SHORT COMMUNICATION

Laser-Raman Scattering by $(CH_2)_{34}$ in the Low-Frequency Region

Robert F. SCHAUFELE*

Biophysics Department, Michigan State University, East Lansing, Michigan, U.S.A.

Mitsuo Tasumi**

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. (Received May 24, 1971)

KEY WORDS Laser-Raman Scattering / Ring Molecule / C₃₄H₆₈ / Low-frequency Vibration /

In a previous paper¹ we reported the laser-Raman spectrum of the $(CH_2)_{34}$ ring molecule in the region above 130 cm.^{-1} The assignments of the eight bands observed in the region between 130 and 600 cm^{-1} were discussed in terms of the results of a normal-coordinate treatment.

More recently we succeeded in measuring the Raman spectrum of the same compound in the region below 130 cm^{-1} and found several more bands. The observed spectra are shown in Figures 1a and 1b. The measurements were conducted using a Spex grating double monochromator together with d.c. photoelectric detection and the 5145 Å line of an Ar^+ gas laser (about 0.7 watts). Measurements were made to within 9 cm^{-1} of the exciting line. No filters were necessary inasmuch as the technique of focusing the laser beam into an internal cavity of the specimen to maximize the inelastic/elastic scattering intensity ratio was utilized. This technique has been described earlier² and later verified by Schrader³ as being the most efficient geometry for maximizing this ratio. In this particular instance (CH₂)₃₄ was studied in the form of an unpressed powder, contained within

5-mm glass tubing. A scattering cavity was formed merely by pressing the tip of a sharpened match stick into the center of the powder. Figure 2 shows the experimental geometry.

Figure 1. (a), Laser-Raman spectrum of $(CH_2)_{34}$ in the region below 180 cm^{-1} ; (b), spectrum below 70 cm^{-1} under different conditions.

^{*} Present address: Human Biology Laboratories, College of Human Medicine, Michigan State University, East Lansing, Michigan, U.S.A.

^{**} Present address: Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Figure 2. Geometry for scattering experiment.

Table I.	Compariso	on of the	observed	and
calcul	ated freque	encies of	(CH ₂) ₃₄ in	ı
ť	he region h	below 180) cm ⁻¹	

Obsd Raman frequency, cm ⁻¹	Calcd frequency ^a , cm ⁻¹	
13	13 (v16)	
21	21 (ν_{15})	
40	42 (ν_{30})	
66	53 (v ₂₉)	
77	68 (v ₁₃)	
100	94 (v ₁₂)	
123	120 (ν_{11})	
147	145 (ν_{10})	

^a Calculated frequencies are taken from ref 1.

The observed frequencies are compared in Table I with those calculated. Three of the modes, ν_{16} , ν_{15} , and ν_{30} , have their vibrational patterns illustrated schematically in Figure 3. Although the vibrational modes of ν_{29} , ν_{13} , and ν_{12} are more complex, they also have long-wave

Figure 3. Approximate vibrational patterns of ν_{16} , ν_{15} , and ν_{30} .

components (atomic displacements in the z-direction). The mode ν_{11} has an accordion-type component. It is interesting to note that these low-frequency bands may be interpreted reasonably by the simple model calculation.¹ This increases the reliability of the assignments of the higher-frequency bands discussed in the previous paper.

Acknowledgement. One of us (RFS) wishes to thank Professor G. Leroi for permission to utilize his facilities.

REFERENCES

- 1. M. Tasumi, T. Shimanouchi, and R.F. Schaufele, *Polymer J.*, **2**, 740 (1971).
- 2. R. F. Schaufele, J. Opt. Soc Amer., 57, 105 (1967).
- B. Schrader and G. Bergmann, Z. Anal. Chem., 2, 230 (1967).