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ABSTRACT: The hole theory of pure polymer liquid previously developed by the 
author is extended to be applicable to polymer mixtures. The theory is applied to 
some mixture systems, and close agreement with experimental observations is obtained 
in the thermal pressure coefficients of mixtures of low-molecular weight substances, 
surface tensions of molten ethylene-vinylacetate copolymers with different compositions, 
and diluent effects on the glass transition temperatures of polystyrene and poly(methyl 
methacrylate). 
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In the previous papers of this series1- 3 the 
hole theory was applied to polymeric systems 
along the line of the theories of polymer liquids 
developed recently by Prigogine, 4 and Flory, et 
al. 5 The partition function, the equation of 
state, internal pressure, and surface tension have 
been derived for pure polymers. The differences 
in the equation of state and internal pressure 
between the liquid and glassy states and the 
glass transition were also discussed. 

In this paper, in order to apply our treat­
ments to mixtures, we reform the partition func­
tion to be applicable for mixture systems. As 
a result, it is found that the formulas for pure 
systems also hold for mixtures without modify­
ing the original forms only by transforming the 
characteristic parameters. The results of the 
theory are applied to some properties which 
were discussed in previous papers, i-a i.e., ther­
mal pressure coefficient or internal pressure of 
liquid mixtures, surface tension of copolymers, 
and the glass transition temperature of diluted 
polymers are discussed. 

THEORY 

Formulation 
In considering the mixture system by a lattice 

theory, we encounter some difficult problems; 
e.g., (1) how the lattice sites are set for the 
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mixture of molecules or segments with differ­
ent sizes, or how the coordination number must 
be counted, (2) how far the segments of differ­
ent sizes are separated from each other and 
how the intersegmental interactions vary with 
the separation, and (3) how to calculate the 
number of contact pairs between segments of 
the same and different kinds. The problems of 
(2) and (3) are not peculiar to a lattice theory, 
but are general in the treatment of liquid mix­
tures. 

In the present theory, for the problems (1) 
and (2), a certain average cell volume v* is 
considered, and the coordination number, inter­
segmental interactions, and free volume are 
defined as those against the average volume v* 
of segment. Namely, the coordination number 
zi is defined as the number of sites around a 
segment of the i-th component whose volume 
is v, * and it is assumed that the interaction 
potential energy So;j(O) per volume v* between 
the segments of the i-th and the j-th com­
ponents, when they are located at the centers 
of nearest neighbor lattice sites, is expressed as 
the form: 

( 1 ) 

where sfi represents the magnitude of interac­
tion energy between the segments of the i-th 
and the j-th components, a3 is an average char-
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acteristic volume of a segment, and /(a3 /v*) is 
a function of a3 /v*. As for the problem (3), 
random mixing is assumed for simplicity. 

The mixture system of the molecules of n 
different kinds and holes is now considered. 
The number of molecules of the i-th component, 
each molecule comprising ri segments, is Ndri 
(r=l, 2, ... -n), where Ni is the number of sites 
having the volume Vi* which are occupied by 
the segments of the i-th component. The zero­
th component is taken as the hole or empty 

site. Thus there are N 0 holes, and N0 =f:. Ni-
i=D 

'Tl, 

I; Ni=M-N, where M and N are the total 
i=O 

numbers of lattice sites and segments respectively. 
The volume of hole v0 * is assumed to be an 
average cell volume, v*, equal to V/M where 
V is the volume of the system. Then we have 

v*=V/M=f:. Niv//i:, Ni=f:. Niv//N=V*/N 
i=O i=O i=l 

( 2) 

The partition function for this system may 
be written 

Z TI" . (T)N· rrn c·N· rrn - {ilc·N· = ]i i qi i i V f i i 

i=l i=l i=l 

xexp (-D0/kT) I; g, ( 3 ) 
). 

under zero-th approximation (Bragg-Williams), 6 

just as the same form as in the pure system. 
Here, j/T) is the partition function associated 
with intrasegmental interactions, qi the kinetic 
part of the partition function associated with 
the external degrees of freedom, and ci one 
third of the external degrees of freedom, which 
are all those of the segment of the i-th com­
ponent. The symbol v/i 1 denotes the free 
volume of a segment of the i-th component, 
D0 the potential energy of the system when all 
of the segments are at the centers of lattice 
sites, and r; g, the combinatory factor associated 

J. 

with the mixing of molecules and holes. 
If Guggenheim's theory for mixtures is used,7 

the quantity D0 · can be written 

Do= I; ± ziNizJNJ'Pi;(0)/(2 i; ziNi) ( 4) 
i=l j=l i=O 

tential, as in a previous treatment, 1 we can 
write 'PiJ(O) with the aforementioned assumption 
of eq 1, 

'Pi;(O)=ei;{l.0109(a3N/V*) 4 -2.409(a3/V*)2} ( 5) 

where 

a3N=f:. a/Ni ( 6) 
i=l 

Here, ei; is the minimum value of potential 
energy between the segments of the i-th and 
the j-th components in the Lennard-Jones 12-
6 potential, and ai is the distance between seg­
ment centers of the i-th components at which 
pairwise potential energy is zero in the Lennard­
Jones 12-6 potential. Therefore we can derive 
from eq 4 and 5, 

( 7) 

Here 

K=-{l.0109(a3N/V*)4-2.409(a8N/V*)2}/2 ( 8) 

and 

e * = i:; i:, ziNiz jNJeiJI Z2 N 2 

i=l j=l 

n 

z=I; ziNdN 
i=l 

( 9) 

(10) 

On the other hand, analogous to the approx­
imate expression of vr used for a pure system 
previously,1 the quantity vr 1i 1 may be expressed 
as 

In V- 1i1 _ ; _ 1i1 In 1i1 
f - t..., Wk Vfk 

k~o 

where wk iii is the most probable value of the 
segment fraction of the k-th component in the 
nearest neighbor sites of a segment of the i-th 
component, and v}ti is an adjustable parameter, 
usually taken as the free volume for a segment 
of the i-th component when all of its nearest 
neighbor sites are occupied by segments of the 
k-th component. Since wk 1i 1 is equal to zkNk/ 
" I; ziNi inthe zero-th approximation, the quantity 

i=D 

v/i 1 can be written 

(11) 

Using the form of the Lennard-Jones 12-6 po- For simplicity, v}t1 is taken here as vf 1i 1 when 
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wk 1; 1=1. Then, vit(=iJ/; 1(wk 1; 1=1)) for k1=0 
is assumed to be expressed as v}t1 =v/h(<i/v*), 
analogous to eq 1, where h is the function of 
<i/v* independent of i and k. On the other 
hand when w0 1i>=l, i.e., when there is no seg­
ment at the nearest neighbor sites, the free 
volume v/i> may be taken as the cell volume 
v;* as in a previous paper.1 Accordingly we 
assume here 

Vii' =Vrmv//v* (k1=0) (12) 

v}~>=vr 1i>(aio 1; 1=1)=v;* (13) 

where Vfm, equal to v*h(a3/v*), is a mean free 
volume independent of the components, and 
v; * /v* is assumed to be independent of temper­
ature and volume. Here, Vrm/v*=h(a3/v*) is 
assumed to be expressed in the same form as 
in a pure system; 

Vrm/v*=(4ir2112/3){1-2-116(a3 N/V*)113}3 (14) 

where the square well potential and hexagonal 
packing were assumed.1 Then, we obtain from 
eq 11, 12, and 13 

n . N TI v/i)ci i 

i=l 

n 
z0N 0! r; ziNi n 

=v1!(v*/vrm) i=O IT (v;*/v*)c;N; (15) 
i=l 

where 

n 
cN= I: c;N; (16) 

i=l 

As for I;g,, Flory's expression is adopted,8 i.e., 
/4 

n 
Afl I; lr·-llN·/r· 

I;g,= . {zo-1)/Af}i=l ' ' ' 
J n 

IT (N;/r;) ! 
i=O 

n n 
M-N+ I; N·/r· 

- (M/N) i=1 ' ' 
(M/N-l)M-N 

I; N·/r· 
Ni=l ' '(ITn -N·/r·) r· i i 

n . ' IT N/i'i i=l 

i=l 

n 
I; IN·-N·/r·l 

X {(zo-1)/e}i=l ' ' ' (17) 

If V is defined as V =M/ N= VJV*, then we have 
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n n 
z0N0/ I: z;N;=z0N 0/(z0N 0 + I: Z;N;) 

i=O i=l 

=(M-N)/{(M-N) +zNz0 } 

=(V-l)/(V-l+z/z0) (18) 

Finally, using eq 2, 7, 14, 17, and 18, we have 

X {(z0 -l)/e}N-N/r TT (N;r;)-N;/r;NN/r (19) 
i=l 

Zv= yNIV-ll+N/r(V-1)-NIV-1) 

X v~!(v* /Vrm)°NIV-11/IV-l+z/zol 

X { (z/z0 )zNKs* } 
exp kT( V-1 +z/z0) 

(20) 

where N/r= i:; N;/r;, the total number of poly-
i=I 

mer molecules in the system. 
The form of the volume dependent part of 

the partition function, Zv (eq 20), is identical 
with that for a pure system derived previously. 1 

Therefore, if the expressions for parameters of 
eq 6, 9, 10, and 16 are used, the arguments 
made in previous papers1-3 of this series for 
pure systems are valid for mixtures. (This 
identity in the formula between pure and mix­
ture systems is assumed also in the treatments 
of Prigogine4 and Flory. 9) The examples of the 
results obtained previously, which will be used 
in this paper, are shown in the following. 

Internal pressure P;=(oU/oV)T, (U, internal 
energy) or thermal pressure coefficient W=(oP/ 
oT)v at atmospheric pressure is given, in the 
case where the cell volume is constant, v*=a3. 
byl 

where V'=V/a3N and E*=K0s*z0/a3 • Here K 0 

is the value of Kat V*=a3N, i.e., K 0 =0.699 
from eq 8, and E* represents a characteristic 
cohesive energy density. The equation 21 re­
produces the experimental observations fairly 
well.1 

The surface tension derived is written3 

r= (s* z/a3)(a3 /c)113(t/z0) v'-1( v' -1 +z/zo)-1 

x(0.160-0917/f) (22) 

where f is the reduced temperature defined as 
T=T/T*=ckT/s*z, and/ is the parameter which 
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represents the difference in the free volume be­
tween the surface and bulk phases. 

Transforming eq 9, 10, and 16 into alterna­
tive forms in terms of Ef{=.K0eijz0/a3 and O.= 
N.a.3/Na3, we have 

E* =.K0e*z0/a3 

"' ,r, 0 0 2 * = :E :E z. z; /z0 )O.O;E.; (23) 
i=l j=l 

- " 0 Z= I; Zi ()i 
i=l 

where 

(24) 

(25) 

(26) 

The quantity o. defined above may be almost 
equal to the volume fraction. The coordination 
number z.° defined by eq 26 should be depend­
ent on shapes and volumes of molecules or 
segments in the system. If the segment or 
molecule is spherical, the following relation may 
hold; z.°/zli' =(z.jz1• 1)(z.°Jz,)=(v. * Jv*)213(v*Jv. *)1/3 

where z 1' 1 is the coordination number of a seg­
ment of the i-th component in the pure system. 
On the other hand, if the segments of the dif­
ferent kinds in the system are composed of the 
atomic groups having almost identical volume, 
for examples, -CH2-CH2- and -CH2-

CH(COOCH3)-, the z.jz1• 1 is rather equal to 
v. * /v*, therefore z.°Jz1• 1 ~(v. * /v*)(v* /v* Jv. *)= 1. 
The evaluation described here is close to Flory's 
estimation9 based on the concept of the surface 
contact sites. 

The present theory may be also valid for a 
copolymer, if the parameters for the components 
in the copolymer are used, though these may 
not be always equal to those in corresponding 
homopolymers. Furthermore the parameter e* 
of a complex molecule or segment may be also 
estimated by eq 9 from the parameters of the 
atomic groups composing the molecule or seg­
ment. 

E* and T* Binary Systems 
For a binary system (i.e., n=2), if the Ber­

thelot relation, ef;=!112ef/12, for intermolecular 
dispersion force is assumed, the quantity E* is 
given from eq 23 as 

E*={(zi°fzo)01Ei*/12 +(za°fzo)02E't./12}2 (27) 
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Here the quantity Ef, is related to E. * of the 
pure system of the i-th component by the equa­
tion E'/.JE.*=z1' 1Jz.° because E.*=K0e/z0Ja.3, 
e.*=e!z.Jzli', and E.'!=K0e'/.z0/a3 with eq 26, 
where e. * is e'/. in the pure system. The char­
acteristic temperature T* for a binary system 
can be derived from eq 24, 25, and 27 as 

T*=e*z/ck 

=E* a3z/K0z0ck 

=(z1 ° /zoH01T1 *-1 +02A(z 121 /z111 )T2 *-1}-1 

X {01 +(z/z121 /zi°z111)1;2A1;282}2 (28) 

where A=.E/JEi* and T.*=.e.*z1• 1Jc,k. 

Intemal Pressure and Thermal Pressure Coefficient 
for Binary Systems 

For a binary system, using eq 21 and 27, we 
obtain 

v{l-(1-z/zo) p-,-1}µ112 

=X1V1(Z1 of z111)1;2{l-(l-z111 /zo) P-i'-1}µ11;2 

+x2va<z2°/ z 121 )112{l-(l-z121 /z0) P-2-1}µ2112 (29) 

where the subscripts 1 and 2 refer to com­
ponents 1 and 2, respectively, x, is the segment 
fraction N.JN, v is the mean molar volume of 
segment in the mixture, VNA/(N1 +N2) (NA, 

Avogadro's number), and v, is the molar volume 
of segment in the pure system of the i-th com­
ponent. When the terms in the braces { } in 
~q 29, which are all very close to unity, are 
approximated to be equal to each other, and 
when z.°=z1", eq 29 reduces to 

vµ1 12=X1V1µ1 112 +x2V2µ2 112 (30) 

With the use of eq 30, excess thermal pressure 
coefficient µE at atmospheric pressure is written 

µE=µ-(x1µ1+x2µ2) 
= -X1:J0.(µ/f2 _ µ/f2)2+X12<</J12-1)µ1 

+X22(</J22-1)µ2+2x1X2(</J1</J2-l)(µ1µ2) 112 (31) 

where </J.=v.fv. 
Since P,~Tµ at atmospheric pressure (eq 21), 

µ in eq 29, 30, and 31 can be replaced by 
internal pressure P •. 

Glass Transition Temperature of Binary Mixtures 
In a previous paper,2 we have shown that 

the value of Tg, the reduced temperature Tg/T*, 
is almost constant for any polymer and that 
this constancy of Tg gives a rough measure to 
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estimate the glass transition temperature. If the 
above condition, i.e., Tg=constant, is satisfied, 
T* in eq 28 can be replaced by Tg: 

X {T;i.+(A112-1)2/LITg}-l 

where LITg=Tg2-Tg1· 

(34) 

T g= (z1 ° /zo)(01T;i. +02A(z12> /zm )T;i)-1 

X {01 +(z/z12>/zi°zm)1;2A1;20a}2 (32) COMPARISON WITH EXPERIMENTALS 
AND DISCUSSION 

Then, from eq 32 with the assumption of z.° = 
z 11 >, the change in Tg of component 2 when a 
small amount of component 1 is added, can 
be derived as 

Thermal Pressure Coefficient and Internal Pressure 
According to Flory's theory9 with the Berthelot 

relation, we have 

(aTg/a W1)w 1=0= -Tg,(Z1 °a//Mw1)(zo 2a//Mw2)-1 v/12=x1v1µ1 112(sif s)112 +x2v2µ2 112(s2/s)112 (35) 

X{Tg2/Tg1-l+(A112 -l)2} (33) where s is the number of external contact sites. 
The difference between eq 29 and 35 arises from 
the difference in expression for Pi, i.e., Piocz/ 
z0( V' -1 + %0)-2 in the present theory whereas 
Pioc v-1 in Flory's one. When (sifs) 112 and 
(s2/s)112 can be regarded as unity, eq 35 reduces 
to eq 30. Equation 30 shows the additivity of 
µ 112v, whereas Hildebrand, et al., 10 presented 
the empirical equation, vµ=x1v1µ 1 +x2v2µ 2, which 

where W1 is the weight fraction of the com­
ponent 1, the diluent, and Mwi is the molecular 
weight of segment of the i-th component. 
Deviation from the simple additivity law of Tg 
is expressed by the quantity 

-{(aTg/a Wi)w i=o+LITg}LITg 

=(Z1 ° a//Mw1)(z2 °a//Mw2)-1Tg2A-1 

Table I. Comparison of observed and calculated values of excess thermal pressure 
coefficient µE for mixtures (50%-50% mol fraction) at 25°c10 

Mixture Vi, V2, µ2, -µE, Calcd X1X2 
cc/mol cc/mol µ1 atm/deg µ -µE, X (µ11;2_ µ21/2)2 

(pv)* (µl/2v)** 

Heptane 147.57 73.85 8.41 11.00 9.00 0.71 0.44 0.46 0.043 Acetone 
Heptane 147.57 97.07 8.41 11.15 9.38 0.40 0.28 0.38 0.048 Carbon tetrachloride 
Heptane 147.57 89.34 8.41 12.23 9.59 0.73 0.44 0.55 0.089 Benzene 
Heptane 147.57 60.63 8.41 12.31 9.55 0.81 0.81 0.88 0.093 Carbon disulfide 
Heptane 147.57 86.51 8.41 14.80 10.35 1.26 0.84 1.05 0.226 Ethylene bromide 
Heptane 147.57 87.91 8.41 14.92 10.60 1.07 0.83 1.13 0.230 Bromform 
Benzene 89.34 97.07 12.23 11.15 11.73 -0.04 0.02 0.03 0.006 Carbon tetrachloride 
Benzene 89.34 60.63 12.23 12.31 12.00 0.27 0.01 -0.01 6x 10-5 Carbon disulfide 
Benzene 89.34 78.86 12.23 13.88 12.64 0.42 0.06 0.05 0.013 Ethy !chloride 
Benzene 89.34 87.91 12.23 14.92 13.70 -0.12 0.02 0.07 0.035 Bromform 
Carbon disulfide 60.63 73.85 12.31 11.00 11.42 0.24 0.07 0.06 0.01 Acetone 
Carbon disulfide 60.63 86.51 12.31 14.80 13.58 -0.02 -0.21 -0.20 0.029 Ethylene bromide 

* (µv), -µE calculated with µE=µ-(x1µ1v1+x2µ2v2), 
** (µl/2v), -µE calculated with µE=µ-(x1µ1 1/2v1 +x2µa1/2v2). 
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Table II. Comparison of calculated and observed various quantities for ethylene-vinyl 
acetate copolymers and pure components at 150°Ca 

--·----

V' t, r, 
Vinyl V, Na3/c, dyn/cm2 

cc/g a3N =V/a3N X 102 E* cc/mo! acetate, , 
cal/cc Calcd cc/g wt% Obsd Calcd Obsd Calcd Obsd Calcd a b 

Obsd C d 

Polyethylene 0 1.268 1.091 1.161 5.34 96. 8 136.4 27. 7s 27.4s 
17 .67 1.210 1.210 1.030 1.174 1.174 5.60 5.60 102.3 123.2 123.2 27.0 27.05 27.lo 
26.5s 1.181 1.178 0.998 1.183 1.180 5.78 5.73 106.1 115.1 116.0 26.5 26. 7s 27 ,0o 

Copolymer 30.92 1.169 1.163 0.982 1.190 1.184 5.92 5.80 107.9 110.5 112.9 26.4 26.30 26.9s 
38. 71 1.140 1.137 0.955 1.193 1.190 5.98 5.91 111.2 106.2 107.6 26.9 26.60 26.90 

Poly(vinyl 100 
acetate 

0.905 0.740 1.222 6.56 149.2 71.9 - 28. 72 28.90 
- ---- --------

a a, calculated from the observed T with E*. b, calculated from the calculated T with E*. c, cal­
culated from the observed V' and I' with E* and Na3/c in column a. d, calculated from the param­
eters of pure components alone, i.e., from the calculated V' and I' with E* and Na3/c in column 
b. The V'-T relation used is the curve of V'-T obtained experimentally with the theorem of cor­
responding states in the previous paper.1 

shows the additivity of µv. In eq 31 the 
molar volume of mixture v can be regarded as 
x1v1 +x2v2, when the absolute value of (v1 -v2)x; 
is much larger than that of the excess volume 
vE(=V-X1V1-X2V2) because cp;-l={(Vj-V;)Xj­
vE}fv. In such a case, therefore, µE is insensi­
tive to volume change on mixing. For the 
mixtures (50-50 mol%) of low molecular weight 
liquids, 10 the comparisons of the above two ad­
ditivity properties with experimental results are 
shown in Table I. The two additivity proper­
ties give almost the same values and that of 
µ 112v presented here gives a slightly better value, 
provided that the approximation, v=x1v1 +x2v2, 
was used in the calculation. The first term of 
eq 31 is usually very small compared with the 
other terms as shown in Table I, and µE is 
dominated by the difference in molar volume 
between the pure components from which the 
terms involving cp1 and cp2 in eq 31 arise. The 
agreement with experimentals is fairly satisfac­
tory. In some cases, e.g., benzene mixtures 
with carbodisulfide and ethylchloride, however, 
considerable discrepancies are found, some of 
which may arise from the molecular orientation 
and invalidity of P;oc v-2 due to peculiar inter­
actions, and some may arise from the use of 
the Berthelot relation and the neglect of the 
coordination number. 

Polymer J., Vol. 3, No. 2, 1972 

28.5 
NE 

u 
'-
~27.5 

l:J 

k, 

25.5 

1.3 

u 1.2 

> 1.1 

0065 
1.0 

!I---

0.060 

0 
PE 

. 
og 

• 
• 

50 

YAc wt.'/, 

1.25 

1> 

1.20 

1.15 

100 
PVAc. 

Figure 1. Weight per cent dependence of reduced 
temperature T, reduced volume V' volume V and 
surface tension r for ethylene-vinylacetate co­
polymers: O, experiments; -, calculated curves; 
e, r calculated with I'obs and V'obs· The dotted 
straight lines indicate the values expected from 
the simple additivity law. 

201 



T. NOSE 

Specific Volume and Surface Tension of Ethylene 
-Vinyl Acetate Copolymers 

In Table II and Figure 1, theoretical and 
experimental values of specific volumes, reduced 
volumes V', reduced temperatures T(=T/T*), 
an<! surface tensions r for ethylene-vinyl acetate 
copolymers11 (EL VAX) of different compositions 
at 150°C are shown for comparison. The ob­
served values of reduced temperature for co­
polymers were determined from volume-tem­
perature measurements by a method previously 
described, 1 where at first the values of Na3 were 
evaluated with eq 5. The calculated values of 
a3N/c, E*, and T* were obtained from eq 25, 
27, and 28 with those for pure components, 
polyethylene, and poly(vinyl acetate), which were 
estimated in the first paper,1 assuming that the 
coordination number z/ in the mixture system 
is equal to that in the pure one, z 1i 1, accord­
ingly, E;;,=E/ because E;;,/E/=z1i 1/z/. The 
calculated values of V' cal and Veal were evalu­
ated from the calculated Teal with the experi­
mental curve1 of V'-T relation. The surface 
tensions r for the homo- and co-polymers were 
computed with these values of t, V' by eq 22 
with f=0.64 which is available for polymers as 
mentioned previously. Figure 1 shows fairly 
close agreement between the theoretical and ex­
perimental values. The observed values of V, 
V', and f for copolymers are larger than those 
expected from the simple additivity law, in ac­
cordance with the theoretical prediction. Ex­
amining in detail, however, we find that the 
observed values of V(or V') and f abnormally 
deviate from the calculated smooth curves in 
the vicinity of 30 wt% of vinyl acetate. The 
reason for this abnormality is not clear, and 
experimental errors may not be responsible alone 
because the same tendency is found in surface 
tension as shown in Figure 1. The values of 
surface tension (indicated by closed circles) cal­
culated from V' obs and fobs show better agree­
ment with experimental values (indicated by 
open circles) than those from V' cal and Teal 

(indicated by a solid line). The theory well 
explains the fact that the weight fraction de­
pendence of r has a minimum. Qualitatively 
speaking, the minimum arises from the fact 
that the introduction of a little vinyl acetate 
having a large number of external degrees of 
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freedom causes the increase in the value of V, 
f, and c/a3 ; hence it induces the decrease in 
the value of r, whereas it does not cause a 
comparable increase in the characteristic inter­
action energy E*. 

Glass Transition Temperatures of Mixtures 
According to eq 28, the characteristic temper­

ature of a binary system is usually less than 
that expected from the simple additivity law 
when plotted against volume fraction as shown 
in Figure 2. The calculated curves of eq 32 
for Tg are also represented by these curves for 
T* in Figure 1. The equation 32 may be also 

1.0 

0 

0.5 

2 

0.5 
e, 

Figure 2. Characteristic temperature T* vs. oc­
cupied volume fraction 81 when T2*= 1.5, T1*= 1 
and z1°=z2° with various values of A( =E2*/E1*) 
which are indicated by the numers in the figure. 

80 

!,-) 
8 ,_01 

40 
0 
0 

0 

0 

0 

0 

0 50 700 
PMA St wt.¼ PSt 

Figure 3. Glass transition temperatures of styrene­
methylacrylate copolymers: O, experiments12; -, 
calculated curve. 
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Table III. Molecular parameters used in the calculation of the glass 
transition temperatures of binary systems 

a3N/Mw, 0.699a*z Tg1 hyp, Tg1 exp, Substance a3N, Zio cc/g cal/mo! 
OK• OK 

Polystyrene 0.884 112.2 359obsd 10 
Poly(methyl acrylate) 0.740 149.2 275obsd 10 
Poly(methyl methacrylate) 0.809 138.2 358obsd 10 
Benzene 0.980 164 217 174b 12 
Toluene 0.997 150 226 112b 12 
Methyl chloride 0.620 147 187 110b 12 
Chloroform 0.563 126 194 133b 12 
Carbon tetrachloride 0.528 105 197 162b 12 
Acetone 1.018 145 183 llOb 11 
Methyl acetate 0.861 (160) 171 109b 11 
Ethyl acetate 0.896 149.2 179 109b 10.5 
n-Propyl acetate 0.924 138.2 186 lOJb 10.25 
n-Butyl acetate 0.945 130.9 190 125b 10 

• hypothetical glass transition temperatures Tg1 hyp of diluents are determined by the equation Tg= Tg 
T*=0.0397T* with the values of T* listed in a preceding paper.3 

b estimated with the experimental equation proposed by Jenckel,14 i.e., Tg/T m=0.6+3 X 10-4 Mw, where 
Tm and Mw are melting point and molecular weight, respectively. 

valid for random copolymers. As an example 
of the applications, the comparisons of the cal­
culated values with the observed ones are shown 
in Figure 3 for styrene-methyl methacrylate 
copolymers. 12 The parameters are obtained by 
a method adopted previously1 and shown in 
Table III. The theoretical predication is satisfied 
in the shape of the Tg vs. weight fraction rela­
tion, but not so well quantitatively. One of 
the possible reasons for the disagreements is 
that the quantity ci in a copolymer is not al­
ways equal to the one in the homopolymer of 
of the i-th component because of the short 
range interaction between segments of different 
kinds. 

Next, the effect of a diluent on the glass 
transition temperature will be considered with 
eq 33 and 34 derived from eq 32, on the as­
sumption that the value of Tg does not change 
by adding a diluent. This assumption may not 
be so valid for polymer-diluent systems because 
Tg may decrease with increasing the diluent 
fraction. This is suggested by the fact that Tg 
in a pure system decreases with decreasing chain 
length as shown previously. 2 It is expected, 
however, that the diluent-effect on Tg will be 
qualitatively estimated by the condition Tg= 
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constant. Therefore we examine with eq 33 
and 34 the validity of the above assumption 
for the diluent-effect. 

In Figures 4 and 5, calculated and observed 
values of the two quantities, (aTg/aW1)w1-o and 
-{(aTg/aW1)W1=o+LITg}/Tg, are shown for diluted 
polystyrenes and poly(methyl methacrylate)s with 

600 • 

00,::: " . .. 
0 • 
II .. 

1400 
.. • .. • 

f--~ .. .. 
1 • 
u • .. 
u 200 • 

200 400 600 

exp. -(oT9/ow,)w,=o 'K 

Figure 4. Comparison of calculated and experi­
mental values of -(aTg/aW1)w1=o: e, diluted 
polystyrenes; ...._, diluted poly(methyl methacryl­
ate)s. 
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Figure S. Comparison of calculated and experi­
mental values for the deviation from the simple 
additivity law of Tg: • and O, diluted poly­
styrenes; .._ and t::,_, diluted poly(methyl meth­
acrylate)s. Filled points (e, •) and open points 
refer to the two different calculations described 
in the text, respectively. 

the use of Jenckel's data. 13 The parameters 
used are shown in Table III, which were ob­
tained by the preceding method.1 Considering 

in general, are larger than the observed ones as 
shown in Figure 5 may arise from the under­
estimation of LlTg, i.e., the overestimation of 
Tg1 owing to the assumption of I'g=constant, 
since I'g of a diluent may be smaller than that 
of a polymer, in other words, Tg1 hyp is much 
larger than Tg1 exp as shown in Table III, and 
Tg1 exp is closer to the actual glass transition 
temperature of a diluent than Tg1 hyp· In fact, 
if the calculated deviation is taken to be 
-{(0Tg/0W1)W1=0 ca1+L1Tg exp}/LlTg exp, the cal­
culated values (indicated by O and t::,.) become 
much closer to the observed ones as shown in 
Figure 5, where L1Tg exp=Tg2 obs-Tg1 exp• 

A, 
c, 

E* 
' 

E;,*, 

LIST OF SYMBOLS 

defined as E// E/. 
parameter associated with external de­
grees of freedom defined by eq 16. 
one third of external degrees of free­
dom per segment of i-th component. 
characteristic cohesive energy density 
defined by eq 23. 

the shape of the molecules, appropriate values 
were given to z;°. In the calculation of eq 33 
and 34, the hypothetical glass transition tern- /, 
peratures of diluents Tg1 hyp were used as Tgr, 
which were evaluated by the relation Tg1 hyp= 
I'g·Ti* with I'g=0.0396; this value of I'g is an 
average for some polymers. 2 Some of the values 

I: g,, 
}. 

E* of the pure system of i-th com­
ponent, defined by E.*=K0e;,*z0/a/. 
parameter associated with interaction 
energy between i-th and j-th com­
ponents, defined as K 0e71z0/a3 • 

parameter in the expression for surface 
tension of eq 22. 
combinatory factor associated with the 

mixing of molecules and holes. 
partition function per segment associ­
ated with the intrasegmental interac­
tions of i-th component. 

of Tg1 exp are those estimated with the empirical 
equation presented by Jenckel. 14 

Figure 4 shows that the calculated values of 
-(oTg/oW1)w1=o agree fairly well with the ob­
served ones. The calculated values, however, 
tend to be slightly smaller than the observed 
ones. This may arise from the decrease in I'g 
with increasing the diluent fraction. As can 
be seen in Figure 5, the observed deviation 
from the simple additivity accords qualitatively 
with the theoretical prediction. The negative 
deviation becomes larger as specific (occupied) 
volume and cohesive energy density of the 
diluent become larger and as the characteristic 
temperature becomes smaller. The fact that 
the calculated values (indicated by • and •), 
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K, 
Ko, 

k, 
M, 

N, 

N;,, 

No, 

function defined by eq 8. 
K when V*=a3N, i.e., K 0 =0.699. 
Boltzmann's constant. 
total number of lattice sites in the .. 
system, M = I: N;,. 

i=l 
molecular weight of segment of i-th 
component. 
total number of segments in the system, .. 
N=I: N;,. 

i=l 
number of segments of i-th component 
in the system. 
number of holes in the system. 
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n, 
P, 
P;, 

q;, 

N/r, 

s, 

T, 
T* 

' 

T;*, 

Tg1 hyp, 

V, 
v, 

V* 

v, 
' 

v', 
v*, 
vi*, 
- (i) 
Vf , 

-Ii) 
Vfk, 

Vfm, 
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number of components in the system. 
pressure. 
internal pressure defined as (oU/oV)r 
(U, internal energy). 
kinetic part of partition function as­
sociated with the external degrees of 
freedom of an i-th component segment. 
total number of molecules in the 
system. Z, 
number of segments of i-th component. Zv, 
mean number of external contact sites 
per segment of mixture, used in z;, 
Flory's theory9. 
number of external contact sites of an 
i-th component segment involved in 
Flory's theory9. 
temperature. z, 
characteristic temperature defined by 
s*z/ck. z;°, 
characteristic temperature of the i-th 
component defined as s;*z 1; 1/c;k. 
glass transition temperature. 
Tg of pure i-th component. 
Tg of diluent estimated with the em­
pirical equation presented by Jenckel 14 • 

hypothetical Tg of diluent determined 
by Tg1 hyp='I'gT/=00396T/. 
difference of Tg, Tg2 -Tg1 • 

Tgiobserved)-Tg1 exp· 
potential energy of the system when 
all of the segments are at the centers 
of lattice sites, as given by eq 4. 
volume of the system. 

r, 
* c ' 

* Si , 

volume per mole of segment, VNJ../N 8;, 
(NA, Avogadro's number). 
volume per mole of segment of the i­
th component in the pure system. 
cell volumes occupied with segments, 
Nv*. 
reduced volume defined by V=M/N= 
V/V*. 
reduced volume defined by V' = Vj(,3 N. 
average volume of cell defined by eq 2. 
cell volume of the i-th component. 
free volume of a segment of the i-th 
component. 
pa~ameter in eq 11, usually taken as 
iJr 1' 1 when the nearest neighbor sites 
are all occupied with segments of the 
k-th component. 
mean free volume in eq 12. 

µ, 

3 
a' 

3 
ai , 

weight fraction of the component 1, 
the diluent. 
most probable value of segment frac­
tion of the k-th component in the 
nearest neighbor sites of an i-th com­
ponent segment. 
segment fraction of the i-th component, 
N;/N. 
partition function of the system. 
volume dependent part of partition 
function of the system. 
coordination number of an segment 
of the i-th component, defined as the 
number of sites around a segment of 
i-th component wh.ose volume is aver­
age cell volume v*. 
mean coordination number of the 
system defined by eq 10. 
coordination number defined by eq 26, 
z;0 =z;v*/v;*. 
coordination number of a segment of 
i-th component in the pure system. 
surface tension. 
parameter of intersegmental interaction 
energy defined by eq 9. 
intersegmental interaction energy pa­
rameter of pure system of i-th com­
ponent, representing the minimum 
potential energy in the Lennard-Jones 
12-6 potential. 
parameter of interaction energy be­
tween the segments of i-th and j-th 
components, in eq 5. 
characteristic volume fraction, defined 
as {};=N;a//Na3 • 

thermal pressure coefficient, (oP/oT)v­
excess thermal pressure coefficient, 
µ-(X1µ1 +x2µ2)• 
average characteristic volume of a 
segment, defined by eq 6. 
characteristic volume of an i-th com­
ponent segment (a represents the dis­
tance of the zero potential energy in 
the Lennard-Jones 12-6 potential). 
interaction potential energy per volume 
v* between the segments of i-th and 
j-th components when they are located 
at the centers of nearest neighbor sites. 
ratio of molar volume of the i-th 
component to average molar volume, 
v;fv. 
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