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ABSTRACT: A semiempirical equation readily applicable to analysis of volume 
retardation curves is derived from the Bueche theory. The equation is applied to ex
perimental results on polystyrene obtained over a temperature range from the upper 
limit of the glass transition region, Tg+, to 60 degrees below. It is shown that the 
equation satisfactorily describes the behavior of experimental isotherms. Values of 
equilibrium volume, diffusion coefficient, and free volume fraction are determined at 
the temperatures in the above range. In the glass transition region, from Tg+ to Tg -, 
temperature dependence of these quantities is consistent with that predicted from the 
free volume theory. Below Tg -, however, the temperature dependence seems to deviate 
from the extrapolation of the above. 

A semiempirical equation for an anomalous isotherm, which has a maximum, is 
similarly derived and applied to the analysis of the experimental results. The ex
perimental isotherms are fairly well interpreted in terms of the equation. 

KEY WORDS Volume Retardation / Free Volume / Diffusion Co-
efficient / Glass Transition / Polystyrene / 

When a polymer equilibrated at a tempera
ture is quenched into another temperature be
low the glass transition, its volume contracts 
retardatively to the equilibrium value at the 
temperature. The phenomenon has been in
vestigated by many authors both theoretically 
and experimentally with a view to studying 
retardation phenomena in the glassy state and 
to clarifying the behavior of free volume in 
the glassy state. s-ll 

An analytical representation for such a volume 
retardation will further facilitate those studies. 
Amongst the attempts to obtain analytical re
presentation, an equation derived by Kavacs4 

has been well recognized to show close agree
ment with experimental results. 11 Okano de
rived independently an equation similar to 
Kovacs and arrived at a free volume theory of 
glass transition by use of the equation. 7 ' 9 Both 
of the equations have been derived with the 
assumption that the phenomenon possessed a 
single retardation time mechanism. 

Subsequent experimental studies, 12 - 14 however, 
have shown a necessity of taking into account 
the distribution of retardation times. Bueche 
has proposed another analytical representation 
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which involves a concept of a distribution of 
retardation times. 8 The representation, however, 
has some difficulties when applied to experi
mental results: It does not deal with a time 
which is necessary, in practice, for quenching 
from one temperature to another temperature, 
and it does not completely describe the volume 
retardation at a relatively low temperature below 
the glass transition. 

In the present report, 1 with a modification of 
the Bueche theory a semiempirical equation for 
volume retardation is presented. The equation 
is successfully applied to experimental results on 
polystyrene2 obtained over a wide temperature 
range from the upper limit of the glass transi
tion region, Tg +, through the lower limit of that, 
Tg -, to about 60 degrees below. The parameters 
included in the equation were determined and 
are discussed in relation to the free volume 
theory. 11 •13 • 15 A semiempirical equation is also 
derived for an anomalous volume retardation, 
in which the volume of a polymer goes with 
time through a maximum towards the value of 
the normal volume retardation. The equation 
explains fairly well features of observed anoma
lous retardation. 2 
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SEMIEMPIRICAL EQUATION FOR VOLUME 
RETARDATION 

Equation for Normal Isotherm 
A polymer equilibrated at a temperature T 1 

is quenched into a temperature T2 below T/. 
The specific volume of the polymer changes 
with time t even after the temperature of the 
polymer reaches T2 • This specific volume 
change with respect to time t is called here the 
isotherm at T2 • 

A semiempirical equation which is readily 
applicable to analysis of the experimental results 
was derived from the Bueche theory8 (see Ap
pendix). 

The equation is 

V- V2 =B/[exp {E(V- V2)jV0)(t0 +r)112 ] ( 1 ) 

where V is an instantaneous specific volume, V2 

is the equilibrium volume at temperature T2 , V0 

is the initial volume at T2 , t is the observation 
time, t0 is a correction constant, and B, and E 
are the factors relating to the diffusion coefficient 
and free volume, respectively. Time t is taken 
as t=O when the temperature of the polymer 
reaches T2 • The constant t0 makes eq 1 appli
cable to the isotherm around the time range 
t::::::O. In actual cases, observed isotherms near t=O 
are usually modified by some transient retarda
tion which arises while the temperature of the 
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Figure 1. Examples of modifications of isotherms. 
A temperature of intermediate quenching was 
varied. The value of Vo is taken to be the specific 
volume at 0.05 hr on the isotherm obtained from 
the direct quenching (115°C-+40°C). The initial 
part of the curves before t=O. l hr should be ignored 
since temperature of the polymer does not per
fectly attain the equilibrium until that time. 
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polymer varies from T1 to T2 • The amount of 
such a transient retardation is larger as the 
quenching rate is smaller around Tg +. Examples 
of the modifications of the isotherms are shown 
in Figure 1, in which the quenching rate around 
Tg + is varied by providing an intermediate 
quenching temperature in the quenching from 
T1 to T2. Experimental details are the same as 
those of a previous report. 2 In Figure 1, the 
initial parts of the curves before t=0.1 hr are 
erroneous since the temperature of the polymer 
is not perfectly equilibrated at T2 until that 
time. The quenching rate around Tg + will be 
larger as the intermediate quenching temperature 
is lower. One sees in Figure 1 that the con
traction velocity of the isotherm at the early 
stage is slower for the smaller quenching rate 
around Tg +. This feature is reminiscent of a 
model for the modifications of the isotherms 
as follows: according to Bueche, 8 a volume re
tardation is assumed to consist of a number of 
elemental retardations with different retardation 
times, each of which corresponds to each molec
ular vibration characterized by a mode number 
n ranging from O to N. The smaller the mode 
number n, the longer is the retardation time. 
If some retardation corresponding to mode 
numbers ranging from N to n0 arise before t=O 
at T2 , at an observation time t=ta the retarda
tion with the mode corresponding to the re
tardation time t0 +ta will start. In the above, 
the mode number n0 corresponds to the retarda
tion time t0 • 

The factor B is denoted as 

( 2) 

wherein vn and Vr2 are the equilibrium specific 
free volumes at temperatures T1 and T2 , respec
tively, and D 0 is the quantity (hr-1) proportional 
to the diffusion coefficient in the equilibrium 
state at T2 • On the basis of the diffusion co
efficient obtained by Doolittle, 16 E is given by 

2E::::::l///e2 ( 3) 

where / is an instantaneous free volume fraction 
and /e2 is the fractional representation of vf2. 

Eq 1 seems to include inconsistency in the sense 
that Doolittle's diffusion coefficient is introduced 
into the theory of viscoelasticity accomplished 
by Bueche. 8 The inconsistency may be removed 
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by introducing a modification, which is rather 
tentative, into the free volume model in the 
Bueche theory; details are discussed in the 
Appendix. 

Equation for Anomalous Isotherm 
Isotherms obtained under more complicated 

quenching conditions than those mentioned 
above indicate features which are reminiscent 
of a wide distribution of retardation times. In 
a previous report, 2 one such kind of isotherm, 
an anomalous isotherm, has been studied ex
perimentally. This isotherm is observed when a 
polymer is first quenched from T1 to T2 , main
tained at T2 during a time z, and then heated 
up to another temperature T3 (T3 > T2) before 
reaching the equilibrium state at T2 • The iso
therm at Ta goes to a maximum and then 
decreases so as to approach the normal contrac
tion isotherm obtained in the direct quenching 
from T 1 to Ta. 

A semiempirical equation for the anomalous 
isotherm was also derived from the Bueche 
theory (see Appendix). The equation for the 
isotherm placing in the time range t < t1 - t2 is, 

V- V3=[1/exp {E(V- V3)/Vo}] 

X{B/(t1 +t)112 -Cj(t2 +t)112 +H) (4) 

The equation for the isotherm after passing the 
time t=t1-t2 is, 

V- Va=[B/exp {E(V- Va)/V0}]/(t1 +t)112 ( 5) 

In eq 4 and 5, the origin of time t is taken as 
the temperature of the polymer reaches T3. The 
constant t1 has a value relating to the time z, 
and t2 is constant, having a character similar to 
the constant t0 in eq 1. The volume V3 is the 
equilibrium specific volume at T3, B=(vn

vrn)/D/12, C=(vf3-vn)/D/12, and H=(vf3-
v12)/D.112t/12, where De is the quantity (hr-1) 

proportional to the diffusion coefficient in the 
equilibrium state at T3, and vf3 is the equilibrium 
specific free volume at Ta. E in eq 4 and 5 
is given by 

2E:::.I!f/ea ( 6) 

where /ea is the fractional expression of vf3. 
An anomalous isotherm has a maximum as 

was mentioned before. The time corresponding 
to the volume maximum, !max, is calculated 
from the differential of eq 4 with respect to t. 
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Then one obtains 

tmax1 =(C213t1-B21at2)/(B213 - C 213 ) ( 7) 

If !maxi< ! 1 -t,, !maxi corresponds to an observed 
tmax• If fmax1 > ti -t2, this value is false and 
does not give !max; because eq 4 is valid for 
only t<t1-t2 • In the case of tmax 1 >t1-f2 , an 
observed !max corresponds to a time t when 
C/(t2 +r)112 =H. Hence, tmax corresponds to 

fmax2=f1-f2 

=(C/H)2-t2 

( 8 ) 

(8') 

ANALYSIS OF CONTRACTION ISOTHERMS 
AT TEMPERATURES ABOVE Tg-

Application of the Theory of Experimental Results 
In a previous report,2 contraction isotherms 

of polystyrene were measured over wide tem
perature ranges including the glass transition 
region. The data are presented in Figure 2. 
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Figure 2. Isotherms of volume retardation for 
polystyrene obtained after quenching from 115°C 
to various temperatures shown along side -the 
isotherms.2 Circles show experimental values. 
Solid curves indicate eq 1 adapted for the experi
mental isotherms. 
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Figure 3. Thermal expansion of polystyrene. The 
upper limit of the glass transition region, Tg +, is 
about 97°C and the lower limit, Tg - , is about 
73°C. Two thin lines, which are drawn in parallel 
with volume expansion of glassy polymer, show 
respective specific volumes at 10 and 100 hr after 
quenching into various temperatures. Plots in
dicate experimental data taken from Figure 2. 
Broken lines and dot-dash-lines represent temper
ature dependences of equilibrium volume assumed 
as presumptions 1 and 2, respectively. 

The upper limit of the glass transition region, 
T/, of polystyrene is about 97°C and the lower 
limit, Tg - , is about 73 °C, as is shown in 
Figure 3. 

Application of eq I to those experimental data 
was accomplished by the least square method 
with use of an electronic computing system 
MADIC IIA. Solid curves in Figure 2 represent 
the results of these computations. As for the 
three isotherms at 97 .5, 95, and 90°C, the curve
fittings were performed in a straightforward 
manner and the most probable values of the 
parameters V2 , B, t0 , and E were determined. 
These values are listed in Table I. The values 
of V2 are plotted against the temperature in 
Figure 4 in comparison with those values ex
perimentally obtained and those estimated from 
vertical shift factors for the isotherms.2 Agree
ment among these three is quite close in the 
the temperature range in question. 

Contraction isotherms as a function of log t 
have a long, almost linear portion, as is seen 
in all of the isotherms below 85 °C in Figure 2. 
The isotherms are approximately represented as 

v-w=-Glog t ( 9) 

where w is the specific volume at t= I hr, - G 
is the slope and t is the time in hours. The 

Table I. Values of parameters used for the calculations of eq represented in Figure 2 

Ts, oc V2, cm3/g B, (cm3/g)hrl/ 2 to, hr E 
Bt, (cm3/g)hrl/2 t0t, hr Et 

97.5 0.99513 Determined 7. 62 X 10-5 -3.55xl0-2 l.13xl03 
from L.S. 

95.0 0.99350 Determined 3.20x 10-4 -3 .51 X 10-2 9.60x 102 
from L.S. 

90.0 0.99089 Determined 4. 57 X 10-3 -8.56x 10-3 l.16x 103 
from L.S. 

85.0 0.98815 Presu. 1 6.87 X 10-2 4 .07 X 10-2 l.27xl03 

80.0 0.98540 Presu. 1 1.19 l .62x 10-2 1.55 X 103 

75.0 0.98275 Presu. 3.29x 10 2.08 X 10-2 l .56x 103 

70.0 0.98004 Presu. 1.68 X 103 6.54x 10-2 1. 76x 103 

61.0 0.97525 Presu. 9.15xl05 l.14xl0-1 I. 72x 103 

0.97762 Presu. 2 9.18xl03 l.17x 10-1 1.69 X 103 

57.0 0.97304 Presu. 1 3.43 X 106 1.16 X 10-1 1. 75 X 103 

0.97673 Presu. 2 2.39x 103 1.19 X 10-1 1. 70x 103 

52.0 0.97036 Presu. 1 l. lOx 108 l .57x 10-1 1. 76 X 103 

0.97566 Presu. 2 3.70x103 l.60x10-1 1. 70 X 103 

47.0 0.96766 Presu. 1 l.02x 1010 1.26x 10-1 l.90x 103 

0.97455 Presu. 2 6.54x 103 1.29 X 10-1 1.88 X 103 

38.0 0.96286 Presu. 1 5 .60 X 1014 3.95x 10-1 2.18xl03 

0.97261 Presu. 2 8.03 X 104 4 .01 X 10-1 2.09x 103 
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Figure 4. Equilibrium volumes at various tem
peratures. Calculated values are compared with 
experimental results which were measured and/or 
evaluated from vertical shift factors in a previous 
report. 2 

logarithmic representation of eq I, in which t0 

is ignored since t » t0 , is 

log (V- V2)=-(V- V2)(E/2.303V0 ) 

-(1/2) log t+ log B (10) 

Combining eq 9 and 10, the following equation 
is obtained; 

log {(V-w)/(w-V2)+l}+log (w-V2 ) 

+(l/2G)(w-V2)=logB (11) 

wherein G~2.303/(2E/V0), which will be shown 
in section headed Slope of Isotherms. When 
(V -w)/(w- V2) «I, V2 and B cannot be deter
mined independently of each other. Thus, in 
the following, the value of V2 is first presumed 
at each temperature, and the temperature de
pendence of B will be discussed by use of this 
V2 value. The presumption 1, shown in Figure 
3, was adopted so that V2 might obey the free 
volume theory. 11 •13 • 15 According to the theory, 
V2 may be expressed as the linear extrapolation 
from the rubbery equilibrium in the temperature 
range from T/ to about 50 degrees below. 

The values of parameters B, t0 , and E were 
determined by use of the presumed V2 values 
at temperatures below 85°C and are listed in 
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Table I. The following discussion will be made 
along the presumption 1. 

Equilibrium Free Volume 
The equilibrium free volume fractions /e2 at 

various temperatures were obtained from the 
values of E by use of eq 3. The value off 
involved in eq 3 was treated as a constant equal 
to the average off through the whole observa
tion time, though the actual f varies with V 
during the retardation. The difference between 
the averaged f and the actual f may generally 
be negligible in comparison with f itself. 

Over the temperature range 97.5 to 90°C, 
the difference between f and /e 2 can be ignored 
since both f and /e 2 are much larger than the 
difference /-/e2, Then eq 3 is approximated as 

(12) 

The values of specific volumes of each of the 
isotherms at 10 and 100 hr after quenching were 
taken from Figure 2 and are plotted in Figure 3. 
Both lines on the data are drawn in parallel 
with the volume expansion of the glassy polymer. 
According to the free volume theory11 • 13 •15 the 
expansion coefficient of the occupied volume 
is assumed to be the same as that of the glassy 
polymer. Thus, it may be reasonable to assume 
that a common / value is adopted for all the 

4,---,--,------,-----,--,----,---,-----,---, 

OJ 

Q 

z 
3 

Ct: 
LL 

w 
2 

_J 

0 
> 
w 
w 
fE I-

----.. ~-ID.JI

• 

Tg 
l • 

T{ 
j 

• 

30 40 50 60 70 80 90 100 

TEMPERATURE (°C) 

Figure 5. Temperature dependence of equilibrium 
free volume fractions calculated by eq 12 and 13. 
Solid line indicates the difference between thermal 
expansions in rubbery and glassy polymer obtained 
from Figure 3. 
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isotherms below 85 °C. The value of / 02 at 90°C 
was adopted as this f value. Then one obtains 

(13) 

The values of / 02 obtained using eq 12 and 13 
are presented in Figure 5. The slope of the 
solid line in Figure 5 denotes the difference Lla 
in the thermal expansion coefficient between the 
rubbery state and the glassy state. The value 
of Lla is obtained from Figure 3 to be about 
3. 7 x 10-4 temperature deg. -i It is seen in Figure 

5 that the temperature dependence of /e2 in the 
temperature range from T/ to Tg - is fairly well 
manifested in terms of the slope Lla. It is also 
seen that the value of / 02 is assumed to be about 
0.024 at Tg +. These features of /e2 are in agree
ment with the prediction of the free volume 
theory.11,13,15 

Temperature Dependence of D. 

Taking account of the results in Figure 5 and 
the fact that V0 :::: l cm3 /g as shown in Figure 2, 
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Figure 6. Temperature dependence of diffusion 
coefficient De, Calculated values are compared 
with values evaluated from horizontal shift factors 
obtained in a previous report. 2 For plotting these 
data from Tg + to Tg-, 97.5°C is regarded as a 
reference. Corrected shift factors in terms of 
eq 18 are also shown in comparison. Solid curve 
indicates the WLF equation adapted for th.e data 
on shear creep compliance of polystyrene shown 

in a previous report. 2 At temperatures below Tg-, 
calculated De by eq 19 are also compared with 
values evaluated from horizontal shift factors. In 
the latter plotting, the calculated datum at 61 °C 
is taken as a reference point. 
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(vn-vr2) above Tg - is approximately equal to 
L1a(T1 -T2)(cm3 /g). Then, values of D 0 at 
various temperatures are obtained from the 
values of B in Table I by use of eq 2. The 
values of D 0 relative to that at 97.5°C are 
presented in Figure 6. The solid curve in 
Figure 6 indicates the WLF equation17 repre

sented in a universal formula; 

-8.86(T-139) 
101.6+(T-139) 

(Tin °C) 

which was ad justed to a temperature dependence 
of a shear creep compliance of polystyrene, 
shown in a previous report. 2 

As readily seen in Figure 6, the temperature 
dependence of De above Tg - is fairly well mani
fested by the WLF equation. It is noted that 
the WLF equation is based on the concept of 
a free volume. Features of the free volume are 

as follows15: The thermal expansion is almost 
equal to Lla, and the free volume fraction at 
Tg is about 0.025, where Tg is the glass transi
tion temperature and is generally several degrees 
below Tg +. Furthermore, there is the relation 
139°C-Tg=50±5°C. These features are almost 
exactly similar to those obtained in the last 
section. 

It is concluded that eq 1 satisfactorily describes 
the experimental contraction isotherms at tem
peratures above Tg - . The obtained values of 

the parameters satisfy the relations predicted 
from the free volume theory. 11 ·13 ·15 

Shift Factors 
It has been shown in a previous report2 that 

velocity of volume retardation, dV/dt, can be 
expressed by a product of a function of T2 and 

a function of (V- V2). That is; 

(14) 

The time-temperature reducibility in the volume 
retardation can be explained in terms of this 
functional form. The horizontal shift factor 
corresponds to 8(T2)/8(T2r), where T2r is a refer
ence temperature. 

Differentiating eq 1 with respect to t, and 
ignoring the weak dependence of E on t, one 
obtains the following equation; 

dV/dt=-[l/2B2{l +E(V-V2)/V0)] 

xexp {2E(V-V2)jV0 )(V-V2 )3 (15) 
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In the vicinity of Tg +, E( V - Vo) V0 « 1 as shown 
in Table I, and hence eq 15 is approximated by 

dV/dt=:-(l/2B2)(V-V2)3 (16) 

The functional form of eq 16 is similar to that 
of eq 14, and the term corresponding to {} is 
-(l/2B2). As the temperature decreases, the 
value of E(V- V2)/V0 exceeds unity, and then 
eq 15 is written as 

dV/dt=: -(l/2B2)(V0/E) 

xexp {2E(V- V 2)jV0)(V- V2) 2 (17) 

As is seen in Table I and Figure 2, the tem
perature dependence of (V0/E) is much smaller 
than that of B and may be ignored as the first 
approximation. Furthermore, one must consider 
that in general shift factors are experimentally 
determined from superpositions of the isotherms 
in which each temperature interval of the suc
cessive curves is narrow. Hence, the differences 
between the values of the exponential terms for 
the successive curves may be insignificant as the 
first approximation. Thus a term corresponding 
to 0(T2) is 

1 /2B2 =De/2(v n -v,2)2 ( 18) 

in the whole temperature range. Eq 18 indicates 
that shift factors experimentally obtained in the 
volume retardation should be multiplied by a 
factor (vn-vd 2 to obtain D 0 values which are 
compared with the WLF equation. This pro
cedure was adopted for the data in a previous 
report2 and the results are shown in Figure 6. As 
is seen in Figure 6, the procedure improves the 
agreement of the shift factors with the WLF 
equation. 

ANALYSIS OF CONTRACTION ISOTHERMS 
BELOW Tr;-

Application of the Theory to Experimental Results 
Figure 5 shows that the amount of the free 

volume fraction estimated under presumption 1 
is almost constant at the temperatures below Tg - , 
which is inconsistent with presumption 1 itself. 
There seems to be no literature concerned with 
the behavior of the free volume at temperatures 
below Tg - . Here, presumption 2 was tentatively 
adopted for values of V2 at temperatures below 
Tg -: The value of V2 begins to deviate from 
presumption 1 at 70°C and decreases in parallel 
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with the volume of the glassy polymer, as shown 
in Figure 3. 

By use of these V2 values, eq 1 was applied 
to the data in Figure 2 and the values of the 
parameters B, E, and t0 were determined. The 
results are presented in Table I, distinguished 
by daggers. Calculated isotherms under pre
sumption 2 coincides with thoes under pre
sumption 1. An example of these calculations 
under presumption 1 and 2 is presented in Table 
II. This agreement is quite natural, if account 
is taken of the fact that B depends on V2 as 
shown in eq 11. 

One may see in Table I that the values of Et 
agree fairly well with the values of E below Tg - . 
In consequence the free volume fractions calcu
lated from Et will be similar to those below 
Tg - shown in Figure 5. It seems in Figure 5 
that the free volume fractions below Tg - show 
temperature dependence. This is, however, quite 
small and may not be considered to be incon
sistent with presumption 2. 

Table II. Comparison between the calculations 
based on presumptions 1 and 2, for 

the isotherm at 38°C 

Measured data Calculated 

V, t, hr t, hr t, hr 
cm3/g Meas. Presu. 1 Presu. 2 

0.98049 1.0xl0-1 9 .24 X 10-2 9 .19 X lQ-2 

0.98047 l.4x10-1 l.40x 10-1 l .40x 10-1 
0.98045 2.0x 10-1 1. 93 X lQ-1 1.93 X lQ-l 
0.98042 2.8x10-1 2.80x 10-1 2.80x 10-1 
0.98038 4.0xl0-1 4.05 X lQ-1 4.06x 10-1 
0.98033 6.0x 10-1 6.lOx 10-1 6.11 X lQ-l 
0.98028 8.6x 10-1 8.72x10-1 8.74x 10 "1 

0.98022 1.2 1.25 1.26 
0.98015 1.8 1.86 1.86 
0.98007 2.8 2.83 2.83 
0.98000 4.2 4.13 4.13 
0.97992 6.0 5.88 5.88 
0.97984 8.6 8.34 8.33 
0.97977 l.2x 10 l.18x 10 l.18x10 
0.97971 l.6xl0 1.58 X 10 1.58 X 10 
0.97963 2.3 X 10 2.27x 10 2.27x10 
0.97955 3.2x10 3.20x10 3.19x10 
0.97948 4.4x10 4.41 X 10 4.40x10 
0.97941 6.0x 10 6.01 X 10 6.01 X 10 
0.97935 8.0x 10 8.05 X 10 8.06x10 
0.97929 I.Ox 10' 1.03 X 102 l.03x 102 
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Shift Factors 
On the basis of presumption 2, relative values 

of the diffusion coefficient are obtained as 

(19) 

The results of the calculation are presented in 
Figure 6. The temperature dependence of the 
diffusion coefficient D 0 is only slight and it 
deviates from the WLF equation. Horizontal 
shift factors obtained in a previous report2 are 
also plotted in Figure 6, where 61 °C is taken 
as a reference temperature. The temperature 
dependence of D 0 calculated from Bl is fairly 
close to that of the horizontal shift factors. 

Slope of Isotherms 
As was mentioned before, at fairly lower tem

peratures than Tg + the isotherms as a function 
of log t have a rather long linear portion. 
Kovacs has called the slope of this portion 
"the tangent at the inflection point on the 
isotherm. " 3 Taking account of that d V/d Int 
=(dV/dt)t, one obtains from eq 1 and 17, 

dV/d Int= -V0/2E+t0 Vo/2E(t0 +t) (20) 

Then, the slope of the isotherm plotted against 
Int is equal to -V0/2E at t»t0 • Since in most 
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Figure 7. G (cm3/g), slope of linear portion of 
an isotherm as a function of logarithmic time. 
Solid circles represent calculated values by eq 20. 
Circles with cross represent experimental values 
measured in Figure 2. The results on two poly
styrenes by Kovacs3 are shown for comparison. 
Arrows indicate respective glass transition points 
of the specimens. 
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polymers V0 is about 1 cm2/g, the slope dV/d log t 
is represented as -2.203ff02 (cm3 /g) by use of 
eq 3. Kovacs has assumed the slope to be 
approximately -2.303f/ around Tg; fg is f 02 at 
the glass transition temperature. 11 

The slopes of the isotherms in Figure 2 were 
calculated from eq 20 and are compared in 
Figure 7 with the observed values. The data 
on polystyrene obtained by Kovacs3 are also 
shown for a comparison in Figure 7. Though 
the present results are rather scattered above 
75°C, a fairly satisfactory agreement between 
observed and calculated values is obtained be
low 75°C. 

Summary on the Low Temperature Behavior be
low Tg -

According to the free volume theory11 •13 • 15 the 
value of V2 decreases along the extrapolation 
from the rubbery state, in the temperature range 
from T/ to about 50 degrees below. However, 
the several results in this report and also in a 
previous report2 indicate that the value of V2 

may begin to deviate from the rubbery extra
polation at the vicinity of Tg - . They include: 

(1) The temperature dependence of the equili
brium free volume fraction calculated here 
changes in its slope in the vicinity of T g - , as 
shown in Figure 5. 

(2) The temperature dependence of the hori
zontal shift factor obtained in the vicinity of 
T g + differs from that below Tg - , as shown in 
Figure 6; the former dependence is close to that 
of D 0 calculated under presumption I and the 
latter is close to that of D 0 calculated under 
presumption 2. 

(3) As for the equilibrium volumes estimated 
from the vertical shift factors shown in a pre
vious report,2 the conspicuous difference of the 
temperature dependence has been shown at 
temperatures around Tg + and at temperatures 
below Tg--

ANALYSIS OF ANOMALOUS ISOTHERMS 

Application of the Theory to Experimental Results 
The anomalous isotherms were experimentally 

studied in a previous report, 2 in which three 
different quenching conditions were set up: 

(I) 115°C--,80--,88°C; (2) l15°C--,61 °C--,75°C; 
and (3) 115°C--,42°C--,61 °c. 
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Figure 8. Anomalous isotherms of polystyrene at 
88°C. Each of these isotherms was obtained under 
a quenching condition; polymer has been main
tained at 80°C during time z after being quenched 
from 115°C to 80°C and is then heated up to 88°C. 
Each z is shown alongside the isotherm.2 Solid 
curves represent eq 4 and 5 adapted for the ex
perimental isotherms. Each arrow indicates a 
calculated time of maximum by eq 7 and 8'. 

Eq 4 and 5 were applied to the experimental 
data on the anomalous isotherms obtained under 
conditions (1) and (2), which are presented in 
Figures 8 and 9. Isotherms obtained under 
condition (3) could not be analysed because the 
equilibrium behavior below Tg - is still not 
understood. 

In application of eq 4 and 5 to the experi
mental data, the computation in the least square 
method is very complicated because parameters 
to be determined are large in number. In 
practice, the procedure of the computation was 
divided into three successive steps for the sake 
of simplification. This might, however, bring 
some errors in the results. The procedure is:
(1) first, the values of E and Bare determined 
from applying eq 5 to the data on the direct 
quenching from T1 to T3 on the basis of pre
sumption 1; 
(2) secondly, the value of t1 is determined from 
applying eq 5, in which E, B, and V3 are sub
stituted by the values determined in the step (1), 
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Figure 9. Anomalous isotherms of polystyrene at 
75°C. Each of these isotherms was obtained under 
the condition similar to that in Figure 8 varied in 
temperature combination; ll5°C->61 °C, z->75°C.2 

to the data on the contraction region of the 
anomalous isotherm; and 
(3) finally, the values of C, I-I, and t2 , are ob
tained from applying eq 4, in which E, B, V3 , 

and t1 are substituted by the values determined 
in the steps (1) and (2), to the dilation region 
of the anomalous isotherm. 

Eq 4 and 5 thus calculated are represented 
by solid curves in Figures 8 and 9. The values 
of the parameters are listed in Table III. The 
calculated curves by eq 4 explain fairly well the 
dilative portions of the experimental isotherms. 
The calculated curves by eq 5 describe the con
tractive portions of the experimental isotherms 
rather well, especially those of the isotherms 
(115°C-6l °C-75°C). However, one may see 
in Figures 8 and 9 that a curve representing 
eq 4 is not continuous to that representing eq 5. 
This discrepancy is due to the simplification in 
the computation described above. 

Time of Maximum Volume and Other Parameters 
The values of !maxi and tmaxz were calculated 

by eq 7, 8, and 81 from the values of B, t1 , C, 
!2 , and I-I, and are listed in Table III. The 
smaller one of !maxi and trnax 2 obtained by eq 81 
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Table III. Values of parameters used for the calculations of eq 4 and 5 represented 
in Figures 8 and 9, and calculated values of tmaxl and tmax2 

---- ---·- ------ ------- -- - " 

->T2, °C, zhr 
->T3, °C 

C, 
(cm3/g) hr1 /2 

H, 
cm3/g 

lmaxl, 
tmax2, hr 

hr by eq 8 by eq 8' 
--------·--------- ---·-·----------------------

->80, 0-->88 
->80, 3.2-->88 
->80, 20-->88 
-t80, 144-->88 

->61, 0-->75 
->61, 4-->75 
->61, 24-->75 
->61, 498-->75 

]
Vs=0.99010, l 

cm3/g 0.28 
E= 1077 1.60 
B=l.55x 10-2 6 9 

(cm3/g) hr1/2 • 

]
Vs=0.98275, l 

cma;g 0.24 
E=l561 2.03 

. B=32.92 27 6 
(cm3/g) hrl/2 · 

8 .5x 10-3 

1.3 X 10-2 

3.3xl0-2 

8.6 
12.4 
13.9 

is indicated by an arrow in Figures 8 and 9. 
The arrows agree fairly well with the observed 
peaks of the anomalous isotherms. The values 
of tmax 2 obtained by use of eq 8 may involve 
some errors larger than those involved in 
tmax 2 obtained by use of eq S'; because the former 
are directly affected from an error involved in 
t 1 which was defined by use of eq 5. In addi
tion the agreement of eq 5 with the observed 
isotherm is not so good as that of eq 4, espe
cially in the case (ll5°C--,80°C--,88°C). 

As for the parameters listed in Table III, one 
sees that the present results give rather reason
able values at least in the order of magnitude. 
However, considering the values of the param
eters in detail, one can see there are some 
problems left; the obtained values of C and t2 

vary with the value of z in a temperature com
bination T1--,T2--,T3 , in contrast to the theory 
leading to eq 4 and 5. Some of these problems 
may be caused from the simplification in the 
computation described before; however, others 
may reflect imperfections in the present theory. 
In order to achieve a better understanding of 
anomalous isotherms, it will be necessary to 
conduct further experimental and theoretical 
studies on various polymers. 
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APPENDIX 

Bueche8 ' 19 has assumed that a polymer consists 
of rows of molecules which are mutually joined 
together with molecular springs. In order to 
count viscous forces, he has assumed that the 
rows are immersed in a viscous liquid. On the 
basis of the model, free volume is ascribed to 
molecular vibrations occurring between two 
neighboring molecules joined with the spring. 
A distribution function for the amount of free 
volume per a molecule is, 

P(v)=(const.) exp (-v2/Ii) (Al) 

where Q = Jca, a is the cross-section of a mole
cule, and Jc is the averaged amplitude of the 
inter-molecular vibration; Q is a measure of 
average free volume. 8 

In this paper we have assumed that a polymer 
chain is a tensioned string on which molecules 
having mass m are arranged and fixed at an 
identical distance a which is about the diameter 
of a molecule (Figure Al). A motion of a 
molecule on such a string is manifested by com
posing many simple harmonic vibrations. As is 
well-known, 20 a kinetic equation for the motion 
and its solution are similar to those of the 

X 

-x 
Figure Al. A model of molecular chain. A dis
tance a is almost equal to the diameter of a 
molecule. Each molecule is joined to neighboring 
molecules with strings having tension force S. 
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inter-molecular vibration in Bueche's molecular 
row. 8 

According to the assumption described above 
the equation for a motion of a molecule is, 

mxi +S{(xi-xi_1)/a+ (xi-xi+1)/a) =0 (A2) 

where S is tension force on the string. Various 
molecular forces in the polymer chain are lumped 
into S. If there are N molecules on the string, 
N equations similar to eq A2 exist. Then the 
following equation is obtained. 

(A3) 

Assuming ftwN«kT *, the energy distributed in 
a mode is kT, where ft is h/2rr, h is Planck's 
constant and k is Boltsmann's constant. Then, 
An is presented as 

An2 ~4kT/Nmwn2 (A4) 

A composite amplitude8 is then calculated in a 
similar procedure to Bueche. As a result, the 
dispersion parameter of the distribution function 
of the composite amplitudes by N steps is de
noted as 

(A5) 

and the distribution function of the composite 
amplitudes is, 

P(A) (const.) exp ( -A2 /Jc2 ) (A6) 

On the other hand, each molecule on the 
chain can rotate freely about the Y-axis in 
Figure Al. If we examine only molecules 
with larger amplitudes, we may consider the 
motion of a molecule occupying a space of 
volume proportional to aA2 • Here, a polymer 
is assumed to be packed with the strings. Then, 
the occupied space of a molecule contacts with 
those of molecules on the other strings. Based 
on this model, the total amount of such oc
cupied volumes larger than the volume of a 
molecule would be proportional to the total 
amount of free volume defined in the free 
volume theory; the amount of free volume per 
a molecule is proportional to aA2 • The averaged 
value of this is represented as vr, and eq A6 is; 

P(v)=(const.) exp (-v/vr) (A7) 

* Bueche assumed liwN»kT. Okano21 pointed 
out that the assumption is not reasonable for a 
polymer at around room temperature. 
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This distribution function is similar to that de
rived by Cohen~ Turnbull. 18 Note that Doolittle's 
diffusion coefficient and the WLF equation can 
be used in the present theory. 

The amount of free volume at a temperature 
T1 is given by eq A5 as 

Vn=I'(-~~ )kr1 (A8) 

where I' is a constant including the number of 
molecules per gram. According to Bueche, 8 free 
volume of a polymer quenched from T1 to T 2 

is obtained from eq A5 and A8; 

v1=I'( ~t )([a kT1an+ [/r2an) (A9) 

where na is the mode number corresponding to 
observation time t. The relation between na 
and t is obtained as19 

(Al0) 

where D is an instantaneous value of the dif
fusion coefficient. Then one has, from eq A9 
and Al0, 

(Al 1) 

where D,=(3rr2/a2 )D, vr is an instantaneous free 
volume, and Vu, vr2 are equilibrium free volumes 
at T,, T2 , respectively. D, is also a function of 
instantaneous free volume, and denoted as the 
following by use of the Cohen and Turnbull 
diffusion coefficient1 8 or Doolittle's diffusion 

0 
0 

r 
t 

Figure A2. Relation between coordinates for re
tardation times and observation times. The ordi
nate represents a mode number corresponding to 
a retardation time. Two abscissa axes indicate 
time axes for retardation times r and observation 
and times t, where each axis is measured in the 
same unit as the other. 
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coefficient16; 

D,=De exp {2E0 (V- V2)} 

=De exp {2E(V- V2 )jV) (A12) 

where De is the diffusion coefficient in the 
equilibrium state at T2, 2Ec ::-.r v* /VrVr2, r is a 
constant ranging 1 to 1/2, V* is approximately 
equal to the volume of a molecule, and 2E::-. ljf 
/e2· Figure A2 shows a procedure adjusting the 
relation between the coordinate for the retarda
tion time and that for the observation time. 
One sees from the figure the following: if the 
polymer has made some retardations by the n0th 
mode during the quenching, at a time point 
t=t, the mode corresponding to ta+to will make 
the retardation, where t 0 corresponds to n0 • 

An equation for the anomalous isotherm is 
derived in the procedure similar to the foregoing 
description on the basis of the following as
sumption. When a polymer quenched from T1 

to T2 is heated to T 3 , the modes ranging N~na-th 
have passed from the state at T1 to the state at T2 

and the other modes ranging n. 0-th still stay 
at T1. At T 3 the modes ranging N~na-th make 
retardations from T2 to T 3 and the modes rang
ing n. ~0-th make retardations from T1 to T3. 

directly. One then has, from eq A9; 

Vr=I'(~~)( ~:b kT13n 

+ (na kTs3n+ fnc kT23n+ [N kT33n) (Al3), 
Jnb Jna Jnc 

and then, 

( 2a2
) Vr-Vrs=I' SN {nbk(T1 -T3) 

-nck(T3 -T2) +n.k(T3-T2 )) (A14), 

where nb and n0 are variables defined in the 
ranges n. to 0 and N to n., respectively. The 
quantities nb, nc, and na representing the mode 
numbers are substituted by times corresponding 
to them, respectively, on the basis of eq AlO. 
A time t1 corresponding to n. is introduced. 
Taking account of the range for nb, t+ t1 is 
substituted for the time corresponding to nb. 
A constant t2 is introduced in a similar sense 
as to t0 in eq I. 
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