Polymer Journal, Vol. 3, No. 2, pp 196-206 (1972)

A Hole Theory of Polymer Liquids and Glasses. VI. Mixtures

Takuhei Nose

Department of Polymer Technology, Tokyo Institute of Technology, Tokyo, Japan.

(Received July 9, 1971)

ABSTRACT: The hole theory of pure polymer liquid previously developed by the author is extended to be applicable to polymer mixtures. The theory is applied to some mixture systems, and close agreement with experimental observations is obtained in the thermal pressure coefficients of mixtures of low-molecular weight substances, surface tensions of molten ethylene-vinylacetate copolymers with different compositions, and diluent effects on the glass transition temperatures of polystyrene and poly(methyl methacrylate).

KEY WORDS Hole Theory / Polymer / Mixture / Thermal Pressure Coefficient / Surface Tension / Glass Transition /

In the previous papers of this series¹⁻³ the hole theory was applied to polymeric systems along the line of the theories of polymer liquids developed recently by Prigogine,⁴ and Flory, *et* $al.^5$ The partition function, the equation of state, internal pressure, and surface tension have been derived for pure polymers. The differences in the equation of state and internal pressure between the liquid and glassy states and the glass transition were also discussed.

In this paper, in order to apply our treatments to mixtures, we reform the partition function to be applicable for mixture systems. As a result, it is found that the formulas for pure systems also hold for mixtures without modifying the original forms only by transforming the characteristic parameters. The results of the theory are applied to some properties which were discussed in previous papers,¹⁻³ *i.e.*, thermal pressure coefficient or internal pressure of liquid mixtures, surface tension of copolymers, and the glass transition temperature of diluted polymers are discussed.

THEORY

Formulation

In considering the mixture system by a lattice theory, we encounter some difficult problems; e.g., (1) how the lattice sites are set for the

mixture of molecules or segments with different sizes, or how the coordination number must be counted, (2) how far the segments of different sizes are separated from each other and how the intersegmental interactions vary with the separation, and (3) how to calculate the number of contact pairs between segments of the same and different kinds. The problems of (2) and (3) are not peculiar to a lattice theory, but are general in the treatment of liquid mixtures.

In the present theory, for the problems (1) and (2), a certain average cell volume v^* is considered, and the coordination number, intersegmental interactions, and free volume are defined as those against the average volume v^* of segment. Namely, the coordination number z_i is defined as the number of sites around a segment of the *i*-th component whose volume is v,^{*} and it is assumed that the interaction potential energy $\varphi_{ij}(0)$ per volume v^* between the segments of the *i*-th and the *j*-th components, when they are located at the centers of nearest neighbor lattice sites, is expressed as the form:

$$\varphi_{ij}(0) = \varepsilon_{ij}^* f(\sigma^3 / v^*) \tag{1}$$

where ε_{ij}^* represents the magnitude of interaction energy between the segments of the *i*-th and the *j*-th components, σ^3 is an average characteristic volume of a segment, and $f(\sigma^3/v^*)$ is a function of σ^3/v^* . As for the problem (3), random mixing is assumed for simplicity.

The mixture system of the molecules of ndifferent kinds and holes is now considered. The number of molecules of the *i*-th component, each molecule comprising r_i segments, is N_i/r_i $(r=1, 2, \dots, n)$, where N_i is the number of sites having the volume v_i^* which are occupied by the segments of the *i*-th component. The zeroth component is taken as the hole or empty site. Thus there are N_0 holes, and $N_0 = \sum_{i=0}^n N_i - \sum_{i=0}^n N_i$ $\sum_{i=0}^{n} N_i = M - N$, where M and N are the total numbers of lattice sites and segments respectively. The volume of hole v_0^* is assumed to be an average cell volume, v^* , equal to V/M where V is the volume of the system. Then we have

$$v^{*} = V/M = \sum_{i=0}^{n} N_{i}v_{i}^{*}/\sum_{i=0}^{n} N_{i} = \sum_{i=1}^{n} N_{i}v_{i}^{*}/N = V^{*}/N$$
(2)

The partition function for this system may be written

$$Z = \prod_{i=1}^{n} j_{i}(T)^{N_{i}} \prod_{i=1}^{n} q_{i}^{c_{i}N_{i}} \prod_{i=1}^{n} \overline{v}_{f}^{(i)c_{i}N_{i}}$$
$$\times \exp\left(-\overline{U}_{0}/kT\right) \sum_{i} g_{\lambda} \qquad (3)$$

under zero-th approximation (Bragg–Williams),⁶ just as the same form as in the pure system. Here, $j_i(T)$ is the partition function associated with intrasegmental interactions, q_i the kinetic part of the partition function associated with the external degrees of freedom, and c_i one third of the external degrees of freedom, which are all those of the segment of the *i*-th com-The symbol $\bar{v}_{f}^{(i)}$ denotes the free ponent. volume of a segment of the *i*-th component, \overline{U}_0 the potential energy of the system when all of the segments are at the centers of lattice sites, and $\sum g_{\lambda}$ the combinatory factor associated with the mixing of molecules and holes.

If Guggenheim's theory for mixtures is used,⁷ the quantity \bar{U}_0 can be written

$$\bar{U}_{0} = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} N_{i} z_{j} N_{j} \varphi_{ij}(0) / (2 \sum_{i=0}^{n} z_{i} N_{i}) \qquad (4)$$

Polymer J., Vol. 3, No. 2, 1972

tential, as in a previous treatment,¹ we can write $\varphi_{ii}(0)$ with the aforementioned assumption of eq 1,

$$\varphi_{ij}(0) = \varepsilon_{ij}^* \{1.0109 (\sigma^3 N/V^*)^4 - 2.409 (\sigma^3/V^*)^2\}$$
 (5)

where

$$\sigma^{3}N = \sum_{i=1}^{n} \sigma_{i}^{3}N_{i} \qquad (6)$$

Here, ε_{ij}^* is the minimum value of potential energy between the segments of the *i*-th and the *j*-th components in the Lennard-Jones 12-6 potential, and σ_i is the distance between segment centers of the *i*-th components at which pairwise potential energy is zero in the Lennard-Jones 12-6 potential. Therefore we can derive from eq 4 and 5,

$$\bar{U}_{0} = -K\varepsilon^{*}\bar{z}^{2}N^{2}/\sum_{i=0}^{n} z_{i}N_{i}$$
 (7)

Here

$$K = -\{1.0109(\sigma^3 N/V^*)^4 - 2.409(\sigma^3 N/V^*)^2\}/2 \quad (8)$$

$$\varepsilon^* = \sum_{i=1}^{n} \sum_{j=1}^{n} z_i N_i z_j N_j \varepsilon_{ij} / \bar{z}^2 N^2 \qquad (9)$$

and

$$\bar{z} = \sum_{i=1}^{n} z_i N_i / N \tag{10}$$

On the other hand, analogous to the approximate expression of \bar{v}_{f} used for a pure system previously,¹ the quantity $\bar{v}_{f}^{(i)}$ may be expressed as

$$\ln \bar{v}_{\mathbf{f}}^{(i)} = \sum_{k=0}^{n} \bar{\omega}_{k}^{(i)} \ln v_{\mathbf{f}k}^{(i)}$$

where $\bar{\omega}_k^{(i)}$ is the most probable value of the segment fraction of the k-th component in the nearest neighbor sites of a segment of the *i*-th component, and $\bar{v}_{fk}^{(i)}$ is an adjustable parameter, usually taken as the free volume for a segment of the *i*-th component when all of its nearest neighbor sites are occupied by segments of the k-th component. Since $\bar{\omega}_k^{(i)}$ is equal to $z_k N_k/$ $\sum_{i=0}^{n} z_i N_i$ in the zero-th approximation, the quantity $\bar{v}_f^{(i)}$ can be written

$$\ln \bar{v}_{f}^{(i)} = \{\sum_{k=0}^{n} z_{k} N_{k} \ln v_{fk}^{(i)}\} / \sum_{i=0}^{n} z_{i} N_{i}$$
(11)

Using the form of the Lennard-Jones 12-6 po- For simplicity, $v_{fk}^{(i)}$ is taken here as $\bar{v}_{f}^{(i)}$ when

197

 $\bar{\omega}_k^{(i)} = 1$. Then, $v_{fk}^{(i)} (= \bar{v}_f^{(i)}(\bar{\omega}_k^{(i)} = 1))$ for $k \neq 0$ is assumed to be expressed as $v_{fk}^{(i)} = v_i^* h(\sigma^3/v^*)$, analogous to eq 1, where h is the function of σ^3/v^* independent of *i* and *k*. On the other hand when $\bar{\omega}_0^{(i)} = 1$, *i.e.*, when there is no segment at the nearest neighbor sites, the free volume $\bar{v}_{f}^{(i)}$ may be taken as the cell volume v_i^* as in a previous paper.¹ Accordingly we assume here

$$v_{fk}^{(i)} = v_{fm} v_i^* / v^* \quad (k \neq 0)$$
 (12)

$$v_{f0}^{(i)} = \bar{v}_{f}^{(i)}(\bar{\omega}_{0}^{(i)} = 1) = v_{i}^{*}$$
(13)

where $v_{\rm fm}$, equal to $v^*h(\sigma^3/v^*)$, is a mean free volume independent of the components, and v_i^*/v^* is assumed to be independent of temperature and volume. Here, $v_{\rm fm}/v^* = h(\sigma^3/v^*)$ is assumed to be expressed in the same form as in a pure system;

$$v_{\rm fm}/v^* = (4\pi 2^{1/2}/3)\{1 - 2^{-1/6}(\sigma^3 N/V^*)^{1/3}\}^3$$
 (14)

where the square well potential and hexagonal packing were assumed.¹ Then, we obtain from eq 11, 12, and 13

$$\prod_{i=1}^{n} \bar{v}_{f}^{(i)c_{i}N_{i}}$$

$$= \prod_{i=1}^{n} \left(v_{fm} v_{i}^{*} / v \right)^{c_{i}N_{i}} \sum_{\substack{j=1\\ i=1}^{n}}^{n} z_{i}N_{i} / \sum_{\substack{i=0\\ i=1}^{n}}^{n} z_{i}N_{i}}$$

$$\times v_{i}^{*^{c_{i}N_{i}}z_{0}N_{0} / \sum_{i=0}^{n} z_{i}N_{i}}$$

$$= v_{fm}^{cN} \left(v^{*} / v_{fm} \right)^{z_{0}N_{0} / \sum_{i=0}^{n} z_{i}N_{i}} \prod_{i=1}^{n} \left(v_{i}^{*} / v^{*} \right)^{c_{i}N_{i}} (15)$$

where

$$cN = \sum_{i=1}^{n} c_i N_i \tag{16}$$

As for $\sum g_{\lambda}$, Flory's expression is adopted,⁸ *i.e.*,

$$\sum_{\lambda} g_{\lambda} = \frac{M!}{\prod\limits_{i=0}^{n} (N_{i}/r_{i})!} \{z_{0}-1)/M\}^{\sum\limits_{i=1}^{n} (r_{i}-1)N_{i}/r_{i}}$$

$$= \frac{(M/N)^{M-N+\sum\limits_{i=1}^{n} N_{i}/r_{i}}}{(M/N-1)^{M-N}} \cdot \frac{N^{\sum\limits_{i=1}^{n} N_{i}/r_{i}}}{\prod\limits_{i=1}^{n} N_{i}^{N_{i}r_{i}}} (\prod\limits_{i=1}^{n} r_{i}^{-N_{i}/r_{i}})$$

$$\times \{(z_{0}-1)/e\}^{\sum\limits_{i=1}^{n} (N_{i}-N_{i}/r_{i})}$$
(17)

$$z_{0}N_{0}/\sum_{i=0}^{n} z_{i}N_{i} = z_{0}N_{0}/(z_{0}N_{0} + \sum_{i=1}^{n} z_{i}N_{i})$$

$$= (M-N)/\{(M-N) + \bar{z}Nz_{0}\}$$

$$= (\tilde{V}-1)/(\tilde{V}-1+\bar{z}/z_{0}) \qquad (18)$$

Finally, using eq 2, 7, 14, 17, and 18, we have

$$Z = Z_{v} \prod_{i=1}^{n} j_{i}(T)^{N_{i}} \prod_{i=1}^{n} q_{i}^{c_{i}N_{i}} \prod_{i=1}^{n} (v_{i}^{*}/v^{*})^{c_{i}N_{i}} \\ \times \{(z_{0}-1)/e\}^{N-N/r} \prod_{i=1}^{n} (N_{i}r_{i})^{-N_{i}/r_{i}} N^{N/r}$$
(19)

$$Z_{\mathbf{v}} = \widetilde{\mathcal{V}}^{N(\widetilde{\mathcal{V}}-1)+N/r}(\widetilde{\mathcal{V}}-1)^{-N(\widetilde{\mathcal{V}}-1)} \times v_{\mathrm{fm}}^{e_{N}}(v^{*}/v_{\mathrm{fm}})^{e_{N}(\widetilde{\mathcal{V}}-1)/(\widetilde{\mathcal{V}}-1+\overline{z}/z_{0})} \times \exp\left\{\frac{(\overline{z}/z_{0})\overline{z}NK\varepsilon^{*}}{kT(\widetilde{\mathcal{V}}-1+\overline{z}/z_{0})}\right\}$$
(20)

where $N/r = \sum_{i=1}^{n} N_i/r_i$, the total number of polymer molecules in the system.

The form of the volume dependent part of the partition function, Z_v (eq 20), is identical with that for a pure system derived previously.¹ Therefore, if the expressions for parameters of eq 6, 9, 10, and 16 are used, the arguments made in previous papers¹⁻³ of this series for pure systems are valid for mixtures. (This identity in the formula between pure and mixture systems is assumed also in the treatments of Prigogine⁴ and Flory.⁹) The examples of the results obtained previously, which will be used in this paper, are shown in the following.

Internal pressure $P_i \equiv (\partial U/\partial V)_T$, (U, internal energy) or thermal pressure coefficient $\mu \equiv (\partial P/\partial P)$ ∂T)_V at atmospheric pressure is given, in the case where the cell volume is constant, $v^* = \sigma^3$, by¹

$$T\mu \cong P_i = E^* (\bar{z}/z_0)^2 (\tilde{V}' - 1 + \bar{z}/z_0)^{-2} \qquad (21)$$

where $\tilde{V}' = V/\sigma^3 N$ and $E^* = K^0 \varepsilon^* z_0/\sigma^3$. Here K^0 is the value of K at $V^* = \sigma^3 N$, *i.e.*, $K^0 = 0.699$ from eq 8, and E^* represents a characteristic cohesive energy density. The equation 21 reproduces the experimental observations fairly well.1

The surface tension derived is written³

$$r = (\varepsilon^* \bar{z}/\sigma^3) (\sigma^3/c)^{1/3} (\bar{z}/z_0) \tilde{V}'^{-1} (\tilde{V}' - 1 + \bar{z}/z_0)^{-1} \\ \times (0.160 - 0917 f \tilde{T})$$
(22)

where \tilde{T} is the reduced temperature defined as If \tilde{V} is defined as $\tilde{V}=M/N=V/V^*$, then we have $\tilde{T}=T/T^*=ckT/\varepsilon^*\bar{z}$, and f is the parameter which

represents the difference in the free volume between the surface and bulk phases.

Transforming eq 9, 10, and 16 into alternative forms in terms of $E_{ij}^* \equiv K^0 \varepsilon_{ij}^* z_0 / \sigma^3$ and $\theta_i = N_i \sigma_i^3 / N \sigma^3$, we have

$$E^{*} \equiv K^{0} \varepsilon^{*} z_{0} / \sigma^{3}$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}^{0} z_{j}^{0} / z_{0}^{2}) \theta_{i} \theta_{j} E^{*}_{ij}$ (23)

$$\bar{z} = \sum_{i=1}^{n} z_i^{0} \theta_i \tag{24}$$

$$c/\sigma^{3} = \sum_{i=1}^{n} (c_{i}/\sigma_{i}^{3})\theta_{i}$$
(25)

where

$$z_i^{0} = z_i v^* / v_i^* = z_i \sigma^3 / \sigma_i^{3}$$
(26)

The quantity θ_i defined above may be almost equal to the volume fraction. The coordination number z_i^0 defined by eq 26 should be dependent on shapes and volumes of molecules or segments in the system. If the segment or molecule is spherical, the following relation may hold; $z_i^{0}/z^{(i)} = (z_i/z^{(i)})(z_i^{0}/z_i) = (v_i^{*}/v^{*})^{2/3}(v^{*}/v_i^{*})^{1/3}$ where $z^{(i)}$ is the coordination number of a segment of the *i*-th component in the pure system. On the other hand, if the segments of the different kinds in the system are composed of the atomic groups having almost identical volume, for examples, -CH₂-CH₂- and -CH₂- $CH(COOCH_3)$ —, the $z_i/z^{(i)}$ is rather equal to v_i^*/v^* , therefore $z_i^0/z^{(i)} \cong (v_i^*/v^*)(v^*/v_i^*) = 1$. The evaluation described here is close to Flory's estimation⁹ based on the concept of the surface contact sites.

The present theory may be also valid for a copolymer, if the parameters for the components in the copolymer are used, though these may not be always equal to those in corresponding homopolymers. Furthermore the parameter ε^* of a complex molecule or segment may be also estimated by eq 9 from the parameters of the atomic groups composing the molecule or segment.

E^* and T^* Binary Systems

For a binary system (*i.e.*, n=2), if the Berthelot relation, $\varepsilon_{ij}^* = \varepsilon_{ij}^{*1/2} \varepsilon_{ij}^{*1/2}$, for intermolecular dispersion force is assumed, the quantity E^* is given from eq 23 as

$$E^* = \{(z_1^{0}/z_0)\theta_1 E_{11}^{*1/2} + (z_2^{0}/z_0)\theta_2 E_{22}^{*1/2}\}^2$$
(27)

Polymer J., Vol. 3, No. 2, 1972

Here the quantity E_{ii}^* is related to E_i^* of the pure system of the *i*-th component by the equation $E_{ii}^*/E_i^* = z^{(i)}/z_i^0$ because $E_i^* = K^0 \varepsilon_i^* z_0/\sigma_i^3$, $\varepsilon_i^* = \varepsilon_{ii}^* z_i/z^{(i)}$, and $E_{ii}^* = K^0 \varepsilon_{ii}^* z_0/\sigma^3$ with eq 26, where ε_i^* is ε_{ii}^* in the pure system. The characteristic temperature T^* for a binary system can be derived from eq 24, 25, and 27 as

$$T^{*} = \varepsilon^{*} \bar{z} / ck$$

= $E^{*} \sigma^{3} \bar{z} / K^{0} z_{0} ck$
= $(z_{1}^{0} / z_{0}) \{\theta_{1} T_{1}^{*-1} + \theta_{2} \mathcal{A}(z^{(2)} / z^{(1)}) T_{2}^{*-1}\}^{-1}$
 $\times \{\theta_{1} + (z_{2}^{0} z^{(2)} / z_{1}^{0} z^{(1)})^{1/2} \mathcal{A}^{1/2} \theta_{2}\}^{2}$ (28)

where $A \equiv E_2^* / E_1^*$ and $T_i^* \equiv \varepsilon_i^* z^{(i)} / c_i k$.

Internal Pressure and Thermal Pressure Coefficient for Binary Systems

For a binary system, using eq 21 and 27, we obtain

$$v\{1-(1-\bar{z}/z_{0})\tilde{\mathcal{V}}^{\prime})^{1/2} = x_{1}v_{1}(z_{1}^{0}/z^{(1)})^{1/2}\{1-(1-z^{(1)}/z_{0})\tilde{\mathcal{V}}_{1}^{\prime})^{1/2}\}\mu_{1}^{1/2} + x_{2}v_{2}(z_{2}^{0}/z^{(2)})^{1/2}\{1-(1-z^{(2)}/z_{0})\tilde{\mathcal{V}}_{2}^{-1}\}\mu_{2}^{1/2}$$
(29)

where the subscripts 1 and 2 refer to components 1 and 2, respectively, x_i is the segment fraction N_i/N , v is the mean molar volume of segment in the mixture, $VN_{\rm A}/(N_1+N_2)$ ($N_{\rm A}$, Avogadro's number), and v_i is the molar volume of segment in the pure system of the *i*-th component. When the terms in the braces { } in eq 29, which are all very close to unity, are approximated to be equal to each other, and when $z_i^0 = z^{(i)}$, eq 29 reduces to

$$v\mu^{1/2} = \mathbf{x}_1 v_1 \mu_1^{1/2} + \mathbf{x}_2 v_2 \mu_2^{1/2}$$
(30)

With the use of eq 30, excess thermal pressure coefficient μ^{E} at atmospheric pressure is written

$$\mu^{\mathrm{E}} = \mu - (x_1 \mu_1 + x_2 \mu_2) = -x_1 x_2 (\mu_1^{1/2} - \mu_2^{1/2})^2 + x_1^2 (\phi_1^2 - 1) \mu_1 + x_2^2 (\phi_2^2 - 1) \mu_2 + 2x_1 x_2 (\phi_1 \phi_2 - 1) (\mu_1 \mu_2)^{1/2}$$
(31)

where $\phi_i = v_i/v$.

Since $P_i \cong T\mu$ at atmospheric pressure (eq 21), μ in eq 29, 30, and 31 can be replaced by internal pressure P_i .

Glass Transition Temperature of Binary Mixtures In a previous paper,² we have shown that the value of \tilde{T}_{g} , the reduced temperature T_{g}/T^{*} , is almost constant for any polymer and that this constancy of \tilde{T}_{g} gives a rough measure to

199

estimate the glass transition temperature. If the above condition, *i.e.*, T_g =constant, is satisfied, T^* in eq 28 can be replaced by T_g :

$$T_{g} = (z_{1}^{0}/z_{0})(\theta_{1}T_{g1}^{-1} + \theta_{2}A(z^{(2)}/z^{(1)})T_{g2}^{-1})^{-1} \\ \times \{\theta_{1} + (z_{2}^{0}z^{(2)}/z_{1}^{0}z^{(1)})^{1/2}A^{1/2}\theta_{2}\}^{2}$$
(32)

Then, from eq 32 with the assumption of $z_i^0 = z^{(1)}$, the change in T_g of component 2 when a small amount of component 1 is added, can be derived as

$$(\partial T_{g}/\partial W_{1})_{W_{1}=0} = -T_{g^{2}}(z_{1}^{0}\sigma_{1}^{3}/M_{w1})(z_{0}^{2}\sigma_{2}^{3}/M_{w2})^{-1} \times \{T_{g^{2}}/T_{g^{1}} - 1 + (A^{1/2} - 1)^{2}\}$$
(33)

where W_1 is the weight fraction of the component 1, the diluent, and M_{wi} is the molecular weight of segment of the *i*-th component. Deviation from the simple additivity law of T_g is expressed by the quantity

$$-\{(\partial T_{g}/\partial W_{1})_{W_{1}=0}+\Delta T_{g}\}\Delta T_{g} \\ =(z_{1}^{0}\sigma_{1}^{3}/M_{w1})(z_{2}^{0}\sigma_{2}^{3}/M_{w2})^{-1}T_{g2}A^{-1}$$

$$\times \{T_{\rm g1}^{-1} + (A^{1/2} - 1)^2 / \Delta T_{\rm g}\} - 1 \tag{34}$$

where $\Delta T_{g} = T_{g_2} - T_{g_1}$.

COMPARISON WITH EXPERIMENTALS AND DISCUSSION

Thermal Pressure Coefficient and Internal Pressure According to Flory's theory⁹ with the Berthelot relation, we have

$$v\mu^{1/2} = x_1 v_1 \mu_1^{1/2} (s_1/s)^{1/2} + x_2 v_2 \mu_2^{1/2} (s_2/s)^{1/2}$$
(35)

where s is the number of external contact sites. The difference between eq 29 and 35 arises from the difference in expression for P_i , *i.e.*, $P_i \propto \bar{z}/z_0 (\tilde{V}' - 1 + \bar{z}_0)^{-2}$ in the present theory whereas $P_i \propto V^{-1}$ in Flory's one. When $(s_1/s)^{1/2}$ and $(s_2/s)^{1/2}$ can be regarded as unity, eq 35 reduces to eq 30. Equation 30 shows the additivity of $\mu^{1/2}v$, whereas Hildebrand, *et al.*,¹⁰ presented the empirical equation, $v\mu = x_1v_1\mu_1 + x_2v_2\mu_2$, which

Table I. Comparison of observed and calculated values of excess thermal pressure coefficient μ^{E} for mixtures (50%-50% mol fraction) at 25°C¹⁰

Mixture	$V_1,$ cc/mol	$V_2,$ cc/mol	μ_1	$\mu_2,$ atm/deg	μ	$-\mu^{\mathrm{E}}$,	$\frac{-\mu^{\rm E}}{(\mu v)^*}$, Calcd $(\mu^{1/2}v)^{**}$	${x_1x_2 \ imes (\mu_1^{1/2} - \mu_2^{1/2})^2}$
Heptane Acetone	147.57	73.85	8.41	11.00	9.00	0.71	0.44	0.46	0.043
Heptane Carbontetrachloride	147.57	97.07	8.41	11.15	9.38	0.40	0.28	0.38	0.048
Heptane Benzene	147.57	89.34	8.41	12.23	9.59	0.73	0.44	0.55	0.089
Heptane Carbon disulfide	147.57	60.63	8.41	12.31	9.55	0.81	0.81	0.88	0.093
Heptane Ethylene bromide	147.57	86.51	8.41	14.80	10.35	1.26	0.84	1.05	0.226
Heptane Bromform	147.57	87.91	8.41	14.92	10.60	1.07	0.83	1.13	0.230
Benzene Carbontetrachloride	89.34	97.07	12,23	11.15	11.73	-0.04	0.02	0.03	0.006
Benzene Carbon disulfide	89.34	60.63	12.23	12.31	12.00	0.27	0.01	-0.01	6×10 ⁻⁵
Benzene Ethylchloride	89.34	78.86	12.23	13.88	12.64	0.42	0.06	0.05	0.013
Benzene Bromform	89.34	87.91	12.23	14.92	13.70	-0.12	0.02	0.07	0.035
Carbon disulfide Acetone	60.63	73.85	12.31	11.00	11.42	0.24	0.07	0.06	0.01
Carbon disulfide Ethylene bromide	60.63	86.51	12.31	14.80	13.58	-0.02	-0.21	-0.20	0.029

* (μv), $-\mu^{E}$ calculated with $\mu^{E} = \mu - (x_{1}\mu_{1}v_{1} + x_{2}\mu_{2}v_{2})$.

** $(\mu^{1/2}v)$, $-\mu^{E}$ calculated with $\mu^{E} = \mu - (x_{1}\mu_{1}^{1/2}v_{1} + x_{2}\mu_{2}^{1/2}v_{2})$.

Vinyl acetate, wt%	Vinyl $V, cc/g$		$\frac{1}{2}$ $\sigma^3 N$	$\widetilde{V}' = V/\sigma^3 N$		$\widetilde{T}, \ imes 10^2$		$E^*,$ cal/cc	$N\sigma^{3/c},$ cc/mol		γ, dyn/cm²		
	tate, t% Obsd			Ohed Calad		Ohad Calad			h			Calcd	
		Calco		Obsu	Calco	Obsa	Calco	a	a	D	Obsd	c	d
0	1.268	_	1.091	1.161	_	5.34		96.8	136.4		27.76	27.45	
17.67	1.210	1.210	1.030	1.174	1.174	5.60	5.60	102.3	123.2	123.2	27.0	27.0_{5}	27.10
26.58	1.181	1.178	0.998	1.183	1.180	5.78	5.73	106.1	115.1	116.0	26.5	26.7_{5}	27.00
30.9_{2}	1.169	1.163	0.982	1.190	1.184	5.92	5.80	107.9	110.5	112.9	26.4	26.30	26.95
38.71	1.140	1.137	0.955	1.193	1.190	5.98	5.91	111.2	106.2	107.6	26.9	26.60	26.90
100	0.905		0.740	1.222		6.56		149.2	71.9		28.72	28.90	
	Vinyl acetate, wt% 0 17.67 26.58 30.92 38.71 100	$\frac{\text{Vinyl}}{\text{accetate,}} \frac{\text{C}}{\text{Obsd}}$ $\frac{0}{\text{Obsd}}$ $\frac{1.268}{17.6_7} \frac{1.210}{1.210}$ $26.5_8 \frac{1.181}{30.9_2} \frac{1.169}{38.7_1}$ $\frac{38.7_1}{1.140}$ $100 \qquad 0.905$	$\frac{\text{Vinyl}}{\text{acetate,}} \xrightarrow[\text{wt\%]}{\frac{\mathcal{V}, \text{cc/g}}{\text{Obsd}}} \frac{\mathcal{V}, \text{cc/g}}{\text{Obsd}}$ $\frac{0}{1.268} - 17.6_7 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.163 1.163 1.163 1.163 1.164 1.137 1.140 1.137 1.140 1.137 1.140 1.137 1.140 1.137 1.140 1.137 1.140 1.137 1.140 1.137 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.140 1.143 1.140 1.140 1.143 1.140 1.140 1.143 1.140 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1.143 1.140 1$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{accetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{cc/g} \end{array} \\ \hline \end{array} \begin{array}{c} \sigma^3 N \\ \text{cc/g} \end{array} \end{array}$ $\begin{array}{c} \sigma^3 N \\ \text{cc/g} \end{array}$ $\begin{array}{c} 0 \\ 1.268 \\ - \end{array} \begin{array}{c} 1.268 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.030 \\ 26.58 \\ 30.9_2 \\ 1.169 \\ 1.163 \\ 0.982 \\ 38.7_1 \\ 1.140 \\ 1.137 \\ 0.955 \\ 100 \\ 0.905 \end{array} \begin{array}{c} - \end{array} \begin{array}{c} 0.740 \end{array}$	$\begin{array}{c} \begin{array}{c} Vinyl\\ acetate,\\ wt\% \end{array} \begin{array}{c} V,\\ cc/g\\ Obsd Calcd \end{array} \begin{array}{c} \sigma^3N\\ cc/g \end{array} \begin{array}{c} = V\\ Obsd \end{array} \end{array}$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{cc/g} \\ \hline \text{Obsd} \end{array} \begin{array}{c} \sigma^3 N \\ \text{cc/g} \end{array} \begin{array}{c} \begin{array}{c} \widetilde{V'} \\ = V/\sigma^3 N \\ \hline \text{Obsd} \end{array} \begin{array}{c} \text{Calcd} \end{array} \end{array}$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{cc/g} \\ \hline 0 \\ \text{bsd} \end{array} \begin{array}{c} \sigma^3 N \\ \text{cc/g} \end{array} \begin{array}{c} \frac{\tilde{V'}}{\text{obsd}} \\ \frac{\tilde{V'}}{\text{obsd}} \\ \hline 0 \\ \hline 0 \\ \text{bsd} \end{array} \begin{array}{c} 1.268 \\ - \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.030 \\ 1.174 \\ 1.174 \\ 1.174 \\ 5.60 \\ 26.5_8 \\ 1.181 \\ 1.181 \\ 1.178 \\ 0.998 \\ 1.183 \\ 1.180 \\ 1.183 \\ 5.78 \\ 30.9_2 \\ 1.169 \\ 1.163 \\ 0.982 \\ 1.190 \\ 1.190 \\ 1.184 \\ 5.92 \\ 38.7_1 \\ 1.140 \\ 1.137 \\ 0.955 \\ 1.193 \\ 1.190 \\ 5.98 \\ 100 \end{array} \begin{array}{c} \tilde{V'} \\ - \\ 0 \\ 0.905 \\ - \\ 0.740 \\ 1.222 \\ - \\ 0.56 \end{array} \end{array}$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{obsd} \end{array} \begin{array}{c} V, \\ \text{cc/g} \end{array} \end{array} \begin{array}{c} \sigma^3 N \\ \text{cc/g} \end{array} \begin{array}{c} \begin{array}{c} \tilde{V'} \\ = V/\sigma^3 N \end{array} \end{array} \begin{array}{c} \begin{array}{c} \tilde{T}, \\ \times 10^2 \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{obsd} \end{array} \begin{array}{c} 1.268 \end{array} \begin{array}{c} -1.091 \\ 1.210 \end{array} \begin{array}{c} 1.091 \\ 1.030 \end{array} \begin{array}{c} 1.161 \end{array} \begin{array}{c} -5.34 \end{array} \begin{array}{c} -1.091 \\ -5.60 \end{array} \\ \begin{array}{c} 0 \\ 1.767 \end{array} \begin{array}{c} 1.210 \\ 1.210 \end{array} \begin{array}{c} 1.210 \\ 1.210 \end{array} \begin{array}{c} 1.030 \\ 1.174 \end{array} \begin{array}{c} 1.174 \\ 1.174 \end{array} \begin{array}{c} 5.60 \\ 5.60 \\ 5.60 \\ 26.58 \\ 30.92 \end{array} \begin{array}{c} 1.181 \\ 1.178 \\ 1.180 \\ 30.982 \end{array} \begin{array}{c} 1.183 \\ 1.180 \\ 1.184 \\ 5.92 \\ 5.91 \\ 100 \end{array} \begin{array}{c} 5.98 \\ 5.91 \\ 100 \end{array} \begin{array}{c} 5.96 \\ 5.91 \\ 100 \end{array} \end{array}$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} V, \\ \text{Obsd} \end{array} \begin{array}{c} C/g \\ \text{Obsd} \end{array} \begin{array}{c} \sigma^3 N \\ cc/g \end{array} \begin{array}{c} \tilde{V'} \\ \overline{Obsd} \end{array} \begin{array}{c} \tilde{T}, \\ \overline{Obsd} \end{array} \begin{array}{c} \times 10^2 \\ \overline{Obsd} \end{array} \begin{array}{c} E^*, \\ cal/cc \end{array} \end{array}$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \\ \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{obsd} \\ \end{array} \begin{array}{c} cc/g \\ \text{Obsd} \\ \end{array} \begin{array}{c} \sigma^3 N \\ cc/g \\ \end{array} \begin{array}{c} \begin{array}{c} \widetilde{V'} \\ = V/\sigma^3 N \\ \end{array} \begin{array}{c} \widetilde{T}, \\ \end{array} \\ \end{array} \begin{array}{c} \widetilde{T}, \\ \times 10^2 \\ \end{array} \begin{array}{c} E^*, \\ cal/cc \\ \end{array} \begin{array}{c} \begin{array}{c} R^*, \\ cc/g \\ \end{array} \begin{array}{c} \left(\frac{R^*}{2} \right) \\ \end{array} \end{array} \begin{array}{c} \left(\frac{R^*}{2} \right) \\ \end{array} \begin{array}{c} 0 \\ 1.268 \\ 17.67 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.210 \\ 1.030 \\ 1.174 \\ 1.174 \\ 1.174 \\ 5.60 \\ 5.60 \\ 5.60 \\ 5.60 \\ 102.3 \\ 123.2 \\ 26.58 \\ 1.181 \\ 1.178 \\ 0.998 \\ 1.183 \\ 1.180 \\ 5.78 \\ 5.73 \\ 106.1 \\ 115.1 \\ 30.9_2 \\ 1.169 \\ 1.163 \\ 0.982 \\ 1.190 \\ 1.184 \\ 5.92 \\ 5.80 \\ 107.9 \\ 111.2 \\ 106.2 \\ 100 \\ 0.905 \\ \end{array} \right) \begin{array}{c} R^*, \\ \frac{R^*}{2} \\ \frac{R^*}{2$	$\begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{obsd} \end{array} \begin{array}{c} Cc/g \\ \text{Obsd} \end{array} \begin{array}{c} \sigma^3 N \\ cc/g \end{array} \begin{array}{c} \begin{array}{c} \tilde{V'} \\ = V/\sigma^3 N \\ \text{Obsd} \end{array} \begin{array}{c} \tilde{T}, \\ \text{Obsd} \end{array} \begin{array}{c} X10^2 \\ \text{Obsd} \end{array} \begin{array}{c} Calcd \end{array} \begin{array}{c} E^*, \\ cal/cc \end{array} \begin{array}{c} \begin{array}{c} N\sigma^3/c, \\ cc/mol \\ a \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 0 \\ 1.268 \end{array} \begin{array}{c} 1.268 \end{array} \begin{array}{c} - 1.091 \end{array} \begin{array}{c} 1.161 \end{array} \begin{array}{c} - 5.34 \end{array} \begin{array}{c} - 96.8 \end{array} \begin{array}{c} 136.4 \end{array} \begin{array}{c} - \\ 17.6_7 \end{array} \begin{array}{c} 1.210 \end{array} \begin{array}{c} 1.210 \end{array} \begin{array}{c} 1.091 \end{array} \begin{array}{c} 1.174 \end{array} \begin{array}{c} 1.174 \end{array} \begin{array}{c} 5.78 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 106.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 116.0 \end{array} \begin{array}{c} 0 \end{array} \\ 30.9_2 \end{array} \begin{array}{c} 1.169 \end{array} \begin{array}{c} 1.163 \end{array} \begin{array}{c} 0.998 \end{array} \begin{array}{c} 1.181 \end{array} \begin{array}{c} 1.184 \end{array} \begin{array}{c} 5.92 \end{array} \begin{array}{c} 5.98 \end{array} \begin{array}{c} 5.78 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 106.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 116.0 \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 30.92 \end{array} \begin{array}{c} 1.140 \end{array} \begin{array}{c} 1.137 \end{array} \begin{array}{c} 1.190 \end{array} \begin{array}{c} 1.190 \end{array} \begin{array}{c} 1.184 \end{array} \begin{array}{c} 5.92 \end{array} \begin{array}{c} 5.98 \end{array} \begin{array}{c} 5.91 \end{array} \end{array} \begin{array}{c} 111.2 \end{array} \begin{array}{c} 111.2 \end{array} \begin{array}{c} 112.9 \end{array} \begin{array}{c} 112.9 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} $ \end{array} \\ \begin{array}{c} 38.7_1 \end{array} \begin{array}{c} 1.140 \end{array} \begin{array}{c} 1.137 \end{array} \begin{array}{c} 1.222 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0.965 \end{array} \begin{array}{c} 1.122 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}	$ \begin{array}{c} \begin{array}{c} \text{Vinyl} \\ \text{acetate,} \\ \text{wt\%} \end{array} \begin{array}{c} \begin{array}{c} V, \\ \text{obsd} \end{array} \begin{array}{c} Cc/g \\ \text{Obsd} \end{array} \begin{array}{c} \sigma^3 N \\ cc/g \end{array} \begin{array}{c} \frac{\tilde{V'}}{Obsd} \end{array} \begin{array}{c} \tilde{T}, \\ \frac{V}{Obsd} \end{array} \begin{array}{c} \times 10^2 \\ \text{Obsd} \end{array} \begin{array}{c} E^*, \\ cal/cc \end{array} \begin{array}{c} E^*, \\ cal/cc \end{array} \begin{array}{c} N\sigma^3/c, \\ cal/cc \end{array} \begin{array}{c} \frac{dy}{Obsd} \end{array} \begin{array}{c} \frac{dy}{Obsd} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 1.268 \end{array} \begin{array}{c} 1.268 \end{array} \begin{array}{c} - 1.091 \end{array} \begin{array}{c} 1.161 \end{array} \begin{array}{c} - 5.34 \end{array} \begin{array}{c} - 96.8 \end{array} \begin{array}{c} 136.4 \end{array} \begin{array}{c} - 27.7_6 \\ 102.3 \end{array} \begin{array}{c} 123.2 \end{array} \begin{array}{c} 223.2 \end{array} \begin{array}{c} 223.2 \end{array} \begin{array}{c} 27.0 \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 26.5_8 \end{array} \begin{array}{c} 1.181 \end{array} \begin{array}{c} 1.178 \end{array} \begin{array}{c} 0.998 \end{array} \begin{array}{c} 1.183 \end{array} \begin{array}{c} 1.180 \end{array} \begin{array}{c} 5.78 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 106.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 116.0 \end{array} \begin{array}{c} 26.5 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 26.5_8 \end{array} \begin{array}{c} 1.181 \end{array} \begin{array}{c} 1.163 \end{array} \begin{array}{c} 0.998 \end{array} \begin{array}{c} 1.183 \end{array} \begin{array}{c} 1.180 \end{array} \begin{array}{c} 5.78 \end{array} \begin{array}{c} 5.78 \end{array} \begin{array}{c} 5.73 \end{array} \begin{array}{c} 106.1 \end{array} \begin{array}{c} 115.1 \end{array} \begin{array}{c} 116.0 \end{array} \begin{array}{c} 26.5 \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \end{array} \end{array} $ \\ \begin{array}{c} 0 \end{array} \end{array} \\ \begin{array}{c} 0 \end{array} \begin{array}{c} 0.995 \end{array} \begin{array}{c} 0.1137 \end{array} \begin{array}{c} 0.995 \end{array} \begin{array}{c} 1.193 \end{array} \begin{array}{c} 1.190 \end{array} \begin{array}{c} 1.190 \end{array} \begin{array}{c} 1.184 \end{array} \begin{array}{c} 5.92 \end{array} \begin{array}{c} 5.8 \end{array}	$ \begin{array}{c} \begin{array}{c} {\rm Vinyl} \\ {\rm acetate,} \\ {\rm wt\%} \end{array} \begin{array}{c} V, \\ {\rm Obsd \ Calcd} \end{array} \begin{array}{c} \sigma^3 N \\ {\rm cc/g} \end{array} \begin{array}{c} \tilde{V'} \\ {\rm obsd \ Calcd} \end{array} \begin{array}{c} \tilde{T}, \\ {\rm obsd \ Calcd} \end{array} \begin{array}{c} \tilde{T}, \\ {\rm vt/\sigma^3 N} \end{array} \begin{array}{c} \times 10^2 \\ {\rm Obsd \ Calcd} \end{array} \begin{array}{c} E^*, \\ {\rm cc/mol} \\ {\rm a \ b} \end{array} \begin{array}{c} N\sigma^3/c, \\ {\rm cc/mol} \\ {\rm a \ b} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \tilde{V'} \\ = V/\sigma^3 N \end{array} \begin{array}{c} \tilde{T}, \\ {\rm Obsd \ Calcd} \end{array} \begin{array}{c} E^*, \\ {\rm cal/cc} \end{array} \begin{array}{c} N\sigma^3/c, \\ {\rm cal/cc} \end{array} \begin{array}{c} \frac{\sigma^3/c}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\tilde{V'}}{O} \end{array} \begin{array}{c} \tilde{T}, \\ {\rm obsd \ Calcd} \end{array} \begin{array}{c} E^*, \\ {\rm cal/cc} \end{array} \begin{array}{c} \frac{N\sigma^3/c}{O} \end{array} \begin{array}{c} \frac{\sigma^3/c}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\tilde{V'}}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \end{array} \end{array} \begin{array}{c} \frac{\sigma^3 N}{O} \end{array} \end{array} $

Table II. Comparison of calculated and observed various quantities for ethylene—vinyl acetate copolymers and pure components at $150^{\circ}C^{\alpha}$

^a a, calculated from the observed \tilde{T} with E^* . b, calculated from the calculated \tilde{T} with E^* . c, calculated from the observed \tilde{V}' and \tilde{T} with E^* and $N\sigma^3/c$ in column a. d, calculated from the parameters of pure components alone, *i.e.*, from the calculated \tilde{V}' and \tilde{T} with E^* and $N\sigma^3/c$ in column b. The $\tilde{V}'-\tilde{T}$ relation used is the curve of $\tilde{V}'-\tilde{T}$ obtained experimentally with the theorem of corresponding states in the previous paper.¹

shows the additivity of μv . In eq 31 the molar volume of mixture v can be regarded as $x_1v_1 + x_2v_2$, when the absolute value of $(v_1 - v_2)x_i$ is much larger than that of the excess volume $v^{\rm E}(=v-x_1v_1-x_2v_2)$ because $\phi_i-1=\{(v_i-v_i)x_i-v_i\}$ $v^{\rm E}/v$. In such a case, therefore, $\mu^{\rm E}$ is insensitive to volume change on mixing. For the mixtures (50-50 mol%) of low molecular weight liquids,¹⁰ the comparisons of the above two additivity properties with experimental results are shown in Table I. The two additivity properties give almost the same values and that of $\mu^{1/2}v$ presented here gives a slightly better value, provided that the approximation, $v = x_1v_1 + x_2v_2$, was used in the calculation. The first term of eq 31 is usually very small compared with the other terms as shown in Table I, and μ^{E} is dominated by the difference in molar volume between the pure components from which the terms involving ϕ_1 and ϕ_2 in eq 31 arise. The agreement with experimentals is fairly satisfactory. In some cases, e.g., benzene mixtures with carbodisulfide and ethylchloride, however, considerable discrepancies are found, some of which may arise from the molecular orientation and invalidity of $P_i \propto V^{-2}$ due to peculiar interactions, and some may arise from the use of the Berthelot relation and the neglect of the coordination number.

Figure 1. Weight per cent dependence of reduced temperature \tilde{T} , reduced volume $\tilde{V'}$ volume V and surface tension γ for ethylene—vinylacetate copolymers: \bigcirc , experiments; —, calculated curves; \bullet , γ calculated with \tilde{T}_{obs} and $\tilde{V'}_{obs}$. The dotted straight lines indicate the values expected from the simple additivity law.

Specific Volume and Surface Tension of Ethylene —Vinyl Acetate Copolymers

In Table II and Figure 1, theoretical and experimental values of specific volumes, reduced volumes \tilde{V}' , reduced temperatures $\tilde{T}(\equiv T/T^*)$, and surface tensions γ for ethylene—vinyl acetate copolymers¹¹ (ELVAX) of different compositions at 150°C are shown for comparison. The observed values of reduced temperature for copolymers were determined from volume-temperature measurements by a method previously described,¹ where at first the values of $N\sigma^3$ were evaluated with eq 5. The calculated values of $\sigma^3 N/c$, E^* , and T^* were obtained from eq 25, 27, and 28 with those for pure components, polyethylene, and poly(vinyl acetate), which were estimated in the first paper,¹ assuming that the coordination number z_i^0 in the mixture system is equal to that in the pure one, $z^{(i)}$, accordingly, $E_{ii}^* = E_i^*$ because $E_{ii}^*/E_i^* = z^{(i)}/z_i^0$. The calculated values of \tilde{V}'_{cal} and V_{cal} were evaluated from the calculated \tilde{T}_{cal} with the experimental curve¹ of $\tilde{\mathcal{V}}' - \tilde{T}$ relation. The surface tensions γ for the homo- and co-polymers were computed with these values of \tilde{T} , \tilde{V}' by eq 22 with f=0.64 which is available for polymers as mentioned previously. Figure 1 shows fairly close agreement between the theoretical and experimental values. The observed values of V, \tilde{V}' , and \tilde{T} for copolymers are larger than those expected from the simple additivity law, in accordance with the theoretical prediction. Examining in detail, however, we find that the observed values of $V(\text{or } \tilde{V}')$ and \tilde{T} abnormally deviate from the calculated smooth curves in the vicinity of 30 wt% of vinyl acetate. The reason for this abnormality is not clear, and experimental errors may not be responsible alone because the same tendency is found in surface tension as shown in Figure 1. The values of surface tension (indicated by closed circles) calculated from ${\widetilde{V}'}_{
m obs}$ and ${\widetilde{T}}_{
m obs}$ show better agreement with experimental values (indicated by open circles) than those from ${\tilde{V}'}_{\rm ca1}$ and ${\tilde{T}}_{\rm ca1}$ (indicated by a solid line). The theory well explains the fact that the weight fraction dependence of γ has a minimum. Qualitatively speaking, the minimum arises from the fact that the introduction of a little vinyl acetate having a large number of external degrees of freedom causes the increase in the value of \tilde{V} , \tilde{T} , and c/σ^3 ; hence it induces the decrease in the value of γ , whereas it does not cause a comparable increase in the characteristic interaction energy E^* .

Glass Transition Temperatures of Mixtures

According to eq 28, the characteristic temperature of a binary system is usually less than that expected from the simple additivity law when plotted against volume fraction as shown in Figure 2. The calculated curves of eq 32 for T_g are also represented by these curves for T^* in Figure 1. The equation 32 may be also

Figure 2. Characteristic temperature T^* vs. occupied volume fraction θ_1 when $T_2^*=1.5$, $T_1^*=1$ and $z_1^0=z_2^0$ with various values of $A(=E_2^*/E_1^*)$ which are indicated by the numers in the figure.

Figure 3. Glass transition temperatures of styrenemethylacrylate copolymers: \bigcirc , experiments¹²; -, calculated curve.

A Hole Theory of Polymer Liquids and Glasses. VI.

Substance	$\sigma^{3}N/M_{w}, cc/g$	$0.699\sigma^*z$ $\sigma^3N,$ cal/mol	$T_{\mathrm{gl hyp}},$ °Kª	$T_{{{ m gl}}{{ m exp}}},{{ m o}K}$	Z_i^0
Polystyrene	0.884	112.2		359obsd	10
Poly(methyl acrylate)	0.740	149.2	—	275 ^{obsd}	10
Poly(methyl methacrylate)	0.809	138.2		358 ^{obsd}	10
Benzene	0.980	164	217	174 ^ь	12
Toluene	0.997	150	226	112ь	12
Methyl chloride	0.620	147	187	110ъ	12
Chloroform	0.563	126	194	133ъ	12
Carbon tetrachloride	0.528	105	197	162 ^b	12
Acetone	1.018	145	183	110ъ	11
Methyl acetate	0.861	(160)	171	109ъ	11
Ethyl acetate	0.896	149.2	179	109ъ	10.5
<i>n</i> -Propyl acetate	0.924	138.2	186	101ъ	10.2
<i>n</i> -Butyl acetate	0.945	130.9	190	125ъ	10

 Table III.
 Molecular parameters used in the calculation of the glass transition temperatures of binary systems

^a hypothetical glass transition temperatures $T_{g1 hyp}$ of diluents are determined by the equation $T_g = \tilde{T}_g$ $T^* = 0.0397T^*$ with the values of T^* listed in a preceding paper.³

^b estimated with the experimental equation proposed by Jenckel,¹⁴ *i.e.*, $T_g/T_m = 0.6 + 3 \times 10^{-4} M_w$, where T_m and M_w are melting point and molecular weight, respectively.

valid for random copolymers. As an example of the applications, the comparisons of the calculated values with the observed ones are shown in Figure 3 for styrene—methyl methacrylate copolymers.¹² The parameters are obtained by a method adopted previously¹ and shown in Table III. The theoretical predication is satisfied in the shape of the T_g vs. weight fraction relation, but not so well quantitatively. One of the possible reasons for the disagreements is that the quantity c_i in a copolymer is not always equal to the one in the homopolymer of of the *i*-th component because of the short range interaction between segments of different kinds.

Next, the effect of a diluent on the glass transition temperature will be considered with eq 33 and 34 derived from eq 32, on the assumption that the value of \tilde{T}_g does not change by adding a diluent. This assumption may not be so valid for polymer—diluent systems because \tilde{T}_g may decrease with increasing the diluent fraction. This is suggested by the fact that \tilde{T}_g in a pure system decreases with decreasing chain length as shown previously.² It is expected, however, that the diluent-effect on T_g will be qualitatively estimated by the condition $\tilde{T}_g =$

Polymer J., Vol. 3, No. 2, 1972

constant. Therefore we examine with eq 33 and 34 the validity of the above assumption for the diluent-effect.

In Figures 4 and 5, calculated and observed values of the two quantities, $(\partial T_g/\partial W_1)_{W_1=0}$ and $-\{(\partial T_g/\partial W_1)_{W_1=0}+\Delta T_g\}/T_g$, are shown for diluted polystyrenes and poly(methyl methacrylate)s with

Figure 4. Comparison of calculated and experimental values of $-(\partial T_g/\partial W_1)_{W_1=0}$: \bullet , diluted polystyrenes; \blacktriangle , diluted poly(methyl methacrylate)s.

A,

с,

 c_i ,

f,

Κ,

Μ,

Figure 5. Comparison of calculated and experimental values for the deviation from the simple additivity law of T_g : • and \bigcirc , diluted polystyrenes; \blacktriangle and \triangle , diluted poly(methyl methacrylate)s. Filled points $(\bullet, \blacktriangle)$ and open points refer to the two different calculations described in the text, respectively.

the use of Jenckel's data.¹³ The parameters used are shown in Table III, which were obtained by the preceding method.¹ Considering the shape of the molecules, appropriate values were given to z_i^0 . In the calculation of eq 33 and 34, the hypothetical glass transition temperatures of diluents $T_{g1 hyp}$ were used as T_{g1} , which were evaluated by the relation $T_{g1 hyp} =$ $\tilde{T}_{\rm g} \cdot T_1^*$ with $\tilde{T}_{\rm g} = 0.0396$; this value of $\tilde{T}_{\rm g}$ is an average for some polymers.² Some of the values of $T_{g1 exp}$ are those estimated with the empirical equation presented by Jenckel.¹⁴

Figure 4 shows that the calculated values of $-(\partial T_g/\partial W_1)_{W_1=0}$ agree fairly well with the observed ones. The calculated values, however, k, tend to be slightly smaller than the observed ones. This may arise from the decrease in \tilde{T}_{g} with increasing the diluent fraction. As can be seen in Figure 5, the observed deviation from the simple additivity accords qualitatively with the theoretical prediction. The negative N,deviation becomes larger as specific (occupied) volume and cohesive energy density of the diluent become larger and as the characteristic N_i , temperature becomes smaller. The fact that the calculated values (indicated by \bullet and \blacktriangle), N_0 ,

in general, are larger than the observed ones as shown in Figure 5 may arise from the underestimation of ΔT_{g} , *i.e.*, the overestimation of $T_{\rm g1}$ owing to the assumption of $\tilde{T}_{\rm g} = {\rm constant},$ since \tilde{T}_{g} of a diluent may be smaller than that of a polymer, in other words, $T_{g1 hyp}$ is much larger than $T_{g1 exp}$ as shown in Table III, and $T_{g1 exp}$ is closer to the actual glass transition temperature of a diluent than $T_{g1 hyp}$. In fact, if the calculated deviation is taken to be $-\{(\partial T_g/\partial W_1)_{W_1=0 \text{ cal}}+ \Delta T_g \exp\}/\Delta T_g \exp$, the calculated values (indicated by \bigcirc and \triangle) become much closer to the observed ones as shown in Figure 5, where $\Delta T_{g exp} = T_{g^2 obs} - T_{g^1 exp}$.

LIST OF SYMBOLS

- defined as E_2^*/E_1^* . parameter associated with external degrees of freedom defined by eq 16.
- one third of external degrees of freedom per segment of *i*-th component.
- E^* . characteristic cohesive energy density defined by eq 23.
- E_i^* E^* of the pure system of *i*-th component, defined by $E_i^* = K^0 \varepsilon_i^* z_0 / \sigma_i^3$.
- parameter associated with interaction E_{ii}^* energy between *i*-th and *j*-th components, defined as $K^0 \varepsilon_{ij}^* z_0 / \sigma^3$.

parameter in the expression for surface tension of eq 22.

- combinatory factor associated with the $\sum_{\lambda} g_{\lambda},$ mixing of molecules and holes.
- partition function per segment associ $j_i(T),$ ated with the intrasegmental interactions of *i*-th component.
 - function defined by eq 8.

 K^0 , K when $V^* = \sigma^3 N$, *i.e.*, $K^0 = 0.699$.

- Boltzmann's constant.
- total number of lattice sites in the system, $M = \sum_{i=1}^{N} N_i$.
- molecular weight of segment of *i*-th M_{wi} , component.

total number of segments in the system,

$$N = \sum_{i=1}^{n} N_i.$$

number of segments of *i*-th component in the system.

number of holes in the system.

n,	number of components in the system.	W_1 ,	weight fraction of the component 1,
P ,	pressure.		the diluent.
P_i ,	internal pressure defined as $(\partial U/\partial V)_T$	$\overline{w}_{k}^{(i)},$	most probable value of segment frac-
	(U, internal energy).		tion of the k-th component in the
q_i ,	kinetic part of partition function as-		nearest neighbor sites of an <i>i</i> -th com-
	sociated with the external degrees of		ponent segment.
	freedom of an <i>i</i> -th component segment.	x_i ,	segment fraction of the <i>i</i> -th component,
N/r,	total number of molecules in the		$N_i/N.$
	system.	Z,	partition function of the system.
r_i ,	number of segments of <i>i</i> -th component.	$Z_{ m v},$	volume dependent part of partition
<i>s</i> ,	mean number of external contact sites		function of the system.
	per segment of mixture, used in	z_i ,	coordination number of an segment
	Flory's theory ⁹ .		of the <i>i</i> -th component, defined as the
s_i ,	number of external contact sites of an		number of sites around a segment of
	<i>i</i> -th component segment involved in		<i>i</i> -th component whose volume is aver-
	Flory's theory ⁹ .		age cell volume v^* .
Τ,	temperature.	z,	mean coordination number of the
$T^{*},$	characteristic temperature defined by		system defined by eq 10.
	$\varepsilon^* \bar{z}/ck.$	z_{i}^{0} ,	coordination number defined by eq 26,
$T_{i}^{*},$	characteristic temperature of the <i>i</i> -th		$z_i^0 = z_i v^* / v_i^*$.
	component defined as $\varepsilon_i^* z^{(i)} / c_i k$.	$z^{(i)},$	coordination number of a segment of
T_{g} ,	glass transition temperature.		<i>i</i> -th component in the pure system.
T_{gi} ,	$T_{\rm g}$ of pure <i>i</i> -th component.	γ,	surface tension.
$T_{g1 exp}$,	$T_{\rm g}$ of diluent estimated with the em-	ε*,	parameter of intersegmental interaction
0	pirical equation presented by Jenckel ¹⁴ .		energy defined by eq 9.
$T_{\rm gl\ hvp},$	hypothetical T_{g} of diluent determined	ε_i^* ,	intersegmental interaction energy pa-
5 11	by $T_{g1 hyp} = \tilde{T}_g \tilde{T}_1^* = 00396 T_1^*$.		rameter of pure system of <i>i</i> -th com-
ΔT_{g} ,	difference of T_g , $T_{g_2} - T_{g_1}$.		ponent, representing the minimum
$\Delta T_{g exp}$	$T_{g_2}(\text{observed}) - T_{g_1 \text{ exp.}}$		potential energy in the Lennard-Jones
$ar{U}_0$	potential energy of the system when		12-6 potential.
-	all of the segments are at the centers	ε_{ii}^{*} ,	parameter of interaction energy be-
	of lattice sites, as given by eq 4.	•	tween the segments of <i>i</i> -th and <i>j</i> -th
V,	volume of the system.		components, in eq 5.
v,	volume per mole of segment, VN_A/N	θ_i ,	characteristic volume fraction, defined
	$(N_{\rm A}, \text{ Avogadro's number}).$		as $\theta_i = N_i \sigma_i^3 / N \sigma^3$.
v_i ,	volume per mole of segment of the <i>i</i> -	μ,	thermal pressure coefficient, $(\partial P/\partial T)_V$.
	th component in the pure system.	μ ^E ,	excess thermal pressure coefficient,
$V^*,$	cell volumes occupied with segments,	•	$\mu - (x_1 \mu_1 + x_2 \mu_2).$
	Nv^* .	σ^3 ,	average characteristic volume of a
ĨV,	reduced volume defined by $\tilde{V}=M/N=$		segment, defined by eq 6.
~.	V/V^* .	σ_i^{3} ,	characteristic volume of an <i>i</i> -th com-
V',	reduced volume defined by $V' = V/\sigma^3 N$.		ponent segment (σ represents the dis-
v*,	average volume of cell defined by eq 2.		tance of the zero potential energy in
v_i^* ,	cell volume of the <i>i</i> -th component.		the Lennard-Jones 12-6 potential).
$\bar{v}_{f}^{(i)},$	free volume of a segment of the <i>i</i> -th	$\varphi_{ij}(0),$	interaction potential energy per volume
(1)	component.		v^* between the segments of <i>i</i> -th and
$\overline{v}_{\mathrm{f}k}^{(v)}$,	parameter in eq 11, usually taken as $\frac{1}{2}$		<i>j</i> -in components when they are located
	$v_{\rm f}$ when the nearest neighbor sites	1	at the centers of heatest heighbor sites.
,	<i>are an occupied with segments of the</i>	φ_i ,	component to average molar volume
	π -th component.		n./n
$v_{\rm fm},$	mean mee volume in eq 12.		01/0.

Polymer J., Vol. 3, No. 2, 1972

205

REFERENCES

- 1. T. Nose, Polymer J., 2, 124 (1971).
- 2. T. Nose, Polymer J., 2, 427 (1971).
- 3. T. Nose, Polymer J., 3, 1 (1972).
- I. Prigogine, "The Molecular Theory of Solution," Interscience, Inc., New York, N.Y., 1957.
- P. J. Flory, R. A. Orwell, and A. Vrij, J. Amer. Chem. Soc., 86, 3507 (1964).
- 6. T. L. Hill, "Satistical Mechanics," McGraw-Hill, New York, N.Y., 1956.
- E. A. Guggenheim, Proc. Roy. Soc. (London), A183, 203 (1944–1945).
- 8. P. J. Flory, "Principles of Polymer Chemistry,"

Cornell University Press, Ithca, New York, N.Y., 1953.

- P. J. Flory, J. Amer Chem. Soc., 87, 1833 (1965); A. Abe and P. J. Flory, *ibid.*, 87, 1838 (1965).
- 10. W. Westwater, H. W. Frantz, and J. H. Hildebrand, *Phys. Rev.*, **31**, 135 (1928).
- 11. S. Kitagawa and T. Hata, presented at the 4th Simposium on Adhensives in Japan, Osaka, June 9, 1966; private communication.
- 12. M. Gordon and J. Taylor, J. Appl. Chem. (London), 2, 493 (1952).
- 13. V. E. Jenckel, Kolloid-Z., 130, 89 (1953).
- 14. V. E. Jenckel, Kolloid-Z., 130, 64 (1953).