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ABSTRACT: A theory of elastic (Rayleigh-Debye) light scattering by an isotropic 
system composed of anisotropic units is developed. Each unit is regarded optically as 
a point scatterer with three different principal polarizabilities. No assumption is intro
duced about the radial and orientational distributions for any pair of units. The only 
assumption is the random orientation of the system as a whole with respect to the 
light-scattering framework ("isotropic" system). Theory is formally adapted to infinitely 
dilute solutions of polymers of completely general structure. Detailed calculations are 
carried out for the Porod-Kratky wormlike chain. A method is suggested for deter
mining the parameters of the Porod-Kratky chain through comparison of the theory 
with experimental data on polymer chains of moderate length. Chain-length dependences 
of various terms in expressions for reduced intensities are inferred for general chains 
from those for the Porod-Kratky chain. The correspondence of the Porod-Kratky 
chain with general chains is thereby discussed. A detailed comparison is also made 
of our results for the Porod-Kratky chain and general chains with those for the random 
chain reported by Utiyama and Kurata. 

KEY WORDS Light Scattering / Isotropic System / Anisotropic 
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As is well known Debye1 was the first to 
recognize the potentiality of light-scattering 
methods as a means to determine the molecular 
weight and the average spatial dimension of 
polymer chains in solution and developed a 
theory for linear chains. The model used by 
him is the so-called Gaussian chain; many 
identical units are connected by springs of zero 
rest length and of equal strength. Each unit is 
regarded optically as an isotropic point scatterer. 
Real chains depart from the Gaussian chain in 
many respects. Distribution functions of inter
unit distances deviate from Gaussian distributions 
by the discrete nature of real chains, i.e., fixed 
bond lengths and angles and hindered, internal 
rotations as well as by the excluded-volume 
-effect. Units of a real chain are usually optical-

ly anisotropic, no matter how units are defined; 
bonds, structural units, or Kuhn's segments. 
Numerous treatments have been published which 
are directed to refinement of Debye's theory. 

* Presented at U.S.-Japan Seminar on Statistical 
Mechanics and Spectroscopy of Polymers, Univer
-sity of Massachusetts, Amherst, Mass., U.S.A., 
August 2-6, 1971. 

In this paper we are concerned with the effect 
of the optical anisotropy of units. An important 
contribution toward this direction was already 
made by Utiyama and Kurata, 2 who developed 
a theory for the random chain of optically aniso
tropic random links and found some important 
results (see later). We first develop a theory of 
elastic (Rayleigh-Debye) light scattering by a 
completely general model, i.e., an isotropic 
system composed of anisotropic units. Each 
unit is regarded most generally as a point scat
terer with three different principal polarizabilities. 
No assumption is introduced about the radial 
and orientation distributions for any pair of 
units. The only assumption is the random 
orientation of the system as a whole with respect 
to the light-scattering framework ("isotropic" 
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system), an assumption valid to polymer chains 
in solution unperturbed by external stress of any 
kind. The theory is then applied to general 
polymer chains and the Porod-Kratky wormlike 
chain. The similarity and disparity of results 
for the random chain2 and general chains and 
the Porod-Kratky chain are fully discussed. 

Light scattering by polymer chains in solution 
has much in common with light scattering by 
an isotropic, inhomogeneous solid. 3 Concerning 
the latter problem Goldstein and Michalik4 

developed a very general theory, whose result 
might be usable for the present purpose. Un
fortunately they introduced some simplifying 
assumptions: the axial symmetry of polarizability 
of each unit and an assumption about the ori
entational distribution between two units which 
together spoil complete generality. Stein and 
Wilson5 introduced further some simplifying 
assumptions and thereby obtained results that 
are much more tractable in the analysis of ex
perimental results. The present theory avoids 
all these assumptions and hence some inter
mediate relations of this paper can be regarded 
as the most general solutions for the problem 
of light scattering by an isotropic, inhomogene
ous solid. 

GENERAL THEORY 

Consider a monochromatic light beam which 
travels toward the positive x axis of a laboratory 
coordinate system xyz and is scattered at the 
origin by an isotropic system composed of aniso
tropic units (Figure 1). The incident beam may 
be unpolarized or vertically or horizontally polar
ized with respect to the scattering plane, i.e., 

z,X 

y 

Incident ,< 
Scattered 

Figure 1. 
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the xy plane. Similarly, the unpolarized (total), 
or vertical or horizontal components of scattered 
light are measured in the scattering plane.* The 
scattering system is composed of n units, either 
identical or different, each of which is selected 
so small that it can be regarded as a point scat
terer. Apart from a well-known factor to be 
multiplied (see, e.g., ref 2a, eq 7 and 8) the 
intensity of scattered light is given by 

f=L,<(JJTr;JJ 1)(JJTrjJJ1)exp(ikS•f;3)) ( 1) 
i,i 

where v' and JJ are the unit vectors along the 
electric vectors of incident and scattered beams; 
r; and r i are the polarizability tensors of units. 
i and j (the excess polarizability tensors of units 
of a solute molecule in the case of solution); i 
before k is (-1)112 ; k=2n/J. with J.thewave 
length of light in the medium; s=s; -s8 with 
S; and S8 being the unit vectors along the incident 
and scattered beams; s= Isl =2 sin (0/2) with (j 

the scattering angle; r;3 is the vector from unit 
i to unit j; the superscript T denotes the trans
pose of a vector; the summation on i and j is 
taken over all units; and the averaging is taken 
over all conformations of the system. 

The averaging is carried out in two processes: 
(i) on the external coordinates, i.e., the free 
orientation of the system with a specified con
formation with respect to the xyz system and 
(ii) on the internal coordinates of the system. 

r; can be expressed 

r;=r;iµ;1µT1 +r;2µi2µf2+r;aµiaµfa ( 2} 

where r;1, r;2, and r;a are the three principal 
values of the tensor ri and µi1, µi2, and µi3' 
are the unit vectors along the corresponding 
axes. Substitution of ri and rJ, expressed as in 
eq 2, into eq 1 yields 9n2 terms, which can each 
be written representatively as 

I' =<rr' (v · µ)(v · µ')(v' · µ)(v' ·µ')exp (iks-r)) ( 3), 

* On the occasion of the U.S.-Japan Seminar 
Prof. W. Prins at Syracuse University kindly pointed 
out to the author the importance of the out-of-plane 
scattering, i.e., the scattering outside the xy plane. 
This case appears to be able to treat within the 
framework of the present theory, i.e., by still leav
ing the scattered beam in plane while modifying 
JJ and JJ' properly. We will discuss this problem 
in the near future. 17 
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Separating the two processes of averaging we 
write 

I' =<rr' < )ext)int=(rr' !")int ( 4) 

J" =( )ext=(8ir2)-l (J.1 • µ)(J.1 · µ 1)(.1/ · µ)(J.11 • µ') 

X exp (iks, r) sin 01 d0' d<pd¢ ( 5 ) 

where < )ext and < )int denote the averaging 
on the external and internal coordinates, i.e., 
processes (i) and (ii) above. For a specified 
(internal) conformation the relative spatial dis
position of µ, µ', and r in space is definite, 
and the averaging on the external coordinates 
can be carried out by introduction of the Eulerian 
angles 01 <p<p, as implied in eq 5. The integral 
in eq 5 is of fundamental importance in theories 
of light scattering and is elementary in nature, 
but has never been evaluated (to our best know
ledge) possibly because of its complexity. 

To evaluate I" in eq 5 we introduce two 
right-handed coordinate systems: one is the XYZ 
system fixed to the xyz system and the other 
the X'Y' Z' system fixed to the scattering system. 
The Z axis coincides with s and the X axis 
with the z axis (Figure 1). The XYZ and xyz 
systems are correlated by 

[ ;]=[-c~~(0/2) -si~(0/2) ~][;] (6) 
Z SID (0/2) -COS (0/2) 0 Z 

Let 1.J/ and J.1/ stand for J.1 1 for the vertically 
and horizontally polarized incident beams, and 
J.lv and J.IH for the vertically and horizontally 
polarized scattered beams. J.1/, J.1/, J.lv, and J.IH 
are given in the xyz system by (0 0 If, (0 1 Of, 
(0 0 1 f, and ( -sin 0 cos 0 of, and therefore by 

J.1/=[~], J.1/=[-si:(0/2)], J.lv=[o
0

1
], 

0 -cos(0/2) 

and 

J.IH=[ si:(0/2)1, in the XYZ system ( 7) 

-cos(0/2) 

The Z' axis is chosen to coincide with r and 
the X' and Y' axes are chosen arbitrarily (but, 
of course, so as to constiute a right-handed sys-
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tern), so that r, µ, and µ' are expressed 

in the X'Y' Z' system ( 8 ) 

The X'Y' Z' system is correlated with the XYZ 
system by an orthogonal transformation matrix 
involving the Eulerian angles: (X Y Z)T = 
A(X' Y' zy with 

A=A;,A0,A1 

[cose -sin <p ~][ co~,, 0 ''~''] = si:<p cos <p 1 

0 1 -sin 0' 0 coso' 

[cos¢ -sin¢ : X si:¢ cos¢ ( 9) 

0 

It is unnecessary to describe here the explicit 
geometrical meaning of the Eulerian angles ex
cept to say that the Z and z' axes are chosen 
as the polar axes, i.e., the angle between them 
being 0'. 

With J.1 and J.1 1 expressed in the XYZ system 
(eq 7) while with µ and µ' in the X'Y' Z' system 
(eq 8), I" becomes 

I" =(8ir2)-l (J.IT Aµ)(J.11T Aµ)(J.IT Aµ')(J.l'T Aµ') 

x exp (iksr cos 0 ') sin 0 'd0 'dipd¢ ( 10) 

The integral can in principle be evaluated by 
substituting A in eq 9 into 10, decomposing 
matrices, and performing the integration. This 
method is liable to lead to errors because of 
numerous terms ensuing. We have found a 
more systematic means of achieving this end. 

Expressing the product of the two scalar fac
tors as their direct product and rearranging by 
the direct-product theorem* we obtain6 

* The direct product of the two matrices a= {a;1} 

and b= {b;1) is defined as 

axb~ [ :!:: ;: : : : 
The important theorem of direct product needed 
below is 
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(vT Aµ)(1/T Aµ)=(vT Al"A0 ,A¢µ) X (v'T Al"A0 ,A¢µ) 

=(vr xv'r)(AI" xAl")(Ao, xAo,)(A¢ xA1')(µ xµ) 

(11) 

where X denotes the direct product of two 
matrices.* The motivation for this procedure is 
to partition the same matrices into the same 
factors. 6 The size of matrices in eq 11 can be 
reduced from 9 X 9 to 6 X 6 by utilizing the fact 
that these are written in the form of self-direct
products. Referring for the method elsewhere, 6 • 7 

we obtain 

and s in the brackets as subscripts and c0 , and 
s0 , are the abbreviations of cos 0' and sin 0', and 
similarly with <p and ¢. Similarly we obtain 

(vT Aµ')(v'T Aµ') =YBl"B0,B¢x' (17) 

x'=(xi' xz' xa' x,' xs' x/f 
=(µ/2, µ/µ/, µ/µ/, p/2, p/µ/, Pa' 2f (18) 

Thus we have 

(vT Aµ)(v'T Aµ)(vT Aµ')(v'T Aµ') 

=(yBl"B0 •B¢x) X (yBl"B0 ,B¢x') 

=(YXY)(BI" xBl")(B0, xB0,)(B¢ XB¢)(xxx) (19) 

with 
(12) The size of matrices in eq 19 can similarly be 

reduced from 36x36 to 2lx21: 

Y=(Y1 Y2 Ya Y 4 Ys YG) 
=(i;1i;/, 1)11)/ +1)21)i', i;1i;a' +i;ai;/, I 

V2lJ2 , 

+i;ai;z', i;ai;a') 

X=(X1 X2 Xa X4 X5 XG)T 

=(µ/, µ1µ2, µ1µ3, µ/, µ2µ3, µ/f 
c2 -2cs 0 s2 0 0 

cs c2-s2 0 -cs 0 0 

0 0 C 0 -s 0 
Bl" or B¢= s2 2cs 0 c2 0 0 

0 0 s 0 C 0 

0 0 0 0 0 

c2 0 2cs 0 0 s2 

0 C 0 0 s 0 

-cs 0 c2-s2 0 0 cs 
Bo,= 

0 0 0 1 0 0 

0 -s 0 0 C 0 

s2 0 -2cs 0 0 c2 
0' 

I 1)21)3 

( 13) 

(14) 

<p or¢ 
( 15) 

( 16) 

(vTAµ)(v'T Aµ)(vT Aµ')(v'T Aµ') 

=(y/, Y1Y2,· · .,y/) 
X Dl"Do,D¢(x1xi', x1xz' +x2xi', .. . , xGx/f (20) 

The matrices DI" (or D¢) and D0 ,, are shown in 
Tables I and II, together with the row and 
column vectors, due to limitations of space. 
Upon substitution of eq 20 into eq 10 and inte
gration on <p and ¢, the 12 rows and columns 
out of 21 in DI" and D¢ become zero, as is 
apparent from Table I (the nonvanishing 
rows and columns are indicated by asterisk). 
Therefore, the corresponding rows and columns 
of D0 , also become zero. Some of the non
vanishing rows and columns of DI" and D¢ are 
identical (of course after integration); those cor
responding to y/ vs. y/, y 1y 6 vs. y4y6, and y/ 
vs. y/, and similarly those corresponding to 
x1xi' vs. x4x,', x6xi' +x1x,' vs. x6x,' +x4x/, and 
x3xa' vs. x5x/. This fact permits further reduc
tion in the size of matrices. Thus deleting the 
vanishing rows and columns and then condensing 

where the subscript 0' is implied to apply to c the ensuing matrices we find 

I" 1 i IT[3 2 2 2 3 2 2 6 2 2 = 128 Jo Yi+ :Y1Y4+Y2 + Y4, Yi+ Y1Y4-Y2 +Y4, 

4(y/-2y1y4+y22+y/), 4(y/+y/), Sy/] 
l +c4 0 c2s2 0 4c2s2 s4 

O c2 s2 0 0 0 

2c2s2 s2 c4 +s4 +c2 0 -8c2s2 2c2s2 
X c2 s2 0 0 0 0 

c2s2 0 -c2s2 s2 (c2-s2)2+c2 c2s2 

s4 0 c2s2 0 4c2s2 c4 O' 

X exp (iksr cos 0') sin 0' dB' 

70 

3x1xi' +x4xi' +x1x,' +4x2xz' +3x4x,' 
2x1xi' +6(x,xi' +x1x,')-8x2X21 +2x,x,' 

4(x6xi' +x1x/ +x6x,' +x,x/) 

x1xi' -x4xi' -xix.' +4x2xz' +x4x,' 
4(x3xa' +xsxs') 

8x6x/ 
(21) 
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Going back from y to 1J and from x to µ and 
grouping the same powers of cos()' we obtain 

l" =(128f1~: V(Q0 +Q1 cos2 ()' +Q2 cos4 0')U 

x exp (ikrs cos 0') sin()' d()' (22) 

where 

V=[l, J.J/+J.J/2, J.J/J.J/2, (1J·1J')2, (1J·1J 1)J.J3 J.J/] (23) 

U=[l, µ/+µ/2, µ/µ/2, (µ·µ')2, (µ·µ')µ3µ/f 

(24) 

1 -5 3 2 '] 9 -15 6 -12 Q.~[ 105 6 -60 

4 -8 

sym 48 

[-10 
18 -30 12 

-Ml -42 150 -12 -24 

Q1= -1050 -60 600 

-8 48 

sym -384 

1 -5 35 2 

-W] 25 -175 -10 100 Q,~[ 1225 70 -700 

4 -40 

sym 400 

Upon integration we have 

I''= (64)-1V(Q0F0 +Q1F1 +Q2F2)U 

where 

' oo 2k 
Fo= smz = I: (-ll--z __ 

Z k=O (2k+l) ! 

F1= -- 3 smz+~-2~ ( 1 2) . 2 cos z 
z z z 

oo z2k 

= ~o (-l)k (2k) ! (2 

(25) 

(26) 

(27) 

(28) 

(29) 

(31) 

with z=ksr. I" is symmetric with respect to 1J 

and 1J' and µ and µ' as it should be from eq 
10. 
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We proceed to substitute I" into eq 4 and 
sum I' first on the respective three eigenvalues 
of the polarizabilities of units i (unprimed) and 
j (primed). Upon this summation, the first term 
unity in U leads to (r1 +r2+r3)(ri' +r/ +ra')= 
(Tr r)(Tr r'), where Tr denotes the trace of a 
tensor; µ/+µ/ 2 to (r1µ~s+r2µis+raµ;s)(ri' +r/ 
+ra')+a similar term=r-2[(rTrr)(Trr')+(rTr'r) 
(Trr)]; µ/µa' 2 to r-vTrr)(rTr'r); (µ·µ')2 to 
I:rkr/(µk·µ/)2=Trrr'; and (µ·µ')µ3µa' to 
I:rkri' (µk 'µ/)µk3µ[a=r- 2rT rr'r. Some of these 
relations were established with the X'Y'Z' sys
tem, but they are invariant to a coordinate 
transformation and hence valid in any coordinate 
system. Thus we reach 

1=(64)-1I:<[V(Q0F0 +Q1F1 +Q2F2)U'];;) (32) 
i ,j 

where 

(33) 

The subscript ij in eq 32 implies the following 
substitutions to be made: r and r' in U' tor;, 
and r;, respectively, r in U' to r;; and r in U' 
and F's to r;;, This notation, introduced to 
simplify expressions, will be used throughout 
this paper. The average in eq 32 refers to the 
intrasystem average; the subscript int is hereafter 
omitted for brevity. 

V's for the four combinations of vertically 
and horizontally polarized incident and scattered 
beams are given, according to eq 7 and 23, by 

Vvv=(l O O 1 0) (34) 

V vh = V Hv = [l, ½(l +cos 0), 0, 0, O] (35) 

VHh=[l, 1 +cos(), ¼(I +cos 0)2, cos2 (), 

½(1 +cos 0) cos 0] (36) 

where the first, capital subscript refers to the 
polarization of scattered beam, and the second, 
small subscript to that of incident beam (the 
same holds for I and R below). 

Substituting eq 34-36 into eq 32 and decom
posing matrices we obtain 
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lvv=(64f1I:<[(3Fo+2F1 +3F2)[(Tr r)(Tr r')+2Tr rr1]+(F0 +6F1-15F2)[(Tr r)rTr'r 
i,j 

+ (Tr r')rT rr+4rT rr' r]r - 2 + 3(3Fo- 30F1 + 35F2)(rT rr)(rT r' r)r - 4];;) 

lvh=lHv=(128)-1l:<[-(3F0 +2F1 +3F2)(Tr r)(Tr r')-(F0 +6F1 -15F2) 
i,j 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 -3(3Fo-30F1 +35F2)(rT rr)(rTr'r)r-4 

+2(5F0 +6F1-3F2)Tr rr' + 12(F0-6F1 +5F2 )(rTrr'r)r-2 

+{-(5F0 - l8F1 +5F2)(Tr r)(Tr r')+(9F0 -42F1 +25F2) 

X [(Tr r)rTr'r+(Tr r')rTrr]r-2-5(3Fo-30F1 +35F2)(rT rr)(rTr'rV 4 

+ 2(3Fo- 6F1 - 5F2)Tr rr' -4(3Fo +6F1 - 25F2)(rT rr' r)r - 2} cos 0];;) 

/Hh=(256)-1I;<[(-13F0 +2F1 + 19F2)(Tr r)(Tr r 1)+(F0 +54F1 -95F2) 
i,j 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 + 19(3Fo-30F1 +35F2)(rT rr)(rT r'r)r- 4 

+2(19F0 -30F1 +19F2)Tr rr' -4(15F0 -102F1 +95F2)(rTrr'r)r-2 

+{2(5F0 -l8F1 +5F2)(Tr r)(Tr r')-2(9F0 -42F1 +25F2) 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 + 10(3Fo-30F1 +35F2)(rT rr)(rT r'r)r-4 

+4(5Fo-18F1 +5F2)Tr rr' -8(9Fo-42F1 +25F2)(rTrr'r)r-2 } cos 0 

+{(35F0 -30F1 +3F2)(Tr r)(Tr r')-3(5F0-l8F1 +5F2) 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 +3(3Fo-30F1 +35F2)(rT rr)(rT r'r)r- 4 

+2(3Fo+2F1 +3F2)Tr rr' +4(Fo+6F1 -15F2)(rTrr'r)r-2} COS2 0];;) 

(37) 

(38) 

(39) 

The complexity of these expressions will be com
pensated in part by their exactness. For an 
isotropic, inhomogeneous solid in which the 
mutual spatial dispositions of all units are defi
nite, the averaging is taken over all pairs of 
units, the summation over i and j being thereby 
avoided. 3- 5 

isotropic units it is convenient to write 

lvv=lvv(iso)+lvv(aniso) (43) 

lVh=lHv=lVh(aniso)=lHv(aniso) (44) 

/Hh=/Hh(iso)+/Hh(aniso) (45) 

where /(aniso) is the contribution from aniso
tropic parts of polarizability of units (anisotropic 
scattering) and /(iso), given by eq 40-42, is the 
isotropic counterpart (isotropic scattering). /(iso) 
is the intensity which we would have if every 
unit were isotropic, having the mean polari
zability j';=¼ Tr r;. 

Consider a special case where every unit is opti
cally isotropic, i.e., r; 1=r;2=r;a- In this case rTrr 
reduces to ¼r2 Tr r; Tr rr' to ¼(Tr r)(Tr r'); rT rr'r 
to tr\Tr r)(Tr r'). Hence lvv, etc., reduce to 

lvv(iso)=9-1 I;([Fo(Tr r)(Tr r 1)];1) (40) 
i,j 

/Vh(iso)=lHv(iso)=0 (41) 

/Hh(iso)=9-1I:<[F0(Tr r)(Tr r')];1) cos2 0 (42) 
i,j 

These are Debye's results.1 For the case of an-

For most models of interest the averages in 
eq 37-39 are difficult to calculate, but often 
become amenable when F's are expanded in 
in power series in z=ksr. Substituting eq 29-31 
into eq 32 we have 

l=2-1I; £ <[(-1)"[(2k+l) ! (2k+3)(2k+5)r\ksr)2"VW1cV1];1) (46) 

with 

72 

i,j k=O 

W1c=[-(k2+3k+l) 

sym 

k(k+3) k(k-1) 

-k(k+5) -Sk(k-1) 

35k(k-l) 

2k2+6k+3 

-2k(k+2) 

2k(k-l) 

1 

-4k(k+2) l 
2k(4k+5) 

-20k(k-l) 

4k 

4k(2k-5) 

(47) 
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lvv, etc., in series form can be obtained by sub- ment in the usual manner8 

stituting eq 34-36 into eq 46. j=(n0cV/2rrN)(dn/dc)=(n0M/2rrNA)(dn/dc) (49) 

GENERAL POLYMER CHAINS we find for the reduced intensity R 

In this section we consider light scattering by 
a polymer solution which is assumed so dilute 
that interactions between polymer chains are 
negligible; that is, we consider substantially 
single-chain scattering. 

R=KcMj-21 (50) 

K=( 4rr2n// J.4NA)( dn/dc)2 (51) 

Regarding 
n 

r=¼ Tr r=¼ I: Tr ri (48) 
i=l 

as the excess polarizability of a polymer chain 
and correlating it with the refractive index incre-

where N is the number of polymer molecules in 
the scattering volume V; c is the concentration 
in g/cc; Mis the molecular weight of a polymer; 
n0 is the refractive index of a solvent; NA is the 
Avogadro number; and dn/dc is the refractive 
index increment of a polymer. Separating the 
isotropic and anisotropic parts of scattering and 
expanding only the latter in a series we obtain 

Rvv=KcMj-2[J2-/a(sk)2 + · · · + I:<[rr' Fo]ij)] 
i,j 

RVh=Rr1v=KcMr2[¾/2-/4(sk)2-/6(sk)2 cos 0+ · · ·] 
Rr1h =KcMj-2{¾f2-f6(sk) 2 - f 7(sk)2 cos 0 + · · · +[¼/2-/s(sk)2 + · · · + I:<[rr' Fo)]ij)] cos2 0} 

i,j 

2 I I 2 , , I 2 3 2 2> 2 •2 J2=-I:<[3Trrr-(Trr)(Trr)]ij>=-I:<[Trrr]ij>=-< Trr-(Trr) =-<Trr> 
45 i,j 15 i,j 45 15 

/s=-1- I: <[-jr2(Tr r)(Tr r')-(Tr r)rTr'r-(Tr r')rTrr+6r2 Tr rr' -4rTrr'r]ij> 
105i<j 

1 T•I IT• 62T ,,, 4T'''] > =~I:<[-77(r r r)-7j (r rr)+ r r rr - r rr r ij 
105i<j 

/4=-1- I: <[-3r2(Tr r)(Tr r')+(Tr r)rTr'r+(Tr r')rTrr+Sr2 Tr rr' -3rTrr'r]ij> 
210 i<j 

=-1-r: <[Sr" Tr rr' -3rTrr'r];j) 
210i<j 

/5=-1- I: <[2r2(Tr r)(Tr r')-3(Tr r)rTr'r-3(Tr r')rTrr-3r2 Tr rr' +9rT rr'r];}) 
210 i<j 

=-1-I: <[-3r2 Tr rr' +9rTrr'r];}) 
210i<} 

/s=-1-r: <[-r2(Tr r)(Tr r')-2(Tr r)rTr'r-2(Tr r')rTrr+5r2 Tr rr' +6rTrr'r];j) 
210 i<i 

=-1- I: <[5r2 Tr rr' +6rTrr'r];}) 
210 i<j 

=-1-I; <[2lj(rTf,'r)+21j'(rTf'r)-4r2 Tr 7'r 1 +12rT7'7' 1f];i) 
210i<} 

/s=-1- I:<[- ~r2(Tr r)(Tr r')+3(Tr r)rTr'r+3(Tr r')rTrr+3r2 Tr rr' -2rTrr'r]ii> 
210 i<j 9 

=-1-I; <[7j(rTf,'r)+ 7j'(rTf'r)+3r2 Tr rr'-2rTfr'r]i}) 
210i<j 
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(53} 

(54} 

(55) 

(56) 

(57), 

(58) 

(59) 

(60) 

(61) 
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Here fi=¼ Tr Ti and r is the traceless part of T, 
i.e., Ti=Ti-fiEa, E3 being the unit matrix of 
order 3. The / 2 term, related to the optical aniso
tropy J(Trj-2), has been well known in connection 
with the depolarization ratio in the Rayleigh
Debye9 and Raman scattering. The other f 
terms are new. For the random chain all the 
J and higher [in (sk)2] terms except for /2 vanish. 

All f are calculable for any model of polymer 
chains, either hypothetical or realistic, under the 
assumption of the absence of the excluded 
volume. It seems impossible, however, to deter
mine these /, except for / 2, from experimental 
data of R, the unknowns being too many com
pared with the observables. In this paper we 
calculate the f for the Porod-Kratky chain. 
Methods of ad justing this model chain to a real 
chain are by no means unique, and hence so is 
the relation of the parameters of this model 
chain with structures of a real chain.10·11 How
ever we expect this model chain to predict at 
least the correct chain-length dependences off 
for a real chain. 

POROD-KRATKY CHAIN 

The problem of light scattering by the Porod
Kratky chain12 composed of anisotropic units 
was formulated first by Hermans and Ullman.13 
However, their theory was not carried through 
far enough to be usable for analysis of experi
mental data. An unpleasant assumption con
cerning the optical anisotropy of units was intro
duced, which will severely limit the applicability 
of the theory (see later). Methods explored by 
them for obtaining various averages are powerful 
and sufficiently general for the present purpose, 
and we will make full use of them in this paper. 

Consider the Porod-Kratky chain of contour 
length t and persistent length a. For its optical 
property we assume that the chain has, per unit 
length, the three principal polarizabilities, a1 
along the contour and a 2 along the two direc
tions perpendicular to the contour, i.e., we 
assume the cylindrical symmetry a3=a2. A lower 
symmetry a3 * a2 is not practical for this model. 
Units i and j are regarded as referring to the 
increments di and dj of the chain, which depart 
by the contour lengths i and j from one end. 

The polarizability tensor Ti of unit i (but per 
unit length) can be expressed 

74 

Ti=(a1 -a2)µiµl +a2Ea 

=Jaµiµl +(a-¼Ja)Ea (62) 

where µi is the unit vector along the contour 
of unit i; a=¼(a1 +2a2) and Ja=a1-a2 are the 
mean and anisotropic polarizabilities per unit 
length of the chain. We immediately have 

ri; T Tiri;=Ja(ri; · µi)2 +(a-¼Ja)ri; (63) 

Tr TiT;=(Ja) 2(µi · µ 3)2 +3a2-¼(Ja)2 (64) 

rJ TiT 3ri3=(Ja)2(rii · µi)(rii · µ 3)(µi · µ;) 

+Ja(a-¼Ja)[(rii · µi) 2 +(rii · µi) 2] 

+(a-¼Ja) 2ri/ (65) 

From eq 55-61 and 63-65 it is clear that we 
need the following averages: (ri/), <(µi · µ 3)2), 
<(rwµi)2) [or equivalently <(rwµ;)2)], (rf3(µi· 
µ 3)2), and <(rwµi)(rwµ 3)(µi·µ 3)). For the 
Porod-Kratky chain these averages do not 
depend on where on the chain the pair of units 
i and j is selected if j-i is kept constant. There
fore it suffices to calculate these averages for the 
two terminal units, i.e., i=O and j=t. We 
omit the subscript to r, now r being the end-to
end vector. All the required averages can be 
cast into 

Uklmn=(7J!)=(rk(r · µoi(r · µt)m(µo · µt)"') (66) 

Hermans and Ullman 13 developed a method 
for calculating averages like eq 66 for the Porod
Kratky chain in the absence of the excluded
volume effect. They treated simpler averages of 
the form (rk(r. µt) ""') a special case of eq 66, but 
their method is applicable to more complex 
averages in eq 66. We follow their method 
exactly. 

The first step of Hermans and Ulllman's theory 
is to derive a differential equation for a distribu
tion function /(r, µt, t) for one end (with t=t) 
when the other end (with t=O) is at the origin 
of a cartesian coordinate system xyz and has the 
initial tangent µ 0 • The derived differential equ
ation is insoluble exactly, but the required 
averages can still be obtained by utilizing it in 
the following manner. The differential equation 
for /(r, µt, t) is converted to that for its dimen
sionless Laplace transform with respect to t: 

J' =J' (r, µt, p)=Lct1[/(r, µt, t)] 

=p[f(r, µt, i)e-tpdt (67) 
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that is, 

(68) 

where A=(2af1, gradr=(a/ax, a;ay, a;azf, and 

/7 =--- sm(}- +---2 1 a ( . a ) 1 a2 

sin(} a0 a0 sin 2 (} a<p2 

with µt=(cos (}, sin(} cos <p, sin(} sin <pf, (these 
(} and <p should not be confused with those 
defined previously, i.e., the scattering angle and 
one of the Eulerian angles; similarly ,1 in eq 68 
should not be confused with the wave length of 
light). It is to be noted that the dimensionless 
Laplace transform defined in eq 67 differs from 
the ordinary Laplace transform 

Lod[/(r, µt, t)]= [f(r, µt, t)e-tpdt 

=p-lf' 

We find immediately 

f =L;;-l[f']=L~J[p-1 J'] 

(69) 

(70) 

Multiplication of 1Jf in eq 66 to eq 68 and inte
gration over the entire r, µt space yield 

p(1Jf)1 -p1ff o=<µt · grad,1Jf)1 +,1</721/f)' (71) 

where 1Jf O is the value of 1Jf at the origin and 
the primed averages refer to those in the p space, 
i.e., < )'=Ld1[( )]. Similarly let u£zmn= 
Ld1[uklmn]- Repetitive use of eq 71 with proper 
1Jf leads, after some lengthy but straightforward 
calculations (see ref 13) to: 

(p+2,1)u6010= 1 

pu~ooo = 2U6010 

(p+6,1)U6002=p+2,1 

(p + 2,1 )U6101 = U6002 

(p + l2,1)U6012= U6002 + 2AU6010 +4AU6101 

(p + 6,1)ufoo2 = 2U6012 + 2,1u~ooo 

pu6200 = 2U6101 

(p+6,1)u6m =U6101 +u6012+2AU6200 

Solving these relations we obtained 

We reach 

(72) 

(73) 

(74) 

Uo2oo=<(r·µo)) =- ~---I 21 1(1 1) 
3,1 p p+6,1 

(75) 

1 (5 6 5 4 ) 
=-15-,1 p __ p_+_2_,1 +-p-+_6_,1 --p-+-12-,1 

(76) 

(77) 

Laplace inversion, i.e., Lctf[u£zmn] = L~J 
· [p- 1u~zmn] yields the required Ukzmn· Inversion 
at this point is not wise. 13 All u are followed 
by the following integration 

l(t)= Bu(j-i)didj= ~:iu(t-i)di (78) 

i<j 

Note that the above integral is of the so-called 
convolution type. Remembering that the ordinary 
Laplace transform of a convolution integral is 
the product of those of the constituent functions 
we find 

p-1Ld1[ l(t)] =Loct[ l(t)] =Loct[t]Loct[ u(t)] 

=p-2Loa[u(t)]=p-3Lai[u(t)]=p-3u' (79) 

where L0d[t]=p-2 is used. Therefore we have 

Lct1[I(t)]=p-2u' 

or 

/(t)=Lctf(p-2u')=L~J(p-3u') (80) 

Namely, a number of calculations are reduced 
by inversion of p- 2u' to obtain directly I(t), 
instead of inversion of u' followed by integration 
in eq 78. The remaining calculations are still 
lengthy but elementary in nature. We simply 
mention the theorem 

(81) 

R M{ 8 -1 2 4 2 k 2 [ 1 k 2 ]} vv=Kc 135 x •ll2+ 135 as(s )us+···+ 1- 9 at(s )U1+··· (82) 
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R R { 2 -1 2 11 -1 2 k 2 1 -1 2 k 2 } Vh= Hv=KcM 45x s U2 - 5670 ax s (s ) U4 - 630 ax s (cos 0)(s ) Us+··· (83) 

Hh=.n.c -x s U2---x s (s ) Us+···- -a s(s ) U7 + · · · cos{) R V M{ 2 -1 2 2 -1 2 k 2 ( 2 2 k 2 ) 
45 567 45 

( 2 -1 2 2 2 k 2 [ 1 k 2 ]) 2 } + 135x su2-135as(s )us+···+ 1-9at(s )u1+··· cos{) (84) 

U1(X)=l-~ + j 2 --; +-;e-x 
X X X X 

(85) 

( ) 1 1 1 -3x 
U2X= --+-e 

3x 3x 
(86) 

g 3(x, s)=l-__±__(42+s)_!__ + - 1-(1638 + 51s)~- - 1-(30+s)~e-x +-1-(42+5s)~e-3" 
63 X 567 X 10 X 378 X 

1 c -3x 1 c -6x ---e ----e 
63 X 315 x2 

(87) 

( ) 1 97 1 + 189 1 -x 19 1 -3x 1 -3x 13 1 -6x 
U4 X= --- ---e ---e +-e +---e 

66 X 110 X 66 X 11 330 X 
(88) 

Us(X)= 1-~ _!__ + E..__!__e-x - _!__ _!__e-3x - _!__e-3x + _1 _ _!__e-sx 
54 X 10 X 2 X 3 90 X 

(89) 

Us(X)= 1-~ _!__+ 189 _!__e-x -~ _!__e-ax __ l_e-ax + -3_ _!__e-Gx 
15 X 100 X 60 X 10 75 X 

(90) 

g7(x s)=l--1-(56-s)_!__+-1-(1092 -29s)_!__- - 1-(30-s)_!__e-x +-1-(14-3s)_!__e-ax 
' 21 x 378 x 2 10 x 2 126 x2 

- _1_ !_e -3x + _1 - !_e -6x 

63 X 1890 x2 
(91) 

Us(X s)=l--1-(168-2s)_!__+ - 1-(1092- 17s)_!__ - - 1-(60-s)_!__e-x +-1-(84-5s)_!__e-ax 
' 63 x 378 x2 20 x2 756 x2 

+ I c -3x I c -6x 

126 ~e + 630 x2e 
(92) 

with 

x=2J.t=t/a and s='1o:/a (93) 

The series in the square brackets in eq 82 and 84 is the isotropic-scattering term. Hermans and 
Ullman13 neglected terms in s2 regarded as small compared with those in s, i.e., assuming Isl« I. 
This assumption will not necessarily be valid; a large negative value of s is expected for poly
styrene and its derivatives. 

Expansion of u into Taylor series in x yields expressions for R which are useful for somewhat 
flexible rods. (The case of rigid rods was treated by Horn, Benoit, and Oster. 14) On the other 
hand, for long, flexible chains we obtain 

vv=KcM +--x s --at 1----- (s) R [ 1 8 -l 2 I ( 3 4 c ) k 2] 
135 9 X 15 X 

(94) 

(95) 

Hh=A'-C -x s --a s(sk) cos{)+ 1 +--x s --at - -+-- (s ) cos {) R v M{ 2 -1 2 2 2 2 [ 2 · -1 2 1 (1 3 2 c ) k 2] 2 } 
45 45 135 9 X 15 X 

(96) 
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In obtaining eq 94-96 we truncated the series at (sk)2 and still ignored many terms higher in t-1 

than t-1 with respect to (sk) 0 terms and than unity with respect to (sk) 2 terms. Eq 96 can be 
rearranged to 

~---- (cos0) - +--- cos0 (s) [( RHh 2 c2
) -1 (l 2 °2

) ] k -2 

KcM 45 x 135 x 

(97) 

We can determine the parameters of the Porod-Kratky chain from experimental data of R at 
low angles on polymer chains of moderate length by using eq 94, 95, and 97, in the following way. 
First, Mx-1.2 is determined from RVh=RHv or RHh (rr/2), the latter being RHh at 0=rr/2. Second, 
Mand x-1•2 are determined from Mx- 1.2 and the intercept in the plot of Rvv (or equivalently R;~) 
against (sk)2. The slope in this plot gives 

at( 1- 2-_ __±_ _:__) 
X 15 X 

Plot of the left-hand side of eq 97 against sin2 (0/2) yields 

at 1--+--( 3 8 c ) 
x 15 X 

and at 1--+--( 3 2 c ) 
x 15 X 

as its intercept and slope. [Note added in proof: the slope may be influenced by the neglected (sk)4 
term, but the intercept is not. See ref 17 soon to appear.] From either pair of two relations out 
of the three we can obtain at(l-3x-1) and atsx-1 (of course if the latter is not negligibly small 
-compared with the former). Let us define 

C1 = : , C2 = at( 1 - ! ) , and (98) 

If C1 and C3 are sufficiently accurate, being significantly different from zero, we can solve eq 98 to 
obtain 

at=½[C2+(C22 +12c1-1C/)112] 

x=3[1-(at)- 1C2r 1 

s=3C3(at-C2f 1 

We can use at and x=t/a to separate a and t. We can split Lia from 
-combined with r=at. Thus all the parameters can be determined. 

(99) 

(100) 

(101) 

s=Lla/a by using eq 49 

The reciprocal intensities can equally be used to the same end: 

Kc =_!__[ 1 +_!__( 1_2_ _ __±__:__)(sk)2] 
Rvv M l+-8-~ 9 x 15 x 

135 X 

(941) 

[ 
KcM 1 l -1 k -2 l (l 3 8 z ) --- 2 2 (cos0) (s) =-at --+--
RHh ~_:__+(t+-2 _ _:__)cos20 9 x 15 x 

45 X 135 X 

2 ( 3 2.)·28 
-9at 1- x+ 15x sm 2 (971 ) 

If C1 =C3 =O or C1:=O and C3 :=O, the relations eq 99-101 are invalid or subject to great un
-certainty. In these cases the only obtainable information is C2 or three times the radius of gyration. 
It is imposible to separate a and t from data on one sample. (The chain-length dependence of 
C 2 should permit this.) Thus light scattering gives more information on chain conformations for 
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Table I. DI' (or D¢) and the row and 

* * * * 
Y12 Y1Y2 Y1Y3 Y1Y4 Y1Ys Y1Y6 Y22 Y2Y3 Y2Y4 Y2Ys Y2Y6 

c4 -2c3s 0 c2s2 0 0 4c2s2 0 -2cs3 0 0 
2 2c3s c2(c2-3s2) 0 -cs(c2-s2) 0 0 -4cs(c2-s2) 0 s2(3c2-s2) 0 0 
3 0 0 c3 0 -c2s 0 0 -2c2s 0 2cs2 0 
4 2c2s2 2cs(c2-s2) 0 c4+s4 0 0 -8c2s2 0 -2cs(c2-s2) 0 0 
5 0 0 c2s 0 c3 0 0 -2cs2 0 -2c2s 0 
6 0 0 0 0 0 c2 0 0 0 0 -2cs 
7 c2s2 cs(c2-s2) 0 -c2s2 0 0 (c2-s2)2 0 -cs(c2-s2) 0 0 
8 0 0 c2s 0 -cs2 0 0 c(c2-s2) 0 -s(c2-s2) 0 
9 2cs3 s2(3c2-s2) 0 cs(c2-s2) 0 0 4cs(c2-s2) 0 c2(c2-3s2) 0 0 

10 0 0 cs2 0 c2s 0 0 s(c2-s2) 0 c(c2-s2) 0 
11 0 0 0 0 0 cs 0 0 0 0 c2-s2 
12 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 cs2 0 -s3 0 0 2c2s 0 -2cs2 0 
14 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 
16 s4 2cs3 0 c2s2 0 0 4c2s2 0 2c3s 0 0 
17 0 0 s3 0 cs2 0 0 2cs2 0 2c2s 0 
18 0 0 0 0 0 s2 0 0 0 0 2cs 
19 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 10 11 

.. c and s stand for cos <p and sin 'P· The nonvanishing (after integration) rows and columns are indicated 

Table II. 

* * * * 1 2 3 4 5 6 7 8 9 10 11 

* 1 c4 0 2c3s 0 0 c2s2 0 0 0 0 0 
2 0 c3 0 0 c2s 0 0 2c2s 0 0 cs2 
3 -2c3s 0 c2(c2-3s2) 0 0 cs(c2-s2) 0 0 0 0 0 

* 4 0 0 0 c2 0 0 0 0 0 0 0 
5 0 -c2s 0 0 c3 0 0 -2cs2 0 0 -s3 

* 6 2c2s2 0 - 2cs( c2- s2) 0 0 c4+s4 0 0 0 0 0 
* 7 0 0 0 0 0 0 c2 0 0 cs 0 

8 0 -c2s 0 0 -cs2 0 0 c(c2-s2) 0 0 c2s 
9 0 0 0 0 0 0 0 0 C 0 0 

10 0 0 0 0 0 0 -2cs 0 0 c2-s2 0 
11 0 cs2 0 0 s3 0 0 -2c2s 0 0 c3 

*12 c2s2 0 -cs(c2-s2) 0 0 -c2s2 0 0 0 0 0 
13 0 0 0 -cs 0 0 0 0 0 0 0 
14 0 cs2 0 0 -c2s 0 0 -s(c2-s2) 0 0 -cs2 

15 -2cs3 0 s2(3c2-s2) 0 0 -cs(c2-s2) 0 0 0 0 0 
*16 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 -s 0 0 
*18 0 0 0 s2 0 0 0 0 0 0 0 
*19 0 0 0 0 0 0 s2 0 0 -cs 0 
20 0 -s3 0 0 cs2 0 0 2cs2 0 0 -c2s 

*21 s4 0 -2cs3 0 0 c2s2 0 0 0 0 0 

• c and s stand for cos 81 and sin 81 • The nonvanishing rows and columns are indicated by asterisk. 
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column vectors in eq 20. • 

* * * * * y3Z Y3Y4 y3y5 Y3Ys y42 Y4Y5 Y4Ys y52 Y5Ys Ys2 

0 0 0 0 s4 0 0 0 0 0 X1X/ * 
0 0 0 0 -2cs3 0 0 0 0 0 x2x1' +xix/ 
0 cs2 0 0 0 -ss 0 0 0 0 xsx1' +x1xl 
0 0 0 0 2c2s2 0 0 0 0 0 X4X/ +x1xl * 
0 s3 0 0 0 cs2 0 0 0 0 X5X1 1 +x1X51 

0 0 0 0 0 0 sz 0 0 0 XsX1' +x1xs' * 
0 0 0 0 c2s2 0 0 0 0 0 XzX/ * 
0 -c2s 0 0 0 CS2 0 0 0 0 X3X/+x2xl 
0 0 0 0 -2c3s 0 0 0 0 0 X4Xz' +xzxl 
0 -cs2 0 0 0 -c2s 0 0 0 0 X5X/+xzX51 

0 0 0 0 0 0 -cs 0 0 0 xsx/+xzxs' 
cZ 0 -cs 0 0 0 0 sz 0 0 X3X/ * 
0 c3 0 0 0 -c2s 0 0 0 0 X4x/+xaxl 

2cs 0 c2-s2 0 0 0 0 -2cs 0 0 X5X3 1 + X3X51 

0 0 0 C 0 0 0 0 -s 0 Xsxl + X3Xs' 

0 0 0 0 c4 0 0 0 0 0 X4X/ * 
0 e's 0 0 0 c3 0 0 0 0 x5xl+x4x5' 
0 0 0 0 0 0 cz 0 0 0 xsxl +x4Xs' * 
sZ 0 cs 0 0 0 0 cz 0 0 X5X51 * 
0 0 0 s 0 0 0 0 C 0 xsxs' +x5Xs' 

0 0 0 0 0 0 0 0 0 1 XsXG' * 
12 13 14 15 16 17 18 19 20 21 

------------~~-

by asterisk. 

Do, in eq 20. a 

* * * * * 12 13 14 15 16 17 18 19 20 21 

4c'sz 0 0 2cs3 0 0 0 0 0 s4 

0 0 2cs2 0 0 0 0 0 s3 0 
4cs(c2-s2) 0 0 s2(3c2-s2) 0 0 0 0 0 2cs3 

0 2cs 0 0 0 0 sz 0 0 0 
0 0 2c2s 0 0 0 0 0 cs2 0 

-8c2s2 0 0 2cs(c2-s2) 0 0 0 0 0 2c's·' 
0 0 0 0 0 0 0 s' 0 0 
0 0 s(c2-s2) 0 0 0 0 0 cs2 0 
0 0 0 0 0 s 0 0 0 0 
0 0 0 0 0 0 0 2cs 0 0 
0 0 -2cs2 0 0 0 0 0 c2s 0 

(c2-s2)2 0 0 cs(c2-s2) 0 0 0 0 0 czs2 
0 cz-s2 0 0 0 0 cs 0 0 0 
0 0 c(c2-s2) 0 0 0 0 0 c2s 0 

-4cs(c2-s2) 0 0 c2(c2-3s2) 0 0 0 0 0 2c3s 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 C 0 0 0 0 
0 -2cs 0 0 0 0 cz 0 0 0 
0 0 0 0 0 0 0 cz 0 0 
0 0 -2c2s 0 0 0 0 0 cs 0 

4c2s2 0 0 -2c3s 0 0 0 0 0 c4 
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a short (so short that RVh takes an accurate, 
nonzero value) chain composed of anisotropic 
units than for a finite chain of isotropic units 
and for an infinite chain of anisotropic units. 
It is to be noted, however, that for very short 
chains eq 94-96 and the foregoing arguments 
cease to be valid because neglected higher order 
terms in t-1 become significant. 

DISCUSSION 

We first return to the case of linear polymer 
chains of completely general type. We are par
ticularly interested in how the procedure for 
analyzing experimental data, described in the 
preceding section, is to be modified when we 
consider such general chains instead of the 
Porod-Kratky chain. To this end we assume 
that chain-length dependences of / for general 
chains are identical with those for Porod
Kratky chain. 

Comparison of eq 52-54 with eq 82-84 indi
cates immediately 

/rn; /,, /s, /6-n; and /3, /1, /s-n2 (102) 

It follows therefore that 

I: <[r2 Tr rr'];;), I; <[rTrr'r];;)-n (103) 
i<i i<j 

I; <[f(rTfr)+7 1(rT7r)];;)-n2 (104) 
i<j 

The first relation of eq l 02 was confirmed with 
realistic chain models. 9 • 15 ' 16 If only the leading 
terms in / are retained, eq 52-54 can be cast 
into eq 94-96 with the following substitutions 
made: 

.2 CI 9 1· -2<T ,2> -t l = Im nf r r 
X 4n n-= 

(105) 

ats C, 9 1. -2 <[-( r,, ) -'( r, )] ) - -t 3 = Im f I; r f r f +r f rr ij 
X 4 n-00 i<j 

at ( 1- ! )-t C/ =3(G1n-Go) 

with 

(106) 

(107) 

f- 2 I; <[rf'r2];;)=G1n-Go+O(n- 1) (108) 
i<j 

For a polymer chain composed of identical units 
the left-hand side of eq 108 reduces to 
n-2 I;;<; <rL> the radius of gyration. C/ is 
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three times the radius of gyration truncated at 
the term of order unity. Ci', C/, and C/ can 
be determined experimentally, and also are 
amenable to rigorous calculation for realistic 
chain models. 

We proceed to compare the results for the 
Porod-Kratky chain or for more general chains 
with those for the random chain. To this end 
we quote results of Utiyama and Kurata's theory 
for the random chain. 2 They obtained 

Rvv=KcM[4o-2A2MQ(ll)c+P(ll)] (109) 

RVh=RHv=3KcMo (110) 

RHh=KcM{3o +[o-2A2MQ(ll)c+P(ll)] cos2 0} 

(111) 

For infinitely dilute solutions where interchain 
interactions are negligible, eq 109 and 111 sim
plify to 

Rvv=KcM[4o+P(0)] (112) 

RHh=KcM{3o+[a+P(0)] cos2 0} (113) 

a is given by 

B2 
o= 6nA2 (114) 

1 
A=3 (a1 +a2+a3) (115) 

where n is the number of random links in the 
random chain and a 1, a 2 , and a 3 are the three 
principal polarizabilities of each random link. 
A2 is the second virial coefficient, Q(ll) is the 
interchain correlation function, and P(/l) is the 
well-known scattering function, which is expressed 

P(ll)=l-J__<S2)(sk)2+ · · · (117) 
3 

where <S2) is the mean-square radius of gyration. 
From comparison of eq 112, 110, and 113, 

with eq 52-54 and 82-84, we find the follow
ing correspondences exist: 

a 2 •2Y2 1 --2r 1 --2<T ,2) (118) 
...... 135~<--->4r J2=30r rr 

P(/l) <---> [ 1 - -¼-atgi(sk)" + · · ·] 

<---> r- 2 I; ([rr' Po];;) 
id 

(119) 
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Some differences are also apparent. The terms 
involving / 3 , / 7 , / 8 and [ 4 , / 5 , [ 6 for general 
chains do not have their counterparts for the 
random chain. The / 4 , / 5 , and / 6 terms are 
usually negligible, being smaller than the f 3,f7, 

and / 8 terms by a factor of n-1 or t-1, while the 
latter terms are not necessarily negligible. 

Utiyama and Kurata2 suggested a method for 
deducing the mean-square radius of gyration, 
which is free from the influence of anisotropic 
scattering. From eq 112, 113, and 117 we find 

4 
Rvv(0)-3 RHh(rr/2)=KcMP(8) 

=KcM[l --½-<S2)(sk)2 + ·. ·] , 

for the random chain (120) 

Hence plot of the left-hand side (or equivalently 
its reciprocal) against (sk)2 would yield <S2) as 
its slope. On the other hand we have from eq 
94 and 96 

Rvv(8)- : RHh(rr/2)=Kc~ 1 - ¾at 
x(l-~-_i__s__)(sk) 2 + .. ·], 

X 15 X 

for the Porod-Kratky chain (121) 

"By the suggested2 plot, <S2) for the Porod
Kratky chain is overestimated for s < 0. The 
situation is similar for more general chains. 

Apart from this difference the present work 
,confirms many important aspects of Utiyama 
and Kurata's theory. 2 When anisotropic scatter
ing is non-negligible compared with isotropic 
scattering, Mand <S2) (and possibly A2) cannot 
be estimated correctly by the usual plots, limo-o 
Kc/Rvv against c and lim0-o Kc/Rvv against (sk)2, 
and the similar plots for Kc(l +cos2 8)/2Ruu, 
where Ruu is R for unpolarized, incident and 
scattered beams, i.e., Ruu =½(Rvv +2RVh +RHh)• 
The correction for the anisotropic-scattering effect 
by a Cabannes' factor, which is valid for small 
molecules, is not valid any more for polymer 
,chains. The optical anisotropy (3/2)<Tr 72) can
not be obtained from the depolarization ratios 
at B=rr/2 for polymer chains because of the in
fluence of the intrachain interference of light, 
i.e., the presence of the (sk)2 and higher terms. 

In the present treatment we ignored the effect 
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of interchain interactions both optical and 
thermodynamic. We can take these into account 
formally (and approximately) in light of Utiyama 
and Kurata's theory. 2 It seems sufficient to 
add the term -2r2A2MQ(8) just before the 
isotropic-scattering term in eq 52 and 54, and 
similarly in the case of the Porod-Kratky chain. 

GLOSSARY OF PRINCIPAL SYMBOLS 

(Symbols referring to the Porod-Kratky 
chain are grouped at the end) 

A, =½(a1 +a2 +a3), mean polarizability of 
the random link. 

A2, second virial coefficient. 
A=Al'A0,A¢, transformation matrix correlating 

X'Y'Z' with XYZ (eq 9). 
B2 , quantity related to the optical anisotropy 

of the random link (eq 116). 
Bl', B¢, and B0 ,, eq 15 and 16. 
c, concentration in g/cc of polymer. 
C/, C/, and C/, eq 105-107. 
DI', D¢, and D0 ,, eq 20 and Tables I and II. 
F0 , F1, and F2 , eq 29-31. 
[2, /3, · · ·, / 8, eq 55-61. 
/, intensity of scattered light with an obvi

ous factor omitted (eq 1). 
/Hv, etc., I of horizontally polarized scattered 

light for vertically polarized incident 
light, etc. (eq 37-39). 

/Hv (iso), /Hv (aniso), etc., isotropic and aniso-
tropic parts of /Hv, etc., (eq 40-45). 

I' and I", eq 3-5. 
K, eq 51. 
k, =2rr/J. with J. the wavelength of light 

in the scattering medium. 
M, molecular weight of polymer. 
n, number of units in the scattering system 

or 
number of links in the random chain. 

P(O), particle scattering function (eq 117 .) 
Q(O), interchain correlation function. 
Qo, Q1, and Q2, eq 25-27. 
R, reduced intensity or the Rayleigh ratio 

(eq 51). 
RHv, etc., R of horizontally polarized scattered 

light for vertically polarized incident 
light (eq 52-54). 

rii and rii, distance vector from unit i to unit 
j and its magnitude. 

81 



K. NAGAI 

r and r, abbreviation of ri; and rii· 

<S2), mean-square radius of gyration. 
s, =S; -S8 with S; and S8 the unit vectors 

s, 
u, 
U' 
V, ' 

along the incident and scattered lights 
(Figure 1). 
absolute magnitude of s, i.e., 2 sin (0/2). 
eq 24. 
eq 33. 
eq 23. 

VHv, etc., V of horizontally polarized scattered 

wk, 
xyz, 
XYZ, 

light for vertically polarized incident 
light (eq 34-36). 
eq 47. 
laboratory coordinate system (Figure 1). 
laboratory coordinate system dependent 
on O (Figure 1). 

X'Y' Z', rotating coordinate system fixed to the 
scattering system. 

X=(x1 • • ·x6l, eq 14. 
x' =(xi'·· -xs')T, eq 18. 
Y=(Y1 .. ·Ys), eq 13. 

ai, a 2, and a 3, three principal polarizabilities 
of the random link. 

r, polarizability tensor of the total scattering 
system. 

ri, polarizability tensor of unit i. 
Tik, (k=l, 2, 3), three principal values of ri
r and r', abbreviations of Tik and r;i· 
f and f'i, mean (excess) polarizabilities of the 

scattering system and unit i (eq 48 and 
and below eq 61). 

r and Ti, traceless parts of r and ri (below 
eq 61). 

o, eq 114. 
O, scattering angle (Figure 1). 
O' cp<p, Eulerian angles correlating X'Y' Z' with 

XYZ (eq 9). 
µ;k, (k= 1, 2, 3), unit vectors along the prin

cipal axes of r ;. 
µ and µ', abbreviations of µ;k and µ 11 • 

µ=(µ 1 µ2 µ3f andµ'=(µ/µ/ µa'f, expressions 
of µ andµ' in the X'Y'Z' system (eq 8). 

JJ and JJ', unit vectors along the electric vectors 
of scattered and incident lights respec
tively. 

( ) T d I ( I I l)T • 
JJ= ll1 ll2 ll3 an JJ = ll1 ll2 lis , expre~s10ns 

of JJ and JJ 1 in the XYZ system (eq 7). 

I 
'JJv and JJh', JJ 1 for vertically and horizontally 

polarized incident lights (eq 7). 

aT, transpose of a. 
s-r=sTr, scalar product of two vectors. 
Tr r, trace of a tensor, i.e., Tr r=rn +r22+rss· 
axb, direct product of two scalars, vectors, or 

matrices (footnote on p 69). 
< ), external and internal average, or internal 

average. 
< )ext, external average. 
< )int, internal average. 

[ c2 -cs] _ [ cos2 cp -cos cp sin cp] 
cs c2-s2 'P = cos cp sin cp cos2 cp-sin2 cp 

I: <[(Fo +6F1 - l SF2)r-2(rT rr'r)];;) 
i,j 

= I: <[F0(ksri;)+6F1(ksr,1)-15F2(ksri;)] 
i,j 

xr-;/(ri/rir;r;;)) 

Porod-Kratky Chain 

a, persistent length. 
C1, C2, and C3, eq 98. 
f =f(r, µ 1, t), distribution function of rand µ 1• 

J'=f'(r, µ 1,p), dimensionless Laplace trans-
form of /(r, µ 1 , t) (eq 67). 

U1, · · ·, Us, eq 85-92. 
Ld1 and L;;-f, dimensionless Laplace transform 

operator and its inverse operator (eq 67). 
L0d and L;;J, ordinary Laplace transform opera-

tor and its inverse operator (eq. 69). 
p, Laplace transform parameter (eq 67). 
r and r, end-to-end vector and its magnitude. 
t, contour length. 
uklmn=(fJf), eq 66. 
uti,,,.,.=(IJT)', =Ld1[Uklmn]· 
x, =2J.t=t/a. 

a 1 and a 2, longitudinal and transverse polari
zabilities per unit length. 

a and ,:la, mean [a=¼(a1 +2a2)] and anisotropic 
(,:Ja=a1-a2 ) polarizabilities per unit 
length. 

c, =,:la/a, degree of anisotropy of polari
zability per unit length. 

O and cp, polar coordinates of µ 1 • 

µi, tangent at the point that departs by 
length i from one end along the chain 
contour. 

JJv and JJH, JJ for vertically and horizontally )., =1/(2a). 
polarized scattered lights (eq 7). 

82 Polymer J., Vol. 3, No. 1, 1972 



Light Scattering by an Isotropic System Composed of Anisotropic Units 

REFERENCES 

1. P. Debye, J. Appl. Phys., 15, 338 (1944); J. 
Phys. & Colloid Chem., 51, 18 (1947). 

2. (a) H. Utiyama and M. Kurata, Bull. Inst. 
Chem. Res. Kyoto Univ., 42, 128 (1964); (b) H. 

Utiyama, J. Phys. Chem., 69, 4138 (1965). 
3. P. Debye and A. M. Bueche, J. Appl. Phys., 

20, 518 (1949). 
4. M. Goldstein and E. R. Michalik, J. Appl. 

Phys., 26, 1450 (1955). 
5. R. S. Stein and P.R. Wilson, J. Appl. Phys., 

33, 1914 (1962). 
6. K. Nagai, J. Chem. Phys., 38, 924 (1963). 
7. K. Nagai and T. Ishikawa, J. Chem. Phys., 

45, 3128 (1966). 
8. P. J. Flory, "Principles of Polymer Chemistry," 

Cornell Univ. Press, Ithaca, N.Y., 1953, 

Polymer J., Vol. 3, No. 1, 1972 

Chapter VII. 
9. P. J. Flory, "Statistical Mechanics of Chain 

Molecules," Interscience, New York, N.Y., 
1969, Chapter IX. 

10. Ref. 9, Chapter VIII. 
11. H. Maeda, N. Saito, and W. H. Stockmayer, 

Polymer J., 2, 94 (1971). 
12. G. Porod, Monatsh. Chem., 80, 251 (1949); 0. 

Kratky and G. Porod, Rec. Trav. Chim., 68, 
1106 (1949). 

13. J. J. Hermans and R. Ullman, Physica, 18, 951 
(1952). 

14. P. Horn, H. Benoit, and G. Oster, J. Chim. 
Phys., 48, 530 (1951). 

15. R. L. Jernigan and P. J. Flory, J. Chem. Phys., 
47, 1999 (1967). 

16. K. Nagai, J. Chem. Phys., 47, 4690 (1967). 
17. K. Nagai, Polymer J., submitted. 

83 


	Theory of Light Scattering by an Isotropic System Composed of Anisotropic Units with Application to the Porod-Kratky Chain*
	GENERAL THEORY
	GENERAL POLYMER CHAINS
	POROD—KRATKY CHAIN
	DISCUSSION
	GLOSSARY OF PRINCIPAL SYMBOLS
	REFERENCES




