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ABSTRACT: The rate of fast reactions in solution between two flexible polymer 
molecules with active chain ends is studied in relation to the theory of micro-Brownian 
motion of polymer segments in solution. The comparison of relaxation times for five 
types of molecular and segmental motions indicates that the translational diffusion of 
chain end segments is the rate-determining step. The segmental diffusion coefficient 
depending on the position based on the model of random flights with correlations is 
related to the rate constant by using the Smoluchowski equation and the potential 
energy function for intermolecular interaction. The rate constant can be expressed as 
a product of three components without any arbitrary parameters, 

(k)=A(o:)B(n)C(l;,o, T) 

where A(o:) represets the effect of solution properties, B(n) the effect of molecular 
weight, and C(l;,0, T) the effect of frictional properties of the segment. This equation 
predicts that the rate constant is inversely proportional to solvent viscosity, decreases 
with increassing molecular weight to some extent, and is markedly affected by the 
excluded volume effect and chain flexibility. Close agreement is found between the 
calculated rate constants and those experimentally obtained. 

KEY WORDS Fast Reaction / Polymer Reaction / Diffusion Con-
trol / Rate Constant / Termination / Polymer Radical / Diffusion 
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It is well-known that the reaction rate of a 
fast bimolecular reaction between molecules with 
highly reactive groups is controlled mainly by 
the approach process of the two reactants to 
dose proximity. The relation between the rate 
,constant k for bimolecular coagulation and the 
diffusion coefficient D is given by eq 1 by 
:Smoluchowski, 1 

( 1 ) 

where R is the sum of radii of two coagulating 
:species. This relation has been extended to the 
reaction which includes the electrostatic effects 

.arising from the presence of net charges by 
De bye, 2 whose equation has been used by Eigen 
and his coworkers3 in their brilliant work on 
fast ionic reactions in solution. 

The fast reaction between two coiling poly­
mer molecules with active chain ends is also 
,supposed to be controlled by the approach pro-

cess of the two active sites. One of the good 
examples of diffusion-controlled polymer reac­
tions is the bimolecular termination step in free­
radical polymerization. 4 In fact, the termination 
rate constants of two macroradicals are much 
smaller than those of the recombination of small 
radicals. The possibility of a diffusion-controlled 
mechanism for the radical termination in the 
usual solution polymerization was suggested for 
the first time by Schulz5 in 1956. A great deal 
of experimental evidence for this assumption 
has been gathered mainly by North and his 
coworkers. 6 • 7 One of the important points is 
the inverse proportionality of termination rate 
constants to solvent viscosity. Reliable molecular­
weight dependences of bimolecular termination 
rate constants have been reported by using ESR 
method8 and pulse-radiolysis method.9 

The theoretical treatment for the diffusion­
controlled termination mechanism has also been 

341 



K. HoRIE, I. MITA, and H. KAMBE 

proposed by several authors .10- 18 The diffusion 
process of the reaction can be divided into two 
relatively independent processes. These are (a) 
the translational diffusion of the center of mass 
of the polymer molecules, or macro-Brownian 
motion of polymer molecules and (b) the trans­
lational and rotational diffusion of segments 
with active chain ends, or micro-Brownian 
motion of segments. In some models10 ·13•14 

these processes are regarded as consecutive and 
the existence of the "encounter-pair" is assum­
ed while other models11 ' 15- 18 are concerned with 
the segmental diffusion of active chain ends in 
the overlapping space of two interpenetrating 
polymer molecules. The consensus in both cases 
is that the translational diffusion process of chain 
end segments is the rate-determining step for 
radical termination reactions. The quantitative 
discussion based on these models, however, 
was hampered by the lack of an expression for 
the effective diffusion coefficient for active chain 
ends in coiling polymers and, therefore, some 
adjustable parameters have been introduced in 
all models but those of Burkhart13 and Bagda­
sarian.14 Burkhart13 has applied the theory of 
Kuhn and Kuhn19 to the segmental motion of 
polymer chain ends and proposed for the termi­
nation rated constant an expression in terms of 
solvent viscosity, polymer chain flexibility and 
chain length. However, this expression predicts 
an unusual dependence of the termination rate 
constant on the polymer chain length, caused 
presumably by the obscure concept of Kuhn and 
Kuhn's "inner viscosity" of polymer chains.20 

Bagdasarian14 did not use the Smoluchowski 
relation, but has calculated the mean time need­
ed for the collision of two polymer chain ends 
in the encounterpair by applying the theory of 
Frenkel21 of the polymer chain relaxation. 
Though such a model is rather reasonable, his 
result is unsatisfactory with respect to the mo­
lecular-weight dependence of the rate constants. 
Moreover, there has been no discussion of the 
effect of excluded volume in a polymer-solvent 
system on the diffusion controlled rate constants. 

The present paper is concerned with a theore­
tical treatment of the rate of fast reactions in 
solution between two flexible polymer molecules 
of equal molecular weights with active chain 
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ends as a function of the distance of the chain 
end from the molecular center of mass. By 
using the Snoluchowski equation and the po­
tential energy function, the calculation of rate 
constants is possible. The· effect of coulombic 
interaction which well be important for the re­
action between two charged active sites is ignored 
here. The resuting expression prodicts the in­
fluence of the excluded volume effect and the 
molecular weight on the rate constant without 
any arbitrary parameters. Some discussion is 
carried out on the basic assumptions of the theory 
and a comparison is made between the calculated 
rate constants and those experimentally obtained. 

RELAXATION TIMES OF VARIOUS 
MOLECULAR MOTIONS 

A flexible polymer molecule with N monomer 
units will now be considered. This polymer 
chain can be divided into n segments of equal 
length b so that this statistical model of freely 
jointed segments may have an equal mean-square 
end-to-end distance <h2) to that of the original 
molecule. The ratio N/n reflects the chain 
flexibility of the polymer moelcule and can be 
expressed approximately by the extent of short­
range interactions along the polymer chain. An 
approximate value of ten for N/n has been ob­
tained experimentally for vinyl polymers by the 
fluorescence polarization method. 22 

Relaxation times for five types of molecular 
motions of reacting molecules and segments 
should be compared in order to estimate the 
rate determining step of the reaction. 

The relaxation time 'pc, for the collision of 
polymer molecules is expressed in eq 2 by using 
the Smoluchowski equation (eq 1), 

Tpc= 1/k[C]= l/4rcRpDptNAc ( 2) 

where k is the bimolecular rate constant in 
//mol sec, Rp is the distance between the centers 
of mass of two polymer molecules in collision, 
Dpt is the translational diffusion coefficient of 
the polymer moecule, and NA is Avogadro's 
number. The concentration of polymer mo­
lecules is expressed by [C] in mol// and by c 
mol/m/. If the Einstein-Stokes relation23 between 
solvent viscosity 1Jo and diffusion coefficient of 
a spherical molecule of radius ap 
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Dpt=kBT/6nr;0ap 

can be used, 'Pc is given by eq 4, 

'rpc=3r;0/4cNAkBT 

( 3 ) 

(4) 

where kB is Boltzmann's constant and T is the 
absolute temperature. The relaxation time 'Pr 
for the rotational diffusion of a spherical poly­
mer molecule is expressed by the Einstein eq­
uation, 24 

( 5) 

The relaxation time , 80 for the collision of chain 
end segments is given by eq 6, 

'rpo=2.4x 10-4 sec 

A definite numerical value cannot be given for 
Dst· If Dst is supposed to lie in the range of 
10-s to 10-7 cm2/sec, the range of the value for 
'sc may be given by 

'rsc=4.4x 10-4~4.4x 10-s sec 

As the usual experimental rate constant for 
radical termination kt has the order of magni­
tude of 107 //mol sec, 27 the experimental value 
for overall relaxation time 'exp will be given by 

'rexp= 1.0 X 10-2 sec 

( 6) Thus the inequality 9 is obtained. 

where Rs is the distance between the active sites 
at the instance of reaction and Dst is the trans­
lational diffusion coefficient of the chain end 
segments. The relaxation time 'sr for the ro­
tational diffusion of chain end segment is given 
by eq 7 in terms of the radius, as, of the 
equivalent sphere of the chain end segment. 

( 7) 

Moreover, it is necessary to estimate the relaxa­
tion time -rpo for the overlapping of two poly­
mer molecules. Graessley25 has successfully as­
sumed that the characteristic time for entangle­
ment formation between two molecules approach­
ing each other is of the same order of magnitude 
as the maximum relaxation time which Rouse26 

has calculated for the mechanical response of 
polymer molecules in solution. Thus, it seems 
reasonable to evaluate 'Po by using Rouse's 
equation 

( 8) 

where r; is the solution viscosity of the system. 
In order to compare the orders of magnitude 

of these relaxation times with experimental 
values, the calculation has been carried out for 
the reaction of polymer molecules with N=l04 

in 1 g/100 m/ solution, by using the values T= 
300 K, c=l0-8 mol/m/, r;0=10-2 poise, r;=l0-1 

poise, ap=5x10-6 cm, a 8 =10-7 cm, and Rs= 
3 x 10-s cm. The results are as follows; 

'rpc=3.0 X 10-s sec 

'rpr=3.7x 10-4 sec 

'rsr=3.0x 10-9 sec 
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'rsr«'rpc<'rpr and 'rpo<'rsc<'rexp ( 9) 

As 'Pc and 'Pr are very small compared with 
'rexp, an equilibrium situation is expected for 
the macro-Brownian motion of polymer mo­
lecules. The overlapping process of polymer 
molecules may be controlled by the micro­
Brownian rearrangement of polymer segments, 
essentially the same motion as translational dif­
fusion process of segments. The comparison of 
the orders of magnitude for -rpo and -rexp in­
dicates that only in a few instances will over­
lapping contribute to the reaction because the 
active site is attached to only one segment in 
a polymer molecule. The process of translational 
diffusion of chain end segments will be the rate­
determining step, since the rotational rearrange­
ment of monomer units in the segment is suf­
ficiently fast enough for the two active sites to 
make an encounter during a close contact of 
two chain and segments. The micro-Brownian 
motion of chain end segments is supposed to 
be restricted by surrounding polymeric chains. 
As , 80 based on the Dst values of 10-s to 10-7 

cm2/sec is smaller than '•xp, it is adequate to 
consider that Dst varies markedly according to 
the position of chain end segment in a polymeric 
coil. Subsequently, the local rate constant for 
the collision of chain end segments k(r) will be 
given on the basis of Dst(r) as a function of 
the distance r of the chain end from molecular 
center of mass. The average rate constant <k> 
under the condition of inequality 9 will be 
obtained through the integration of k(r) multi­
plied by the probability of finding two thain 
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end segments in the same volume element over 
the whole space. It is supposed that the in­
equality 9 represents usual cases of free-radical 
recombination, disproportionation, ionic proton­
abstracting or other fast reactions between poly­
mer molecules in dilute solution. 

DIFFUSION COEFFICIENT OF 
SEGMENTS 

There seems to be two factors which influence 
the translational diffusion coefficient of an active 
chain end in the polymer coil. One of these 
arises from the fact that the adjacent polymeric 
chain linked to the chain end segment restricts 
its mobility. This type of complication is avoid­
ed by using the statistical model of equivalent 
freely jointed segments. The another is caused 
by the collision of the chain end segment with 
other segments during the diffusive process. The 
effect of collisions between segments is expressed 
by the concentration dependence of the diffusion 
coefficient, and for polymeric segments a marked 
dependence will be expected because both of 
the colliding segments are linked with other 
segments respectively. 

The translational diffusion coefficient of a 
segment can be expressed by using parameters 
of microscopic Brownian movements for the 
segment. By assuming that a collision of a 
segment with other polymeric segments imposes 
some restriction on the direction of successive 
several steps of the segment, we apply to the 
present case random flight model with correla­
tions according to Tchen. 28 

If the successive steps of a segment are re­
presented by the vectors Ii, with /Ii/ =I, then the 
mean square displacement of a segment per unit 
time (L2) is given by 

2 l.l 2 11 l.l 

(L )=(( I: Ii))= I: I: (li,11) (10) 
i=l i=l§=l 

where v is the number of steps per unit time. 
The correlation function between I; and 11 is 
defined by 

(11) 

and can be considered as a function of s= 
/j-i/ only when the process is stationary. Then 

ti-11,1-l 11 

(L2)=2l I: I: C.+12 I: C0 (12) 
s=l :j=s j=l 
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where C0 = 1 and for an uncorrelated case we 
have 

(13) 

When the fractional volume concentration of 
segments in the fluid is expressed by p, vp steps 
in total v steps per unit time are colliding steps 
and may have correlations with successive s 
steps respectively (C,*O, for s=l-s), while for 
v(l-p) stept C,=0. Then for this case we have 

8 lJ-1 

(L2)=212 p I: I: C,+v/2 

s=lj=s 

For a sufficiently large v, eq 14 becomes to 

(L2)=vl2(1 +2p f:. C.) 
s=l 

(14) 

(15) 

Because the signs for the c. values are probably 
negative as shown later, the summation is re­
placed by -C as 

C=-(C1 +c2 + · · · +C,) (16) 

then we obtain 

(L2)=vi2(1-2Cp) (17) 

As the diffusion coefficient D is related to (L2) 

by29 

(18) 

The concentration dependence of the diffusion 
coefficient of a segment can be expressed by 

(19) 

where D0 is the diffusion coefficient of the 
segment when placed separately in the fluid. 
By using the Einstein relation23 

D 0 =kBT/r,o 

eq 19 is transformed to 

Ds=(kBT/(,0 )(1-2Cp) 

(20) 

(21) 

where r,0 is the friction coefficient of a segment 
when placed separately in the fluid. 

The fractional volume concentration of seg­
ments at the distance r from the molecular center 
of mass p(r) is now calculated on the basis of 
a Gaussian distribution of segments. The prob­
ability W 1(r) that we find any segment at the 
distance r from the molecular center of mass is 
given by 

W 1(r)=(9/1rnb2)312 exp (-9r2/nb 2) (22) 
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When each segment is assumed to have a spheri­
cal shape, its volume V, is given by 

V,=(1/6)irb3 (23) 

and we obtain 

p(r)=nV,W1(r)=(9/2ir 112n112) exp (-9r2/nb2 ) (24) 

Now we introduce an assumption that the 
diffusion coefficient of the segment (relative to 
the coordinate) at the molecular center of mass 
D,(r=0) is equal to the translational diffusion 
coefficient of polymer molecule Dpt· The validity 
of this assumption will be discussed in the final 
section below. According to Kirkwood and 
Riseman, 30 Dpt is given by 

Dpt=(kBT/n,0)(1 +8J..0n112/3) (25) 

where 

Ao= 'o/61;2irs;2r;ob 

The from eq 21 and 25, we obtain 

C={l/2p(O)}{l -(1 +8J..0n112 /3)/n} 

(26) 

(27) 

Consequently, the diffusion coefficient of a seg­
ment at the distance r from the center of mass 
of the polymer molecule composed of n segments 
is expressed in 

Ds(r)=(kBT/,0)[1-{1-(1 

+8l0n112/3)/n} exp (-9r 2/nb 2 )] (28) 

RATE CONSTANT FOR POLYMER 
REACTIONS 

The reaction rate constant k is expressed by 
eq 29 in terms of the diffusion coefficient D and 
the rate constant for the fast chemical process 
k 0 , according to the modified Smoluchowski 
equation31 

k=4irRD/(1 +4irRD/k0 ) (29) 

The original Smolchowski equation 1 corresponds 
to the extreme case when the chemical process 
succeeding to the diffusion process proceeds 
much faster than the latter; i.e., 

(30) 

As the diffusion coefficient D is the sum of 
segmental diffusion coefficients in cm2 /sec for 
each reactant, the rate constant at point R in 
//mol sec can be given by eq 31 for the condi-

Polymer J., Vol. 4, No. 3, 1973 

tion of inequality given in eq 30, 

kRh, rB)=4irRs{Ds(rA)+D8 (rB)}NAX 10-s (31) 

where r A and rB are the distance of point R 
from the centers of mass of molecules A and 
B, respectively, and Rs is expressed in cm. 

As pointed out already, -rpo is much smaller 
than !"exp· Consequently it is permisible to 
consider that polymer molecules are thermody­
namically in equilibrium in solution before the 
termination reaction takes place. Then, the rate 
constant averaged over the whole space <k) 
will be given by the integration of kR(rA, rB) 
multiplied by the probability that two reacting 
chain end segments lie in a given point R in 
the equilibrium condition as 

<k>= kR(r A, rB) 

X exp(-ilF(a)/kBT) W 2(rA)W2(rB)4irr A 24irrB2drBdr A 

(32) 

where iJF(a) is the potential energy of interaction 
of two molecules, while a is the distance between 
their centers of mass. W2(r) is the probability 
of finding the chain end segment at the distance 
r from the molecular center of mass. 

It is to be noted that the excluded-volume 
effect which is important in the theory of solu­
tion properties is introduced through iJF(a) and 
W2(r). The intermolecular interaction iJF(a) is 
expressed as32 

ilF(a)=kBTf3n2(9/2irna2b2)312 exp (-9a2/2na 2b2) 

(33) 

where a is the expansion factor and the effective 
excluded volume of the segment f3 is given by 
eq 34 in terms of Flory's "ideal" temperature 
(J, 

/3=/3 0(1-0/T) 

The probability Wk) is given by 

W2(r)=(9/2irna 2b2) 312 exp (-9r2/2na 2b2 ) 

(34) 

(35) 

In the coordinate system shown in Figure 1, 
we have 

(36) 

Equation 32 substituted by eq 35 is expressed 
in eq 37 as a function of q and a, 
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Figure 1. Coordinate system of two Gaussian 
chains at the time of reaction. 

<k)::::: (9/4irna2b2)312 ~~ exp (-JF(a)/kBT) 

X exp ( -9a2 /4na2b2)4ira2da2 

x (9/irna2b2)312 [kR(q) 

xexp (-9q2/na2b2)4irq2dq (37) 

where an approximation 

kR(rA, rB)=kR(q)=8irRsNADs(q) X 10-3 (38) 

is used. By introducing new parameters x, y, 
ane the interaction parameter z as 

x 2=a2/na 2b2 , /=q 2/na 2b2 (39) 

Z= (3 /2irb2)3/2 pn112 ( 40) 

and by substituting eq 28, 33, and 38 into eq 
37, we obtain 

<k)=(27/2ir112)[ exp{-3312za-3 

X exp (-9x2/2)}x2 exp (-9x2/4)dx 

X (108/ir112)(8 X l0- 3irRsNAkBT/l:,,o) 

X [[l-{1-(1 +8J0n112/3)/n} 

xexp (-9/)]/ exp (-9/)dy (41) 

The frictional coefficient of a segment r,,0 is 
assumed to be equal to the friction coefficient 
of a monomeric unit multiplied by the number 
of monomeric units in a segment N 0 , and will 
be given by 

(42) 

where am is the hydrodynamic radius of a 
monomeric unit. The values of N 0 may ap­
proximately be determined by eq 43, 

No=N/n=<h2)f<h2)ofj (43) 

where <h2)ofj is the mean-square end-to-end di­
stance for freely jointed monomeric units. 
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Thus, we obtain finally the rate equation for 
the bimolecular fast reaction of polymers with 
active chain ends as a product of three com­
ponents, each representing the effect of solution 
properties (A), molecular weight (B), and fric­
tional properties (C), respectively, 

<k)=A(a)B(n)C(l:,,0 , T) (44) 

where 

A(a)=(27/2ir112)r exp {-27za-3 

x exp ( -9x2 /2) }x2 exp ( - 9x2 /4 )dx ( 45) 

B(n) =(l08/ir112) 

X r[l-{1-(1+8J0n112/3)/n} 

X exp ( -9/) ]/ exp ( -9/)dy ( 46) 

C(l:,,0 , T)=4 X l0- 3RsNAkBT/3N0r;0am (47) 

When the active site is situated on a randomly 
selected position along the polymer chain, we 
must use W1 modified by a instead of W2 in 
eq 32, and finally the rate constant for this case 
<k)' is given by 

<k)' =A' (a)B' (n)C(l:,, 0 , T) (48) 

where 

A' (a)=(27-V2jir1/ 2) exp {-27za - 3 

xexp (-9x2/2)}x2 exp (-9x2/2)dx (49) 

B' (n)=(216v'2,fir112) 

X r[l-{l-(l+8J0n112/3)/n} 

x exp (-9/)]/ exp (-18/)dy (50) 

The factors influenced by the excluded volume 
effect A(a) and A' (a) are calculated by using 
the Flory-Fisk equation33 

a 5-a3 =0.648z{I +0.969(1 +z/a3)-213} (51) 

They are shown in Figure 2 for the usual range 
of a values. The factors directly affected by 
molecular weight B(n) and B' (n) are also calcu­
lated and shown in Figure 3 for the usual range 
of n. In order to simplify the numerical calcu­
lation, Ao is approximated by (3/2ir).112 The 
effect of the molecular weight also appears in­
plicitly in A(a) and A'(a), because a increases 
with increasing n when a is larger than unity. 
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Figure 2. Calculated values of A(a) and A'(a) 
depending on the expansion factor a. 
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n 
Figure 3. Calculated values of B(n) and B'(n) 
depending of segments in a polymer molecule n. 

Equation 47 indicates the inverse proportionality 
of the rate constant to solvent viscosity. But 
it is noted that the change of solvent affects the 
rate constant not only through the change in 
viscosity but also through the change in thermo­
dynamic properties of the solution. Experi­
mental inverse proportionality of the rate con­
stant to the solvent viscosity using various 
solvents will be guaranteed only when their 
solvent powers are similar. The rate constant 
in good solvents is nearly proportional to the 
inverse half power of molecular weight when n 
is not so large and becomes independent of it 
for large n. The effect of chain flexibility will 
be expressed by the change of N 0 in eq 43. 

DISCUSSION 

The Smoluchowski equation (eq I) has been 
derived by means of equation for diffusion 
under a concentration gradient. However there 
is a disturbing aspect concerning the nature of 
the concentration gradient, as in solution the 
collision is actually caused by the Brownian 
motion of particles regardless of the concent­
ration gradient. This problem has been discussed 
by Collins and Kimball, 31 who have ascertained 
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the fundamental validity of the Smoluchowski 
equation by using a physically different model. 

The discussion has already been given above 
in RELAXATION TIMES OF VARIOUS MOLE­
CULAR MOTIONS concerning the applicability 
of the assumption that an equilibrium exists 
for the motions of polymer molecules in­
cluding the overlapping process. The fact may 
be noted here that Frenkel21 has evaluated the 
relaxation time of polymer chain rearrangement 
in a quite different manner to be the same order 
of magnitude as -rpo in eq 8. 

Some comment should be made concerning 
the correlation parameter C, which plays a role 
in the deviation of the segmental diffusion coef­
ficient D.(r) depending on distance r. Accord­
ing to the postulated model, the reflection of a 
diffusing segment by collision is the main reason 
of correlation between successive steps. So C, 
(s= 1-s) will have negative values between zero 
and minus unity and rapidly approach zero with 

increasing s. The values of C=- i; C, can be 
s=l 

calculated according to eq 27 as a function of 
the number of monomer units in a molecule N, 
and one obtains C=l.0 for N=5x 102 , C=l.6 
for N= 5 x 103 • These values are thought to be 
reasonable in spite of some assumptions during 
the course of the derivation. The chain entangle­
ment supposed for polymer molecules of high 
molecular weight also causes the relatively large 
values of C for large N. As it is difficult to 
evaluate D.(r=0) precisely, we have assumed 
that D.(r=0) is equal to Dpt· It should be noted 
that even if it deviated from Dpt, the resulting 
value of B(n) would not deviate appreciably 
from the values shown in Figure 3. 

The reported values of termination rate con­
stants in usual radical polymerizations show 
wide scatter in the range of 2 x 106 to 7 x 107 

//mol sec,27 and cannot be used for the precise 
verification of eq 44-47. Borgwardt, Schnabel 
and Henglein9 have directly measured rate 
constants for the recombination of poly(oxyethyl­
ene) radicals in aqueous solution generated by 
the pulse-radiolysis method. The numerical 
evaluation of eqs 44-47 and eqs 47-50, there­
fore, is performed by assuming that the same 
conditions prevail as did during their experiments. 

The limiting viscosity number [r;l of poly(oxy-
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Table I. Calculation of rate constants <k) and <k)' according to eq 44-47 and eq 47-50 

Polyoxyethylene 

Polyoxyethylene 
in water 

Polystyrene 
in toluene 

N 

11 
38 

118 
409 
775 

3000 
102 

103 
104 

a 

1.10 
1.14 
1.20 
1.24 
1.34 
1.14 
1.28 
1.48 

a Data with pulse-radiolysis method.9 

A(a) 

0.55 
0.46 
0.39 
0.36 
0.30 
0.46 
0.33 
0.25 

ethylene) in water is related to the molecular 
weight M by34 [r;]=6.4x 10-5 M 0·82 . By insert­
ing eq 52 in the familiar relationship35 

[r;]/M1;2=([J((h2)0/M)3;2a3 (53) 

with the parameter ({)=2.5 X 1021 and (h2) 0/M= 
0.60 x 10-16 cm 2, 36 we find a= 1.34 for a poly­
mer of N=3X 103. The values of a for lower 
N are estimated by considering the square-root 
proportionality of z to N and eq 51. The re­
combination rate constants (k) and (k)' for the 
polymer of N monomer units can be calculated 
by using eq 44-47 and eq 47-50, respectively, 
with the values of N0=4.l,36 am=2.2xl0-8cm, 
R.=3 x 10-s cm, 10 ' 37 T=298 Kand r;0=0.89x 10-2 

poise. 
The calculated and experimentally found 

values of (k) are summarized in Table I to­
gether with the values of A(a) and B(n) obtained 
in the course of calculation. The dependences 
of (k)calc, (k)' calc and (k)exp on the number 
of monomer units N for polyoxyethylene are 
visualized in Figure 4. It can be noted that 
the (k)' values calculated for the case of random 
distribution of active sites are in close agreement 
with the experimental values, if we take into 
consideration that there are no adjustable param­
eters in eq 47-50. Supposedly then active sites 
in polyoxyethylene are randomly produced along 
polymer chains by the attack of hydroxy radi­
cals in the case of pulse-radiolysis method. The 
calculated rate constants for the termination re­
action of polystyrene of N= 102, 103, and 104 in 
toluene at 285 K with the appropriate values of 
a 38 are also indicated in Table I. 
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B(n) <k)calc, (k)'calc, <k)exp,• 
//mol sec //mol sec //mol sec 

4.6x lQ8 
0.90 6.1 X 108 2.9x108 2.2x 108 
0.77 4.3x108 1.6x 108 1.2x 108 
0.71 3.4x 108 9.7x108 8.Ox 108 
0.69 3.1Xl08 7.8xl07 6.8x 107 
0.67 2.5x108 4.8x 107 5.6x 107 

0.90 l.3x 108 
0.71 7.5x 107 
0.67 5.3x107 

10 2 103 10' 
NUMBER OF MONOMER UNIT, N 

Figure 4. Comparison of calculated rate constants 
(k)calc and <k)'caic for the recombination reaction 
of polyoxyethylene radicals in water with experi­
mental values (k)exp· 

The molecular weight dependehce of the dif­
fusion-controlled rate constant expressed in eq 
44-47 seems to be qualitatively similar to that 
given by Benson and North. 10 However, they 
have introduced in their equation correction 
parameters PAB and NL, whereas all parameters 
in our equations 44-47 are given precisely by 
a study of the solution properties of polymer 
molecules. In usual radical polymerizations, 
the molecular weight distribution expressed by 
the ratio Mw/ M,,, lies between 1.5 and 2.0, and 
the reported molecular weight independence of 
the termination rate constant for methyl meth­
acrylate polymerization37 is not necessarily relia­
ble because of the polydispersity of the reacting 
polymer chains. For the direct verification of 
eq 44-47 it is necessary to measure rate con­
stants for the fast bimolecular reaction of 
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monodisperse polymers with active chain ends. 
This kind of work is now being conducted in 
our laboratory. 

It is concluded from the above that the rate 
constant of the fast reaction in solution between 
monodisperse polymer molecules with active 
chain ends can be expressed by eq 44-47 without 
any adjustable parameter. The rate constant is 
inversely proportional to solvent viscosity, and 
decreases with increasing molecular weight to 
some extent. The rate constant is markedly 
affected by the excluded volume effect of the 
polymer-solvent system. Most of free-radical 
recombination and disproportionation, ionic 
proton-abstracting or other fast reactions between 
polymer molecules will be included in this type 
of diffusion-controlled reaction. 
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