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ABSTRACT: A lattice theory is developed for crystallization of polymers from the 
melt containing seeded nuclei and for volume relaxation of amorphous (or molten) 
polymers. The partition function of a partially crystalline polymer is formulated on the 
basis of the lattice model; each end of the polymer chain is assumed to be included in 
the crystalline region and the middle part is in the amorphous region forming a folding 
loop or inter-lamellar chain. The Gibbs free energy is calculated from it. The equa­
tions describing the processes of crystallization and volume relaxation are derived by 
applying the linear law of irreversible thermodynamics to such systems of partially 
crystalline and molten polymers. The results of the theory are compared with available 
experimental data; a close agreement is obtained for crystallization with seeded nuclei, 
but the agreement is not satisfactory for volume relaxation except the very early stage 
of the process. The result can explain the depression of the melting temperature when 
the amorphous chains on the crystal surface deviate from the regular fold. 
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In a preceding paper1, one of the authors 
developed a lattice theory for melting and glass 
transition of polymers; he derived the expres­
sions of melting temperature and glass transition 
temperature in terms of molecular parameters, 
and discussed thermodynamic properties at the 
transition points. The present paper deals with 
crystallization kinetics with seeded nuclei and 
volume relaxation by applying irreversible 
thermodynamics and the lattice model. 

Crystallization kinetics of polymers from the 
melt have been generally described in terms of 
the well-known Avrami equation2; it was origin­
ally for low-molecular-weight substances, but 
now is widely applicable to polymetric systems. 
Although many considerations3 have been given 
for the rate constant of this equation, the 
molecular ground for it is not yet sufficiently 
elucidated. In recent years, Roe and Krigbaum4 

have applied the irreversible thermodynamics to 
their model5 for semi-crystalline polymers in 
order to obtain the relation corresponding to 

300 

the A vrami equation. 
As for the volume relaxation phenomena of 

polymers, phenomenological theories seem to be 
rather more prevalent than molecular ones. 
One of the latter theories has been developed 
by Hirai and Eyring6 on the basis of the hole 
model of liquids combined with the theory of 
rate process. On the other hand, Bueche7 has 
formulated the theory based on a simplified 
normal coordinate method for molecular motions 
in glass-forming substances; he led the equation 
for the rate of thermal contraction around the 
glass transition region. 

We calculate the partition function of a par­
tially crystalline polymer with the use of the 
lattice model, and obtain the Gibbs free energy 
of the system. Applying the linear law of ir­
reversible thermodynamics to such systems of 
partially crystalline and molten polymers, we 
treat the crystallization with seeded nuclei and 
volume relaxation. The results of the theory 
are compared with available experimental data. 
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LATTICE MODEL 

Consider a system composed of N symmetrical 
linear polymer chains with n repeating units; 
the chain is split into n' segments, which move 
independently of each other. We pressume in 
both amorphous and crystalline states that the 
polymer chains are arranged in a hexagonal or 
tetragonal quasi-lattice with coordination number 
z0(z0=4 or 6 according as tetragonal or hexa­
gonal). In crystalline states they have the ex­
tended form and all the skeletal bonds are in 
trans conformation, whereas in molten or rub­
bery states holes are formed and the chain be­
comes flexible, that is, the bonds are in the 
state of mixture of trans and gauche conforma­
tions. 

We now divide the system of volume V into 
N 0 identical cells; Nn' cells are occupied by 
segments and the other n0 cells are vacant, i.e., 
No=Nn' +n0 (n0 =0 for the crystalline state). 
An effective sequence of gauche bonds constitutes 
a flexed segment, which gives a sharp bending 
of the chain; an unflexed segment is related 
to trans bonds. The relative fraction of flexed 
segments is assumed to have a value equal to 
that of gauche bonds. We consider the iso­
thermal-isobaric ensemble of such a system. 
When n' is large enough, i.e., n' =::n' -1, the 
Gibbs free energy of a polymer in molten (or 
amorphous) state can be written in the form 
applying the lattice theory of a previous paper1: 

G.=N{( zt)(l-¢H•T+J(sG-•T)] 

-Nn'kr[Jln z0( }- I)- In e(l-]) 

-~¢-ln¢+lnq.J+pVa ( 1) 
1-¢ 

u being the inter-unit interaction energy, ¢ the 
volume fraction of holes (¢=n0/N0), J the aver­
age relative fraction of gauche bonds, •T and •G 
the energies of trans and gauche conformations, 
and qa the cell partition function for the amor­
phous state. The equilibrium value of ¢ is 
given by 

1J z0u pv 
[ 

I ] ln¢==-(l-¢=) (--2kT )(1-¢=)+l - kT 

( 2) 
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where / is the number of units per segment, 
i.e., / =n/n' and v is the volume of a cell. 
Considering the "pentane interference" J can be 
represented as1 

with 

and 

j [a 
l+([o-[o') 

_ 2 exp [ -Lls/kT] 
fa- 1+2exp[-Lls/k 

[a' 
exp [-Lls/kT] 

1 + exp [-Lls/kT] 

( 3) 

( 4) 

( 5) 

where Lis is the energy difference between trans 
and gauche conformations; Lls=sa-•T· 

For a polymer in the crystalline state, the 
Gibbs free energy is written as, neglecting the 
chain folding8 : 

G0 =N{( z;u' )+•T]-Nn'kTlnqc+PVc (6) 

Here u' is the inter-unit interaction energy in 
the crystalline state, and q0 the cell partition 
function of a crystalline polymer; one may put 
u' =u and q0 =qa around the melting point9 • 

VOLUME RELAXATION 

Let an amorphous (or molten) polymer be 
initially in the equilibrium state at a given 
pressure and temperature. Either when a con­
stant external pressure p is applied to the poly­
mer or when quenched to a constant temperature 
T, the volume contracts in some amount instan­
taneously and then decreases gradually to its 
new equilibrium value. The instantaneous con­
traction is considered to be due to the change 
in the volume of a cell in the lattice, while the 
time-dependent change may be the decrease of 
the number of holes in the system; the former 
is ascribed to thermal vibrations of the molecules 
around lattice points, and the latter to the 
micro-Brownian motion of the segments. We 
discuss here only the time-dependent volume 
change, namely volume relaxation*, except the 

* Strictly speaking, we should use the term 
"volume retardation", but "volume relaxation" is 
more common. 
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instantaneous one. 
In general, the volume relaxation becomes 

remarkable near the glass-transition region since 
it requires a long time to reach the equilibrium 
state owing to the sluggish molecular motion. 
We choose the volume fraction rp of holes as 
the parameter characterizing the extent of the 
process; 1-rp corresponds to the ordering param­
eter previously introduced by Davies and 
Jones10 for glass-forming liquids. The affinity 
or the driving force for the volume relaxation 
process is defined by 

Ai=-(~) arp T,p 

( 7) 

Since r/J« l around Tg(r/Joo=0.025 at Tg)11, the 
insertion of eq 1 into eq 7 gives 

A1=-Nn'kT[lnrp+l+ k1r{( _v';0u)+pv}] 

( 8) 

According to irreversible thermodynamics12 , 

the rate of the irreversible process of a system 
is proportional to the affinity provided the sys­
tem is not so far from equilibrium: 

( 9) 

with the proportionality constant L1 • By the 
use of the equilibrium value r/Joo given by eq 2, 
eq 9 is reduced to 

-l! -= 1NnkTln -t drp L . ( rp ) 
df r/Joo 

(10) 

The integration of eq 10 yields 

(11) 

with 

L 1NnkT 
(12) 

Here rp0 is the volume fraction of holes at t=O 
and Ii x is the logarithmic integral function, 
defined by 

lix= --= lnJlnxJ+I:--
dx = (lnx)r 
lnx r=l r-r! 

(13) 

For the volume contraction of the case 
r/Jo?::r/J?::rpoo, after expanding the right-hand side 
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of eq 11 in the power series of (r/J/rpoo-1) and 
(rp0/rpoo- l), neglecting the higher order terms, 
we have 

_.!_= In rp-rp00 + rp-r/Jo (14) 
T r/Jo-r/Joo r/Joo 

For an early stage of the process, i.e., (rp0 -rp)/rpoo 
« 1, excepting the instantaneous contraction, we 
approximately obtain 

where V0 and V= are the volumes of a sample 
at t=O and t= oo, respectively. Equation 15 
gives a linear relaxation process with single 
relaxation time r. This type of equation was 
derived by Hirai and Eyring6 on the basis of 
the theory of rate process for isothermal volume 
contraction of a polymer and liquid when the 
volume change is not so large. 

Similarly, for the isothermal volume dilation 
due to decompression or heating of the condi­
tions, 10 -::;,rp-::;,¢00 and (r/J-r/JoWoo« 1, we have 

Voo-V=(V=-Vo) exp ( --;-) (16) 

GIBBS FREE ENERGY OF A PARTIALLY 
CRYSTALLINE POLYMER 

Let us consider a partially crystalline polymer 
of crystallinity x consisting of N identically 
linked chains. The terminal parts of the poly­
mer chain are included in crystal nuclei and 
fixed there; xn units are are in the crystalline 
region and the others (1-x)n are in the 
amorphous region forming a folding loop or 
inter-lamellar chain. Each folding loop or inter­
lamellar chain contains the same number of 
units and its distribution is not considered now. 
Hereafter we adopt the lattice model for the 
above system after Yamamoto and White13 • The 
partition function may be given by putting 
U=U1 qc=qa(=q): 

Z=qNn' I: W(n0 ) exp(-_§__) 
n 0 kT 

x exp ( - :~) exp (- :; ) (17) 

with 
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E1=Ni/(zon' +2)[x+(l-¢1-x)(l-x)l(;) 

E2=N../[x(n1 - l)sT+ (1-x)(nG'sG+nr' "T)] 

=Nv'(n' -l)[sT+(l-x)/Lls] 

and 

V=v(Nn' +no) 

(18) 

(19) 

(20) 

Here \Di-x is the volume fraction of holes in the 
amorphous region 

(1-x)Nn' +n0 

(21) 

and W(n0) is the number of ways of arranging 
N molecules (each end being fixed) on the lattice 
of (1-x)Nn' +n0 sites. The value of W(n0) is 

"',.( )-NII-1 [(1-x)(n' -1)]! . 
YY'llo - I I lJJ+l 

1=0 2[(1-x)nT ]![(1-x)nG ]! 
(22) 

where nG' and nr' are the numbers of flexed 
and unflexed segments, and v 1+1 represents the 
number of ways for placing (1-x)n' segments, 
(1-x)nG' being flexed, of j+l-th chain on the 
lattice already containing j chains. Following 
Flory14 we have 

- 11-xinG'[ (1-x)n' ]11-xln' 
Vj+1-Zo I 

(1-x)Nn +no 

[ (1-x)Nn' +no -J11-x1n'p. 
x (1-x)n' J J+l 

(23) 

where P1+1 is the probability that the j + 1-th 
polymer chain has the end-to-end distance r1+i· 

Introducing eq 23 into eq 22 and applying the 
Stirling approximation yield 

where Nr is the number of amorphous chains 
with end-to-end distance r having probability 
Pr. We presume Gaussian distribution15 for the 
amorphous chain: 

Pr={-2-11:-(I---\-J-n-,b-2 J/2 exp [ --2(_1 ___ 3;-:-n~'b~2] 

(25) 
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b being the length of a segment. 
We approximately evaluate the summation in 

eq 17 with the aid of the maximum term method. 
The generic term has the maximum when \Di-x 
satisfies eq 2, i.e., ¢i-x=¢=- With the well­
known relation 

G=-kTlnZ (26) 

we have the Gibbs free energy for a partially 
crystalline polymer: 

G=(l-x)Ga+xGc-TLISct (27) 

Here Ga and G0 are given by eq 1 and eq 6, 
and LISct is the entropy change caused by the 
deformation of the remaining amorphous chains 
induced by crystallization of the terminal parts. 
The value of LISct is given by 

LISct=-l._kN[ln (1-x)+ <r2>, 2 
2 (1-x)nb 

with 

3v2;s ] 
-ln---

211:n'b2 
(28) 

(29) 

The mean square end-to-end distance <r2) of 
the amorphous chain depends on the morphology 
of the respective crystalline polymers. 

CRYSTALLIZATION WITH SEEDED NUCLEI 

In this paragraph we deal with the crystalli­
zation caused by the subsequent deposition of 
the chain units in the amorphous regions on the 

-r-
(al ( bl ( C) 

Figure 1. Models16 of crystal nuclei in a partially 
crystalline polymer; end-to-end distance r of the 
amorphous chain is almost unchangeable while 
crystallization proceeds. The arrows indicate the 
growing directions of the nuclei. 
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crystal nuclei already formed in the system. 
The nuclei are assumed to have such forms as 
(a) and (b), or (c) in Figure l 16; end-to-end 
distance r of the amorphous chain is almost 
unchangeable during the process (in the case of 
(b), eq 24 holds with very rough approximation). 
We rewrite eq 27 in the following form neglect­
ing the constant term: 

LIG' =xLIG+l_NkT[ln (1-x)+ <r2> 'b2] 
2 (1-~n 

(30) 

with 

and LIG=Gc-Ga (31) 

In the case of the perfect crystal, we have 
at the melting point (Tm): 

LIG=0 or LIHm=T mLISm (32) 

where LIHm and LISm are the heat of fusion and 
the entropy of fusion. Therefore, eq 30 can 
further be rewritten as 

LIG'=-xLIHm(l- ~) 

+l_NkT[ln (1-x)+ 1 <r2> 'b2] (33) 
2 ( -x)n 

The value of LIHm is1 •8 

In the temperatures below the melting point, 
crystallization proceeds, that is, the value of x 
increases with time. If we choose x as the 
parameter characterizing the extent of the pro­
cess, the affinity of crystallization can be given 
by 

A2=-( aLJG') 
ax T,p 

=LIHm(l- ~)+ NkT 

[ 1 <r2> ] 
x 1-x - (l-x)2n'b2 (35) 

We presume the linear law of irreversible thermo­
dynamics again: 

(36) 
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where L2 is the proportionality constant for the 
process. The solution of eq 36 after substitution 
of eq 35 is 

.St=(x-xo)+r1 In X=-X 
X=-Xo 

+ I 2+a-x=-x r2 n--~-~ 
2+o-x=-xo 

with the abbreviations 

.S=L2LIHm( 1- :m) 

=}_[I - a+2(r2)/n1b2] 
ri 2 a+2(1-xoo) 

=j_[1 + a+2<r2>Jn'b2] 
r2 2 o+2(1-Xoo) 

and 

o=-R/nLIH ---3 . (1 1) 
2 m T Tm 

(37) 

(38) 

(39) 

(40) 

(41) 

Here Xo and X= are the crystallinities at t=0 and 
t= oo; X= is determined by the equilibrium con­
dition (aLIG' Jaxh,p=0: 

1-x =-- 1+-- -1 a [( 4(r2
) )

11
2 

] 
00 2 on 1b2 

In particular, for (r2) { n' b2 and o « 1 

these equations become approximately 

(42) 

.Bt=(x-xo)+-1-(l-x=) In (x=-Xo)(2-x=-x) 
2 (xoo-x)(2-x=-xo) 

(43) 

and 

(44) 

If we put (r2)=n'b2, they are equivalent to Roe 
and Krigbaum's theory4. 

COMPARISON WITH EXPERIMENT AND 
DISCUSSION 

Volume Relaxation 
Kovacs17 carried out the experiments on iso­

thermal volume contraction of several amorphous 
polymers using the temperature-jump method, 
and condensed the results into the following 
empirical relation over a medium time range: 

-bin( L) (45) 
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where b and tm are the adjustable parameters. 
This equation represents neither exponential nor 
linear behavior. Recently, however, Goldbach 
and Rehage18 have measured the volume relaxa­
tion of polystyrene in detail by means of the 
pressure-jump method as well as the temperature­
jump method. When the difference V0-V= is 
not so large, the results show a linear relaxation, 
that is, (V-Vco)/(Vo-Vco) does not depend on the 
value of V0 -V=, and is the function of time 
,only. 

We will now compare our linear relation (eq 
15) with their experimental data on volume 
relaxation of non-crosslinked polystyrene*; they 
were obtained by applying the pressure-jump 
method. Figure 2 illustrates the dependence of 

0.8 

] 
--------------------

~o 0.6 

' ] 0.4 
I 

> 
0.2 

0.5 5 
Time (min) 

Figure 2. The dependence of (V-Vco)/(Vo-Vco) on 
time. The full curve shows eq 15 with r=6.12min. 
The dashed curve represents the experimental 
results of Goldbach and .Rehage18 for volume 
relaxation of non-crosslinked polystyrene. 

(V-V=)f(V0 - V=) on time. The dashed curve 
represents the experimental results at T=91.84°C 
and p= 1 atm, which were collected from the 
data obtained by different decompressions be­
tween 2.8 and 22.3 atm. The full curve shows 
eq 15 with r=6.12min; it coincides with the 
experimental curve in the very early stage of 
the process, but deviates conspicuously in the 
later stage. This discrepancy probably comes 

* Strictly speaking, the present theory is not ap­
plicable to "asymmetrical polymers such as poly­
styrene. However, we may apply the theory to 
such a polymer since .volume fraction</> of the holes 
is independent of chain conformations of trans and 
gauche. 

Polymer J., Vol. 3, No. 3, 1972 

from the fact that such volume relaxation can 
not simply be described with a single relaxation 
time. It is necessary to introduce the distribu­
tion of relaxation times or the sizes of a segment 
[see eq 12]: 

V-V==(V0-V=)[F(-,)exp(-: )dr (46) 

where F(r) is the distribution function of relaxa­
tion time r. 

Crystallization 
We compare the present theory of crystalli­

zation with experimental data. The result is 
given in Figure 3; the open circles are the ex­
perimental values of Banks, et al., 19 for a frac­
tionated linear polyethylene sample which con­
tains residual seeds (xo=0.0353) before it is 
crystallized at 127 .5°C. The full curve shows 
eq 43 when we put the parameters as X==0.350 
and ,8=0.02min-14• 

On the other hand, crystallization kinetics 
have usually been described by using the Avrami 
equation 2: 

_L=l- exp (-ktn). 
X= 

(47) 

Here k is the rate constant for crystallization, and 
n is the integer between 1 and 4 ( or half integer 
between them for diffusion-controlled growth), 

10 

.£ 
20 

<Jl c 
u 30 

5 10 50 

Time(min) 

Figure 3. Change in crystallinity with time. The 
full curve shows eq 43 for xco=0.350 and fl=0.02 
min-1; the dashed curve the Avrami equation (eq 
47) for xco=0.350, k=0.046min-1 , and n=l. The 
open circles are the experimental values of Banks, 
et al.,19 for a fractionated linear polyethylene con­
taining residual seeds. 
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whose value depends on the shape of the grawing 
nuclei. Applying the Avrami equation (eq 47) to 
the above case, we see theat the equation gives 
the best fit with the experimental values for the 
choice n=l; it corresponds to the heterogeneous 
nucleating system whose growth is linear. The 
dashed curve in Figure 3 shows eq 47 with such 
values of parameters as X==0.35, k=0.046 min-1, 

and n= 1; it is almost accordant with the curve 
of eq 43 except in the early part where a slight 
deviation is noticeable. These two curves give 
a close agreement with the experimental values 
in the crystallinity range below 35 per cent. 
In the range above this point, however, they 
considerably deviate from the experiment. It is 
probably because of the change in mechanism 
of the process due to the so-called secondary 
crystallization, as is frequently observed in the 
later stage of the process. 

In the case A2 > 0, crystallinity x increases 
with time, whereas it decreases to zero for A2 < 0, 
that is, the crystallites begin to melt at A2 =0. 
Hence, we can obtain the melting temperature 
Tm' of the reference sample from eq 42 by setting 

X==0: 

(48) 

where Tm O is the melting temperature of such 
crystal as T m 0/n 1b2 is· almost equal to zero, i.e., 
the crystal with regular fold surface. This is 
very similar to the well-known relation given 
by Flory2°, which represents the depression of 
the melting temperature when crystallite length 
does not attain its equilibrium value. 

Since in eq 48, RT m O /nJH m « 1 for polyethyl­
ene, we can approximately obtain for (r2)Jn'b2 

;f> 1 after a simple calculation: 

T I =T 0(1- 3_ RT,,,° ~r2>) (49) 
m m 2 nJHm n'b 2 

This equation shows that the melting temerature 
lowers as either the crystal deviates from regular 
folding or its thickness becomes small if we 
ignore the change in thickness of amorphous 
regions; the equation essentially accords with 
Lauritzen and Hoffman's equation21 

T , = T o ( l ___ 2a --) 
m m \ LJHm 

(50) 
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where a is the surface free energy of the crystal 
with lamellar thickness L. The values of a and 
L are related to those of (r2)/n'b2 and n in eq 
49, respectively. 
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