) 
r Jo 

X exp (~) ion d-r 
2p0-r 1 + iw-r -r 

( 7) 

where 

Na2 

-r=~~2 
Poh 

( 8) 

The relaxation spectrum, therefore, is given by 

H(-r)=p0- 712-r - 512(2p0-r+3) exp ( - 3 ) ( 9) 
2po-r 

This spectrum is wedge-shaped, because we 
consider only the distribution of the end-to-end 
distance of the chain in the equilibrium network 
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structure. Although there are some experimental 
data showing that the spectrum is rather wedge
shaped over a wide range of relaxation times, 
many experiments give a typical box-type 
spectra. We assume the distribution of p0 to 
be constant for p0 larger than (l/c)Ar3 "4 and 
otherwise zero, where M is the molecular 
weight and c is an arbitrary constant. This 
assumption means that the spectrum at zero 
shear rate has a plateau region corresponding to 
the intermolecular relaxation and that the 
maximum relaxation time is proportional to the 
3.4th power of the molecular weight. Of course, 
this is a over-simplified and rather arbitrary 
assumption for the distribution of the "strength" 
of the entanglements and this assumption should 
be checked by a suitable molecular theoretical 
consideration after developing the molecular 
model for the chain entanglement. Unfortunate
ly, we have not yet obtained such a powerful 
molecular model for the entanglement and in 
this treatment we will assume the above distri
bution. This assumption will have to be some
what improved when the effect of the molecular 
weight distribution on the entanglement is 
discussed. 

Thus we use the following relaxation spectrum 
in the equilibrium state: 

~
1/e 

H(-r, 0)= H(-r)dpo 
M-3.4/e 

(10) 

The result of the numerical calculation is shown 
in Figure 1. 

:r: 
bD 

..!2 

2 3 
log r 

Figure 1. Relaxation spectra in the equilibrium 
state for various molecular weights. 

Non-Newtonian Viscosity 
Let the bulk of a given system flow in the x

direction with a constant gradient t in the y-
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direction. The strain tensor for this deforma- The r;(f) vs. f curve coincides well with the lr;*I 
tion is 

[
1 ft ol 

r(t)= o 1 o 
0 0 1 

(11) 

Substituting eq 11 into eq 1 
some elementary calculations, 
steady viscosity: 

and performing 
we can get the 

a ~1/c ~ 00 B r;(t)=~= . v'- df3odo 
7 M-3.4/c O 7 D AD 

where 

A=3/2+(30o 

B=fo(3/2+ (3 0o/2) 

C=/o\3/2+ (3 0o/3) 

D=A(A+C)-B2 

(12) 

(13) 

This non-Newtonian viscosity is shown in 
Figure 2. 

s .. ..___ 

a 
* .. 0.5 
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,,: log r or log ll) 

Figure 2. Steady viscosity and complex viscosity. 

As has been experimentally pointed out by 
Onogi, et al., 7 ' 8 the shear-rate dependence of 
the steady viscosity is similar to the frequency 
dependence of the absolute value of the complex 
viscosity. In order to examine this relation, 
the absolute value of the complex viscosity is 
calculated for the relaxation spectrum of eq 10. 
We obtain the following results: 

Ir;* I= (r;'2 + r;"2)1;2 

'l} = - (tan- y)v x (I +x) exp (-x)dx I ~ 00 J 1 . ;-

0 (JJ 

(14) 

(15) 

r;" = 100 J_ (log (1 +y2))v'x(l +x) exp (-x)dx (16) 
) 0 2w 

y 
3wcM8 •4 

2x 
(17) 

The lr;*I vs. w plot is also shown in Figure 2. 
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vs. w curve. 
It is a well-known experimental result that 

the steady-state, zero shear viscosity is propor
tional to the 3.4th power of the molecular 
weight M of the polymer if the molecular weight 
is larger than the critical value Mc. Further
more, for a finite shear rate, there exists a second 
critical molecular weight Mc' (>Mc), and with 
the larger molecular weight the gradient of the 
log r; vs. log M plot becomes again smaller than 
3.4. As the shear rate increases, Mc' decreases. 
Such a dependence can be well explained by 
our model. In fact, from eq 12 and 13 we can 
obtain the f dependence of the r; vs. M relation. 
The result of the numerical calculation is shown 

3 

...... 
.. 2 
bD 

..2 

log M 

Figure 3. Steady viscosity vs. molecular weight 
relations for various rates of shear. 

in Figure 3, which reproduces well the experi
mental results. 

Transient Stress Change with Viscometric Flow 
Among the interesting properties connected 
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with the flow behavior of concentrated polymer 
systems are the transient stress changes reported 
by several authors. 9- 14 The phenomenon of 
stress overshoot at the start of a viscometric 
shear flow is an example of such transient flow 
behavior. In the case of the stress overshoot 
experiment, the flow field, eq 11, is suddenly 
applied at the time t=O. From eq 1 we have 
the shear stress O's=0"12 and the normal stress 
Ll10'n=0'11-0'22 at t>O. 

where 

1+ cos <fa sin <fa 
2ir , S012=~ , 

S _ 1- cos <p 
022- 2,r 

A+C0 

D 0 v ADo ' 

x a p 2 t -1 /F 
(J-'o)= 3Fv F an 'VE 

(18) 

(20) 

(21) 

_ _!_ vQ(Q-2) lo vEQ + l (F 0) (22) 
3 g vEQ -1 > 

~4 

1 1 vE + 
3Fv F og v E-v-F 

+; v-Q(Q-2) tan-1 v -EQ(F<0) 

P=_±_ v E _ _±_ / 2 log vE + )f 
9 F 9'\j3 vE-)~ 

Q 
2(E+F-+) 

3F 

(23) 

(24) 
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Figure 4. Initial stress overshoot for various rates 
of shear. 

(25) 

3 E=2 + fi 0t , 

F=+ j,0 ft2 [+ ft( 1- cos <fa)+ sin <p] 
(26) 

The results of the numerical calculations of eq 
18 and 19 are in Figure 4. The higher the 
velocity gradient, the steeper the maximum at a 
shorter time from the start of flow. The 
maximum of the normal stress in general occurs 
later than that of the shear stress. This is 
agreement with the experimental results. 

The stress relaxation after the stoppage of 
flow is another interesting transient phenomenon. 
Contrary to the overshoot, a simple shearing 
flow is suddenly removed at t=O. Using eq 1, 
we can obtain the following stresses: 

O's= ----_-__ dfiodo ~
1/c ~= B 
M-3.4;c O D,v A,D, 

(27) 
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(28) 

where 

These equations give a longer apparent relaxa
tion time for the normal stress t,n than that for 
the shear stress t,•, and both t,n and t,• are 
decreasing functions of the shear rate, as shown 
in Figure 5. Experimental results show the 
same tendency. 
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Figure 5. Stress relaxation after stoppage of flow 
for various rates of shear. 

Stress Relaxation under Large Deformation 
Besides the rate dependences of the viscoelastic 

processes, their deformation dependence should 
provide important informations on the nature 
of nonlinear viscoelastic phenomena. Stress 
relaxation under large deformation is an 
interesting transient phenomenon from this point 
of view. Einaga, et al., 15 measured the relaxa
tion moduli of polymer solutions under torsional 
deformation and found a strong deformation 
dependence. Our proposed model enables us to 
treat this stress relaxation. We consider a large 
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shear deformation with a strain tensor 

r<t)= [~ 
r 
1 
0 

~] (t> 0) (30) 

instantaneously applied to the system at time 
t=O. Using eq I we can get the following 
deformation-dependent shear relaxation modulus: 

f 2~ (sin¢ ) G(t, r)= Jo ~7-+ 1- cos¢ [X(f30)]1f':_s.4;cd¢ 

(31) 

In this case, in X(/30), instead of the F of eq 26 
we should use the following expression: 

F-{3 [r(l-cos¢)+. ¢] - otr 2 Sill (32) 

In Figure 6 is shown the result of the numerical 
calculation of the shear modulus for various 
degrees of deformations. This is in qualitative 
agreement with the experimental results of 
Einaga, et al . 
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Figure 6. Ordinary stress relaxation for large step
wise deformation. 
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Small Oscillations Superimposed on Steady Shear
ing Flow 
Another interesting form of deformation is a 

superposition of a small oscillatory motion on 
steady shearing flow. One form is a "parallel" 
superposition, and another is an "orthogonal" 
superposition. The details of geometry of these 
superpositions are given in Yamamoto's paper, 18 

and we can omit them here. The first careful 
experimental observation of parallel superposi
tion was made by Osaki, et al., 16 while a 
theoretical consideration of superposed parallel 
oscillation has been given by several authors. 4 ' 17 

Recently Yamamoto treated both the parallel 
and orthogonal cases by the use of the concept 
of a deformation-rate-dependent relaxation 
spectrum in his phenomenological considera
tions. 18 In this section let us consider deforma
tions in this category. 

In the case of parallel superposition, the 
deformation tensor is 

r(t)= [i ft+aoeiwt ~] 1 (33) 
0 

It is assumed that the amplitude ao of the 

0 0 

0.1 

0.3 

I 
Shear Rate 

-1 

a 1 
----a 
::; 
(.') 

00 
..Q 

-2 

superposed oscillation is so small that higher 
terms than a0 can be neglected and thus only 
linear terms will be treated. From eq 1 the 
shear stress can be calculated with the following 
result: 

where r;(t) is the steady viscosity given by eq 12 
and G 11 *(w)=G 11 '(w)+iG 11 "(w) is the apparent 
complex modulus: 

~
= (/) I 

G 11 '(w)= d,8 0 2,,; do 
o D AD 

(35) 

~
= (/) /I 

Gu"(w)= d,80 2 _J do 
0 D AD 

(36) 

Here (f)/ and (f)/' are given by the following 
expressions: 

(f)/=[ (1- cos (wo))-!0 sin (wo)+,8 00] 

x[ - ,8//04
-

1; ,8of203 +(.eoo+ YJ 
3,Bot2o 1 [ 9 9 2 2] -27( - cos (wo)) 2+2 ,800+,80 o 

(37) 

-3L-------'---~----'--------'----'-'-u___--

66 

-2 -1 

Jog (() 

Figure 7. Dynamic viscosity as a function of frequency for various superposed rates 
of shear in parallel superposition. 
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Figure:s. Quantity G11 '((JJ)/(JJ2 as a function of frequency for various superposed rates 
of shear in parallel superposition. 
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Figure 9. Frequency at which the apparent dynamic modulus vanishes as a function 
of superposed rate of shear in parallel superposition. 
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w/' =[1- sin (wa)+lc> (1- cos (wa))] 
2 (/J . 

x[- {1/t2a4-1~ f1of20 3+(!1oa+ YJ 
3,q ·20 - ;:2 (wo- sin (wa)) 

x[ + {1 00+{1/02
] (38) 

The values of G 11 '(w)/w2 and G 11 "(w)/w are 
plotted logarithmically as functions of the 
frequency for some fixed ·values of the super
imposed steady shear rate in Figures 7 and 8. 
The values of the dynamic moduli G11 '(w) become 
negative at small oscillatory frequencies. The 
frequency at which the apparent dynamic 
modulus vanishes and the phase difference a 
(tan o=G" /G') just equals rr/2 is denoted w 0 • 

Figure 9 shows that the critical frequency w0 is 
approximately proportional to the superimposed 
steady shear rate f. Booij19 and Kataoka and 
Ueda20 have found in their experiments on the 
parallel superpositions a simple relation between 
the superimposed shear rate and the critical 
frequency: w0= f/2. These results are parallel 
to the present ones. 

0 

8 -..... 
' ' 0 
bJ) 

.2 

-1 

For the orthogonal case, the deformation 
tensor is assumed to be 

[1 ft 0~] r(t)= o 1 
0 boeiwt 

(39) 

Making use of the assumption of small oscilla
tions, b0 « 1, we find the shear stress for the 
oscillation to be 

as=as2=a2s=G 1. *(w )b0eiwt ( 40) 

with the orthogonal complex modulus G1. *(w)= 

G 1.' (w )+ iG 1." (w): 

c c= w ' 
G1.'(w)= J dfio Jo AD~ AD do (41) 

(42) 

Here 

wo' =[ (1- cos (wa))- !0 sin (wo)+ PoO] (A+C) 

(43) 

1/10
11 =[ sin (wo)+ !o (1- cos (wo))}A+C) 

(44) 

Jog w 

Figure 10. Dynamic viscosity as a function of frequency for various superposed 
rates of shear in orthogonal superposition. 
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Figure 11. Quantity G J_'(w)/w2 as a function of frequency for various superposed 
rates of shear in orthogonal superposition. 

An experiment on the superposed orthogonal 
oscillation was carried out by Simmons. 21 In 
this case the experimentally observed curve of 
the complex modulus behaved just as that of the 
complex modulus in linear viscoelasticity and 
had no negative region, as is predicted in the 
present calculation. In Figures 10 and 11 the 
log GJ_'(m)/ol vs. log m curve and the log GJ_"(m)/m 

vs. log m curve are shown. Figure 11 predicts 
that there exists a frequency region where the 
dynamic viscosity r/ (m) increases with the in
crease of ,the superimposed shear rate for a fixed 
frequency. This tendency is also found in 
parallel superpositions of the present model, as 
is shown in Figure 8, though it is not so clear. 
This behavior was not found in the experimental 
results of Simmons; 21 however, this behavior is 
not an unreasonable phenomenon considering the 
fact that the peak appearing in the GJ_"(m) vs. m 

curve shifts to larger m upon increasing the 
superposed shear rate. According to the general 
theory of viscoelasticity the peak shifts toward 
higher m as the temperature increases and the 
apparent relaxation time becomes shorter. In 
the present case the increase of shear rate may 
be considered to induce a more activated condi
tion of molecular motion, namely an increase 

Polymer J., Vol. 6, No. 1, 1974 

of temperature. In calculations of the parallel 
and orthogonal superpositions, for the sake of 
simplicity the integration over /30 is not perform
ed and the results are shown for the case of 
/30= 1. This simplification will not significantly 
affect the final results. 

In addition to this oscillatory shear stress and 
the steady shear stress <J12=<J21='f/(t)t, we have 
another cross shear stress 

0"s 1 =O"s1 =<J1s=F*(m)bofeiwt (45) 

The "complex cross modulus" F*(m)=F'(m)+ 
iF" ( m) is expressed as 

. ~00 'ff!'' F' (m )= d/30 -v' do 
o AD AD 

(46) 

F"(m)= \ d/3 \ 00 'ff!'" do 
J O Jo AD-v' AD 

(47) 

where 

'ff!'' =[ (1- cos (mo))- !0 sin (mo)+ /300] B 

(48) 

'ff!'"=[ sin (mo)+ !0 (1- cos (mo))] B (49) 

As has been pointed out in Yamamoto's paper, 18 
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an experimental determination of this cross com
ponent may be very difficult. 

Rate-Dependent and Strain-Dependent Relaxation 
Spectra 
As has been pointed by Yamamoto, 18 the 

concept of a rate-of-deformation-dependent 
relaxation spectrum is useful for the analysis of 
nonlinear viscoelasticity. Using the present 
model, we can calculate the rate-dependent 
relaxation spectra Hs(-r, t) from the shear 
component and Hn(-r, t) from the normal 
component of stress relaxation after cessation of 
a steady shearing flow. The results are 

Hs(-r, t)= ·; ~12 f i;c r.1~12 f = (" (2" 
77: JM-3.4/c J-'O Jo Jo Jo 

x sin3 {} sin <ft cos <ft exp (- ; ) d(30dad0d<ft (50) 

1 ~l/c 1 ~= ~" ~2,r Hn(-r, t)= 2 .2 9/2 r.,.s"/2 
7 7: M-3,4/c J-'O O O 0 

x sin3 0 (cos2 <ft- sin2 <ft) exp ( - ! ) d(3 0dad0d<ft 

(51) 

where 

q=_l_ [A-(2B cos <ft-C sin <ft) sin{} sin2 <ft] (52) 
f3o 

In the limit of zero shear rate, both H 8 (1:, t) 
and Hn(-r, t) tend to the equilibrium relaxation 
spectrum H(-r, 0). A rough estimate of Hs(-r, t) 
shows that the effect of an increase of the shear 
rate is cut off the spectrum in the long-relaxa
tion-time region. 

A strain-dependent relaxation spectrum is also 
calculated from the relaxation modulus under 
large deformation: 

~
1/c 1 ~" ~2,r 

H(-r, r)= (3 1;2 3/2 
M-3.4/c 7 O 7: 0 0 

X---;- sin3 {} sin <ft cos <ft exp (- 3q') d(30d0d<ft 
q 21: 

(53) 

with 

q' =_l_ (1-2r sin2 0 sin <ft cos <ft+r2 sin2 {} sin2 <ft) 
f3o 

(54) 
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DISCUSSIONS 

In the present work we can semiphenomenolo
gically explain some of the nonlinear visco
elastic properties of concentrated polymer 
systems. The assumption that the probability 
of chain-breakage is proportional to the square 
of the end-to-end distance in a chain is essential 
to our theory and causes the nonlinearity of the 
mechanical properties, although this dependence 
on the end-to-end distance is rather arbitrary 
and we chose it in order to carry out exactly 
some complicated integrals. On the other hand, 
the effect of flow on the change of the rate of 
formation of entanglement is not taken into 
account in the theory. This effect has .been 
previously treated explicitly by Graessley3 and 
by the author, et al. 2 All measurable quantities 
in the network theory may be derived from the 
knowledge of the distribution function F(h, N, t) 
of the network chains alone, and it may be very 
difficult to separate the effect of the chain
reformation and that of the chain-breakage by 
the analysis of suitable experimental results. 
This problem in the treatment of chain entangle
ments still remains to be solved. 

On the other hand, as compared with the 
phenomenological construction of constitutive 
equations, the present model has the advantage 
of being able to discuss the rate as well as the 
deformation dependence of the viscoelastic 
characteristic functions by the same model, 
which is rather difficult using the present 
constitutive equations. 

The numerical calculations were performed on 
the HIT AC 5020 and 8700 computers at the 
University of Tokyo. 
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