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ABSTRACT: The pressure dependence of the glass transition temperature (aTg/aP) 
and the enthalpy of the densified glass were studied with a hole theory. It was found 
that not the assertion of the iso-free volume but that of the iso-configurational entropy 
(or energy) or Adam-Gibbs theory at the glass transition is supported by the observed 
fact (a Tg/aP)~ TV Lio:/ L/Cp < Ll/3/ Ll<x, where Lio:, Ll/3, and L/Cp are the differences in thermal 
expansion coefficient, compressibility, and heat capacity at constant pressure between the 
liquid and glassy states at Tg, respectively. It is also supported by the fact that the 
densified glass has almost the same enthalpy as the glass obtained under ordinary con
ditions. The inequality of (aTg/aP) and Ll/3/Llo:, which causes the densification of the 
glass formed under elevated pressure, was quantitatively related to the magnitute of the 
densified volume. It is suggested that the inequality TVLlo:/LICp<Ll/3/Llo: and the forma
tion of the densified glass may be closely related to intrasegmental interactions or the 
chain conformation. 

KEY WORDS Hole Theory / Polymer/ Glass Transition / Pressure / 
Free Volume / Configurational Entropy / Adam-Gibbs Theory / 
Densified Glass / Annealed Glass / 

glass transition. Recently many investigations have been made 
on the pressure dependence of various physical 
properties of polymers, affording significant in
formation particularly on glass trsnsition and 
the glassy state. Noticeable results from such 
investigations are: ( 1) the pressure dependence 
of the glass transition temperature Tg is related 
to thermodynamic quantities by the equation 
(aTg/aP)~TV£1o:/£1Cp<£1{3/£1o:, 1 ' 2 whereP, T, and 
V are pressure, absolute temperature, and vol
ume, respectively, and £1(3, £lo:, and ,:JCP are the 
differences in compressibility, thermal expansion 
coefficient, and heat capacity at constant pres
sure between the liquid and glassy states, re
spectively; (2) one can obtain a densified glass 
by glass-forming under elevated pressure; 3 ' 4 and 
(3) the magnitude of densified volume is directly 
and quantitatively related to the the inequality 
of (aTg/aP) and £1(3/£10:.4 As O'Reilly1 and 
Goldstein2 have pointed out, (1) above appears 
to show that not the volume, but the entropy 
or the enthalpy plays an important role in the 

Today there are two main theories of glass 
transition: one is the well known iso-free volume 
theory, 5 and the other is the theory presented 
by Gibbs, DiMerzio, and Adam. 6 ' 7 According 
to the latter theory, a thermodynamic second
order transition should occur when the configu
rational entropy becomes zero 6 and the glass 
transition observed is higher than the second-order 
transition temperature by a definite number of 
degrees (about 50°C). 7 This theory7 also shows 
that the temperature dependence of the relaxa
tion time of segmental motion is determined by 
the product of absolute temperature and the 
configurational entropy of a system. The ob
served fact (1) appears to support the second 
assertion. 

In this paper, from our hole theory preposed 
previously8 we derive thermodynamic relations 
for the change in glass transition temperature 
with pressure and the enthalpies of the densified 
and annealed glasses. Comparing experimental 
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results with the theoretical ones we examine the 
validity of the above-mentioned assertions for 
glass transition. We can show that the relation 
(oTg/oP) = TV ila/ iJCP and no difference in en
thalpy between densified glasses formed under 
different pressures imply that the glass transition 
occurs at constant configurational entropy ( or 
energy) within a substance. We also quantita
tively relate the inequality between (oTg/oP) and 
il/3/ ila to the magnitude of densified volume and 
suggest that the inequality is closely related to 
the conformational degrees of freedom of a 
chain backbone. 

THEORY 

Model 
First we describe the hole model presented in 

the preceding paper,8 which is adopted here with 
a new assumption. We consider a system in 
which N segments are distributed on M lattice 
sites (M?:.N). Thus there are M-N empty sites 
or holes. If the cell volume is denoted by v*, 
then M/N= V/(Nv*)= VjV*-= V, and therefore 
the quantity (1- v-1 ) represents the hole fraction. 
To develop the theory further, we now make 
the following two assumptions. 

Assumption I. The change in cell volume 
with pressure and temperature is essentially in
dependent of the hole fraction or V. This 
implies that the thermal expansion coefficient 
and compressibility of the cell volume are almost 
continuous at the glass transition, and that the 
glasses of different hole fractions have almost 
the same cell volume, the same thermal expan
sion coefficient, and the same compressibility. 

Assumption 2. The free energy of the system 
is expressed by the sum of two kinds of free 
energy; one associated with the internal degrees 
of freedom or intrasegmental interactions, includ
ing the so-called short range interaction related 
to the chain conformation, and the other as
sociated with the external degrees of freedom 
or intersegmental interactions. Namely, the free 
energy F is written 

F=F1(T)+Fe(V, V*, T)=U1(T)-TS1(T) 

+Ue(V, V*, T)-TS2(V, V*, T) ( 1) 

where the the subscripts 1 and 2 refer to intra
and inter-segmental interactions, respectively, 
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and U is the internal energy and S the entropy. 
The glassy state is considered here to be a 

quasi-equilibrium state, and is regarded as a 
frozen liquid in which both holes and chain 
conformation are frozen-in. Thus, in the glassy 
state, the hole fraction or V is assumed to be 
constant and a part of F 1(T) associated with 
the hindered rotaion about chain backbones is 
also assumed not to change with temperature 
and pressure. 

In the liquid state, two of the three variables 
V, V*, and T in eq 1 are independent and these 
variables change so as to minimize the free 
energy, i.e., (oF/aV*)v,r=O. Hence, from this 
condition (oF/aV*)v,r=O and a thermodynamic 
equation P= -(oF/oV)r, we have 

PV+(oF2/aV*)v,r=O (2) 

and 

( 3 ) 

which are the equation of state in the liquid 
state (see Appendix in ref 9). On the other 
hand, the equation of state in the glassy state 
can be expressed by 

PVg+(oF2/aV*)v,r=O ( 4) 

which is derived from P=-(oF/oV)r with V-
Vv=constant. It is noticed here that the equa
tion of state in the glassy state, eq 4, and eq 2 
have the same form except that V can be vari
able or not. Accordingly, Assumption 1 implies 
that (oF2/aV*)v,r is approximately a function of 
V* and T. In other words, Assumption 1 sug
gests that F2 is approximated by the form 

Fe(V, V* T)=Fz'(V, T)+Fz''(V*, T) 

=Uz'(V, T)-TS/(V, T) 

+Uz''(V*, T)-TS/'(V*, T) 

( 5 ) 

(see Appendix). 
In the preceding paper,8 from the hole model 

described above, we derived the relations 

TV(ila) 2 /(iJC;nter il (3) = 1?:. TV(ila )2 /(ilCpil (3) ( 6 ) 

iJCp=iJC;nter+iJC~ntra ( 7 ) 

and 

( 8 ) 

where the superscripts inter and intra refer re-
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spectively to inter- and intra-segmental interac
tions. 

In this paper we add the following assumption, 
Assumption 3, to the above two assumptions in 
order to define the configurational entropy S 0 

as the entropy which is frozen-in in the glassy 
state, in other words, as the entropy determined 
by the hole fraction, or V, and the state of 
chain conformation. 

Assumption 3. The heat capacity of the glass 
is independent of the frozen hole fraction or Vg. 
This assumption implies that [0(0S2/oT)v/oV]v*,T 
=[0(0S2/oV)v,,r/oT]v = [o(aS/ /oV)v,,r/oT]v = 0, 
i.e., (0S2/oV)v,,r=(oSe'/oV)v*,T is independent 
of T. It follows, therefore, from Assumption 3 
and eq 5 derived from Assumptions 1 and 2, 
that (0S2/oV)v,,r is considered to be a function 
of V only. Therefore we can define the con
figurational entropy S 0 as a function of state 
which is determined by the frozen variables, V 
and S\: 

where S1 ° is a part of S 1 associated with the 
chain conformation. The configurational entropy 
thus defined consists of two kinds of entropy, 
i.e., the entropy arising from the hole, in other 
words intersegmental interactions and the entropy 
S/, both frozen-in in the glassy state as men
tioned before. 

From eq 6, 7, 8, and 9, and Assumption 1, 
we have 

dS 0 =(.dCp/T)dT-ViJadP (10) 

for the liquid state. On the other hand, in the 
glassy state, sc does not change as seen from 
the definition of eq 9, i.e., dS 0 =0. 

Just as SC, the configurational energy uc can 
be defined as 

dU 0 =(0U2/oV)v,,rdV+dU/ (11) 

where U1 c is a part of U1 attributable to the 
chain conformation. From eq 9, 10, and 11, 
and Assumption 1, we have 

dU 0 =TdSc+PV(-.dadT +.df3dP) (12) 

=(.dCp-PV .da)dT +(-TV .da+PV .dp)dP 

(13) 

for the liquid state, noting dU/= TdS/= 
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L/C~ntradT and 

PV*+(oU2/oV)v*,T-T(0S2/oV)v,,r=O ( 3') 

which is derived from eq 3. On the other hand, 
in the glassy state, dUc=0 as readily seen from 
the definition of eq 11. 

In contrast with S 0 and UC, we cannot rea
sonablely define the configurational enthalpy 
I-I° as a part of enthalpy frozen-in in the glassy 
state. If we define He as oHC=[(oU2/oV)v,,T 
+PV*]dV+dU/=TdS0 as we did in the other 
paper, 10 we have oHC=O when dSc=o. This 
indicates that He is frozen-in in the glassy state 
and that the concept of iso-Hc is equivalent to 
that of iso-Se. In this case, however, He is the 
heat arising from change of se and is not a 
function of state. Under low pressure, PV* is 
negligibly small compared with (oU2/oV)v,,r (cf. 
next section), and I-I° becomes approximately a 
function of state. In such a case, however, He 
is equivalent to U 0 defined by eq 11, and ac
cordingly it is unnecessary to define such a 
quantity H 0 in addition to uc. On the other 
hand, if we define He as 

He= Ve +P(V-V") (14) 

as the excess enthalpy relative to the glass 
having no hole (V/V*=I), which is a function 
of state, it follows that 

dH 0 =TdSe+(V-V*)agPdT +(V-V*)(l-pgP)dP 

=.dCPdT +(V- V*)agPdT-1---{-TV .da 

+(V- V*)(I-pgP))dP 

~TdSe+(V-V*)dP (15) 

~.dCpdT+{-TV.da+(V-V*))dP (16) 

in the liquid state, and 

dHe=PV(I - V; 1)agdT + V(I- v;1)(I -pgP)dP 

V(l- v;1 )dP (17) 

in the glassy state, where ag and pg are re
spectively the thermal expansion coefficient and 
compressiblity of the glass. According to the difini
tion of eq 14, H 0 does not only depend upon the 
liquid structure which is frozen-in in the glassy 
state (i.e., the hole fraction and the chain 
conformation), but also upon absolute T and P. 
This leads to the fact that He is not frozen-in in 
the glassy state, as seen in eq 17. In this sense, 
H is different from se and ue in the definition. 

447 



T. NOSE 

In this paper we use the definition provided by 
eq 14. 

Expression for (oTg/oP) 
From eq 10, 13, and 15, we obtain 

(oTg/oP) = (oT/oP)g 

={TV11a+T(oSC/oP)g}/11Cp (18) 

={TV 11a-PV 11/3 

+(aUC/oP)g)/(11Cp-PV11a) (19) 

={TV 11a-(V- V*)+(oHC/oP)g}/11Cp 

(20) 

where the symbol (ox/oy)g designates the dif
ferentiation along the glass transition point, i.e., 
the variation of Xg, x at glass transition point, 
with y. 

On the other hand, since we can derive 

d ln V=11adT-11j3dP (21) 

in the liquid state from Assumption 1, we have 

where 

(oTg/oP) = 11 j3/(11a +a') 

=(11j3-j3')/11a 

=/3'/a' 

a'= -(a ln V/oT)g 

/3'=-(oln V/oP)g 

(22) 

(23) 

(24) 

(25) 

The quantities a' and /3' denote the decrease in 
the frozen hole fraction, in other words the 
densified volume, because the cell volumes of 
glasses having different V are almost the same 
according to Assumption 1, i.e., 

a' =-(o In Vs/oTg) 

/3'=-(oln Vs/oPg) 

(26) 

(27) 

where Vs is the volume of the glass formed at 
Tg and Pg measured at the same temperature 
and pressure. 

Enthalpies of Glasses Formed under Different 
Conditions 

We will now consider the difference of 
enthalpy 11H between the glasses formed under 
different conditions compard at a constant state 
(T0 , P 0 ), where P 0 is atmospheric pressure. If 
the glass which was formed at an ordinary cool
ing rate at atmosphersc pressure, i.e., formed 
at the state I (Tg 0 , P 0 , Vg0), is taken as the 
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reference glass (Glass I) and if the other glass 
(Glass II) was formed at state II (Tg, Pg, Vg), 
we can express the difference in H, 11H, between 
the two glasses, using Assumption 1 and 2 with 
eq 5, as 

11H=H(Glass II)-H(Glass I) 

=U/(Vg, T0 )-U/(Vg0 , T0 ) 

+P0(Vg- Vg 0)V0 * + U/(Tg)-U/(Tgo) 

(28) 

where V0 * is the cell volume at (T0 , P0 ) being 
independent of Vg. By the use of Assumption 
3, eq 11, 12, and 16, eq 28 can be rewritten 

H = [(dUc)1+P0(Vg- VgoWo * 

= r {T(dSC) 1 +PV(-11adT + 11j3dP)) 

+P0(Vg- Vg 0 )Vo* 

= [[(dHc) 1 -PV11adT-{(V-V*) 

-PV11j3)dP]+P0(Vg- Vg 0)V0 * 

(29) 

(30) 

(31) 

where (dXc) 1 designates the change of xc in 
the liquid state. 

Now we express 11Hintra and 11Hinter separate
ly, where 11Hintra and 11Hinter denote the enthalpy 
differences associated with intra- and inter-seg
mental interactions respectively. As seen from 
eq 28, 11Hintra is expressed as 

11Hintra= U/(Tg)- U/(Tgo) 

(32) 

(32') 

where 11C;ntra is the mean value of 11C;ntra in 
the temperature range between Tg and Tgo, and 
11Tg= Tg-Tgo· On the other hand, we have, 
from eq 11 and 29 with eq 3', 6, 7, 8, and 
21, 

&Hinter= I~ g (oU2/o V)v,,yd In V +P0(Vg- Vgo) 
J Vgo 

= \~g {TV11a/11j3-PV)d In V 
J Vgo 

+P0 ( Vg- Vg 0 ) V0 * (33) 
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(34) 

2:: \~g {LIC;nter/Lla-(P-P0)V)d In V 
) Vgo 

(34') 

Here, it is noteworthy that the integrals in eq 
33-34' do not depend upon the integrating path, 
because (oU2/oV)v•,r is a function of V only as 
(0S2/oV)v•,r is. Accordingly, if we change V 
under atmospheric pressure P=Po by altering 
the temperature, we derive, from eq 34'. 

LIHinter = -LIC;nter(l-d)/ Lia (35) 

where L/C~nter and Lia are the mean values for 

JC;nter and Lia in the temperature range between 
Tgo and Tg0 -(I-d)/Lla under atmospheric pres
sure. The symbol d is defined as Vg/Vgo which 
represents the ratio of the specific volume of 
Glass II to that of Glass I because of Assump
tion 1. 

By the use of eq 19, 21, and 29 with 
1-V*/Vo*=O(f3gP)« 1, we can obtain the quanti
tative relation between (oTg/oP) and (oLIH/oPg) 
as 

or 

(oTg/oP)={TV Lla-(P-P0)Ll/3 

+(oLIH/oP g))/{L1Cp-(P-P0)V Lia) 

(36) 

(oLIH/0Pg)={LICp-(P-P0) V Lla)(oTg/oP) 

-TVLla+(P-P0)VL1/3 (37) 

Criteria for Tg and Thermodynamical Relations 
!so-Free Volume. If the iso-free volume at 

Tg is a valid assumption, i.e., (oV/oTg)=O, we 
can derive, from eq 6, 7, 22, and 25, 

(oTg/oP)=Ll/3/ Lia= TV Lia/ LIC;nter?. TV Lia/ LICp 

(38) 

and 

a' =/3' =0 (39) 

According to eq 39, the densified glass could 
not be formed, i.e., d=l. 

From eq 32' and 35 with d=l, we have 

(40) 

for the glass formed under elevated pressure. 
Therefore the glass obtained under pressure 
should have higher enthalpy when the iso-free 
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volume assumption is satisfied. 
Iso-Configurational Entropy. If the assumption 

of iso-configurational entropy (iso-S0 ) at Tg is 
valid, i.e., (oS0/oP)g=0, it follows that eq 6, 
18, 22, and 23 yield 

(oTg/oP)= TV Lia/ LICp=Ll/3/(Lla+a') 

=(Ll/3-/3 1)/LlasLl/3/Lla (41) 

Thus, in this case, a' and /3' can be expressed, 
from eq 6, 7, and 41, as 

a'= {-~CpLl/3 __ 1 }Lla=(LJCintra/LJCinter)LJa?.0 
TV(Lla)2 P P 

(42) 

and 

P' = { l- TV(Llcif}LIP=(LICintra/LJC )LJP>O 
I' LICpLI /3 I' P P I' -

(43) 

Since (dS0)g=0 in the present case, performing 
the integration in eq 30 along the glass transi
tion point by the use of eq 21, we derive, 

JH=-~: 1PV dln V+P0(Vg- Vgo)Vo* 

2:: V(Pg-3P0)(1-d)/2 (44) 

Iso-Configurational Energy. When the assump
tion of the iso-configurational energy (iso-U0 ) as 
Tg is valid, we obtain, from eq 19, 

(oTg/oP)=(TV Lla-PV Ll/3)/(LICp-PV Lia) (45) 

By the use of eq 6 and 7, eq 45. is transformed 
to 

( oTg)_TVLIC!_{l- LIC;ntraxPV } (46) 
oP - LICP LIC;nter(LJCp/ Lla-PV) 

From eq 22, 23, and 45 with eq 6 and 7, we 
have 

a'= {iM~~2 -l} Lia!( 1-~!) 
L/C;ntraLJa (47) 

- LJC;nter(l-P LJ/3/T Lia) 

/3' = { 1 _ TV(L1_a) 2
} Llf3!( 1 _ J>V Lil!_) 

LICPLI /3 LICp 

LJC~ntraLJ/3 
(48) 

The enthalpy difference LIH is readily evaluated 
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from eq 29 with (dU0)g=0 as 

L1H=-P0 Vg 0V/(l-d) (49) 

lso-Configurational Enthalpy. From eq 20 with 
(oH 0/oP)g=O, we can derive 

(oTg/oP)={TV Lla:-(V- V*))/ L1Cp < TVLla:/ L1Cp 

(50) 

for the case of the iso-configurational enthalpy 
(iso-Hc) assumption. Combining eq 50 and 22 
or 23, we obtain 

a:'={ Llf3L1Cp -~-1 }Lia: (51) 
TV(Lla: )2 -( V - V*)Lla: 

when TVLla:=t=(V-V*), and 

/3'={1-_TV(Lla:)2-(V-V*)Lla:}Ll/3 0 (52) 
L1CpL1f3 > 

From eq 31 and 21 with (dH0 )g=0, we have 
the expression for LlH as 

LlH=-[{(Pg-P0)V dln V+(V-V*)dP) 

=-[[(Pg-P0)Vdln V 

+ { (Vg 0 -l)V;0 + V(P-P0) ( ~{iJ>:)JdP] 
c::::::{V(l-d)-V; 0(Vg0 -l)}(Pg-P0 ) 

c::::::-(Vg-l)V/(Pg-Po)<0 (53) 

Adam-Gibbs Theory. Adam and Gibbs 7 pro
posed a molecular kinetic theory which explains 
the temperature dependence of relaxational be
havior in glass-forming liquids. The final re
sult of their theory can be written as 

r=A exp (CjTS 0 ) (54) 

where -r is the relaxation time, and A and C 
are constants. According to eq 54, the glass 
transition may occur at iso-(TSc), i.e., (dTS 0)g= 
T(dSc)g+S/(dT)g-=0. In this case, from eq 18, 
22, and 23 with eq 6 and 7, we have 

(oTg/oP) = TV Lla:/(L1Cp+Sg0 ) 
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= TVi:Ja:/{LlCp(l +n)) < TV Lia:/ L1Cp 

a:'= { LlCpLlp(l +11) _ 1 }Lia: 
TV(Lla:) 2 

= {ACp(l+n) -l }Li 
LJCtnter a: 

p 

(55) 

(56) 

/3'={1- TV(Ll_a:_)2 }Ll/3 
L1CpL1/3(l +n) 

= { 1-j~~r:~) }Ll/3 

where n=Sg0 /L1CP. 

(57) 

Putting (dTS 0)g=0 into eq 30, we find the 
expression of the enthalpy LlH represented by 

LlH=-nL1CpL1Tg+ V(Pg-Po)(I-d)/2 

c::::::{-nTVLla:/(1 +n)+ V(l-d)/2)(Pg-P0) 

DISCUSSION 

Criteria for Glass Transition 

(58) 

In order to survey the theoretical predictions 
for (oTg/oP), a:' or /3' and LlH derived from 
each criterion for the glass transition, we first 
evaluate a few quantities involved in the ex
pressions for them. Since internal pressure 
Pi==.(oU/oV)r is expressed by Pi=Ta://3-P, we 
have, using eq 6, 

LlCp/V Lia:~ LJC~ntcr;V Lia:= T Lia:/ L1 f3 

=Pil + L1Pif3g/ Ll/3 +P 

(59) 

==.P/+P (59') 

where Pil is Pi in the liquid state, LlPi is the 
difference in Pi between the liquid and glassy 
states, and Pih=Pi1+L1Pi/3g/Ll/3. As seen from 
eq 3', 8 and 59, P/ is equal to (0U2/0V)v*,r/V* 
and may be positive in any range of V, i.e., 

pih=Pil +LlPipg/ Llp=(oU2/oV)v*,T/V* >0 (60) 

The value of LlPi is about 60-70% of Pil, 10 

and the ratio of pg/ Ll/3 is about 1-2 at atmo
spheric pressure in amorphous polymers. 10 

Accordingly, P/ may be estimated as about 
5000-9000 atm from the definition of eq 60, 
since Pil is usually 3000-4000 atm in the 
vicinity of the glass transition point at atmos
pheric pressure. 

On the other hand, the value of V - V* 
appearing in the expressions for the iso-H0 may 
be the same order of TV Lia: because V and V* 
may be approximated by V= V0 + Va: 1T and 
V*= V0 + Va:gT, respectively, where V0 is the 
volume of hypothetical liquid at 0°K, and a:1 

is thermal expansion coefficient in the liquid 
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Table I. Characteristic values for glass transition 

Polymer 
Lia X Lip X 

Vg, 10-4, 10-s, 
cc/g deg-3 atm-1 

TVLla Lip TV.LI 

ca11J:g g Je~/~~ LICp Lia' LICp(l :n) 
deg/atm deg/atm 

-------------------------------- -------

Polystyrene 362• 0.97• 3.0• 1.56• 0.075b 0.030• 0.034 0.052 0.029 

Poly(methyl methacrylate) 384• 0.855• 2.95• 1.23• 0.086° 0.023• 0.027 0 . .42 0.024 

Poly(vinyl chloride) 353• 0.75• 2.15• 0.89d,a 0.068° 0.013s• 0.0203 0.041 0.0172 

Poly(vinyl acetate) 298f 0.855f 4.0f o. ror 0.022f 0.025 0.0396 0.0205 

Polyisobutylene 198f l.048f 4.5f 2.5 11 0.09f 0.024f 0.024 0.053 0.017 

Natural rubber 252i 0.96i 4.4i l .2li (0.125)k 0.024j (0.020s) 0.027s 

• ref 12, b ref 13, c ref 14, d ref 4, e ref 15, 
k ref 21. 

state. In fact, (V- V*)/V at Tg under atmos
pheric pressure is estimated to be about 0.085 
from the analysis in the preceding paper,9 where
as TgLlcx is about 0.113 according to Simha and 
Boyer11 in amorphous polymers. 

The value of n( = Sg0 / L!Cp) involved in the 
theoretical results obtained from Adam-Gibbs 
theory may be approximated by ln (Tg/T2 ) be-

cause Sg°= \Tg LJCP/TdT~LlCP In (Tg/T2), where 
j T2 

T2 is the temperature at which sc would become 
zero. Therefore, since Tg/T2 =1.30 (±8.4,96) for 
glass-forming liquids according to the analysis 
of Adam and Gibbs,7 the value of n is estimated 
at about 0.26. 

As seen from eq 41 and 45 with eq 59 and 
60, (BTg/BP) for the iso-Uc is smaller than that 
for the iso-S°, and therefore a' or (3' for the iso-Uc 
is larger than that for the iso-S0 • However, when 
the pressure is not so high, i.e., P«P/+P, eq 45, 
47, and 48 for the iso-Uc become identical with 
the corresponding equations for the iso-S°, i.e., 
eq 41, 42, and 43, as also seen from eq 59. There
fore the iso-Uc is equivalent to the iso-Sc when 
P«P/+P as far as the pressure dependence of 
the glass transition temperature is concerned. 

· It follows also from eq 59 that LJH for the iso
S0 expressed by eq 44 is negligibly small com
pared with LJHinter given by eq 34 under low 
pressure. Accordingly when P«P/+P, LJH~0 
which ts identical with the result for the iso-Uc 
represented by eq 49. As for the iso-H°, since 
V - V* is the same order of TV Lla, the pressure 
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r ref 16, g ref 17, h ref 18, i ref 19, j ref 20, 

dependence of Tg, (BTg/BP), expressed by eq 50 
is much smaller than that for the iso-S" (eq 41), 
and thus (3 1 is much larger, as seen from eq 52, 
and 43. 

On the other hand, the Adam-Gibbs theory 
predicts that the value of (BTg/BP) is a little 
smaller than that for the iso-S°, as indicated by 
comparing eq 55 with eq 41, because n is about 
0.26. The enthalpy difference LJH shows a negative 
but a small deviation from that of the iso-Sc. 

To summarize the theoretical predictions in 
P«P/+P: as for (BTg/BP) 

(iso-H 0 ) < (iso-TSc)= TV Lla/{L!Cp(l +n)} < (iso-U0
) 

(iso-S0 ) = TV Lla/ L!CP 

<Ll/3/Lla=(iso-free volume) 

as for (3 1 

(iso-Hc) > (iso-TS0 ) > (iso-U 0 ) (iso-Sc) 

=(L1C1ntra/ LJCp)LJ/3 

:2:0=(iso-free volume) 

as for LJH 

(iso-Hc) < (iso-TS0 )=-nL1CPL1Tg 

< (iso-Uc)=O~ (iso-S0 ) 

< LJC~ntra L!Tg=(iso-free volume) 

and as for BL!H/BPg 

(iso-H 0 ) < (iso-TS0 ) 

=-nTV Lla/(1 +n) < (iso-U 0)=0 

(iso-Sc) < LJC~ntraLJ/3/ Lla 

=(iso-free volume) 

(61) 

(62) 

(63) 

(61) 
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Here eq 64 is derived from eq 37 with eq 59 
and 61. 

In Table I, we show characteristic values for 
the glass transition calculated from published 
data near atmospheric pressure. The values of 
n required in the calculation of the last column 
of Table I are those obtained by Adam and 
Gibbs. 7 The values of (oTg/oP) are almost equal 
to those of TVi:Jrx/ ,:JCP or TV LJrx/ {.::/Cp(l +n)), 
and much smaller than those of .::1{3/.::/rx. This 
fact supports the assumption of the iso-SC, the 
iso-UC, or the iso-TSC, not that of the iso-free 
volume or the iso-HC, as seen from eq 61. It 
appears that the iso-TS0 , Adam-Gibbs theory 
(eq 55), shows closer agreement with experi
mental observations than the iso-S0 (eq 41). 
However, the difference between predicted values 
from these two criteria is so small that we 
cannot make a definite conclusion on this point, 
because the data in Table I were collected from 
the results obtained by different workers and 
made for different samples. In any case it is 
clear that the glass transition occurs near the 
iso-S0 , the iso-U0 , or the iso-TS0 rather than at 
the iso-free volume. 

Upon cooling a liquid amorphous polymer 
under elevated pressure, densified glass is formed. 
This fact indicates that rx', 81 > 0, in other words 
(oTg/oP)<L1f3/.::1rx because of eq 22 and 23. Gee4 

has already presented an equation equivalent to 
eq 22 with a less general method of derivation 
which has shown close agreement with experi
mental results. The formation of such densified 
glasses indicates that the iso-free volume at Tg 
is not a valid assumption. 

The iso-S0 , the iso- U 0
, or the iso-TS0 concept 

is also verified by the experimental fact that the 
densified glass of polystyrene has almost the 
same enthalpy as the nondensified g!a.ss (see 
eq 63), which will be discussed in more detail 
in the next section. 

Enthalpy of Glass 

In the case of densified glass, we can see 
JHinter < 0 and JHintra > 0 from eq 32 and 35, 

since d<l and .::/Tg>0. Namely, intersegmental 
interactions make a negative contribution to the 
enthalpy difference iJH because the densified 
glass has less fraction of frozen holes, whereas 
intrasegmental ones make a positive contribution 
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because the chain conformation of the densified 
glass is frozen in a higher temperature, i.e., in 
a higher energy state. This qualitative inter
pretation has been already proposed by Allen, 
et al. 25 When the iso-U0 , the iso-SC, or the 
iso-TS0 is a valid assumption as suggested in 
the preceding section, ,:JH should be nearly equal 
to zero from eq 63, i.e., JHinter=-JHintra. 

On the other hand, the annealed glass of 
higher density formed at a slow cooling rate 
under atmospheric pressure should show different 
behavior, because the annealed glass is formed 
at a temperature lower than the glass forming 
temperature of the densified glass. In the case 
of annealed glass, from eq 21, we have 
-(1-d) =L1a.::1Tg. Accordingly enthalpy dif
ference .::/His given, with the use of eq 32' and 
35, by 

LJH=LIC ;ntraJTg- JC;nter(l-d)/ Ja 

=L1Cp.::1Tg 

=-L1Cp(l-d)L1a (65) 

In the annealed glass, the difference in glass 
forming temperature, '1Tg, is negative, whereas 
1-d is positive. Therefore both inter- and intra
segmental interactions, i.e., both the hole fraction 
and chain conformation, make nagative contri
butions to ,:JH. In other words, it is found that 
the annealed glass is expected to have lower 
enthaly by the amount given in eq 65. 

When the densified glass is heated under 
atmospheric pressure at an ordinary heating rate, 
the volume increases sharply in the vicinity of 
Tg, 22 as is observed in the annealed glass obtained 
by a slow cooling rate. On the other hand, 
heat absorption or a peak of heat capacity in 
the densified glass is not observed in the vicinity 
of Tg, as is found in the annealed glass. 23 • 24 

Corresponding to this fact, it has been found 
by measurements of heat of the solution that 
the densified glass has almost the same enthalpy 
as glass formed under ordinary conditions,23 • 25 

whereas the annealed glass has a lower value of 
enthalpy. 23 These experimental facts are pre
cisely those predicted by this theory for anneal
ed glass (eq 65) and the desified glass with the 
iso-S', the iso-U 0 , or the iso-TS0 criterion (eq 
63). 

lchihara, et al., 23 obtained the result that :JH 
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for the densified polystyrene is zero in the pres
sure range of measurements, 0-600 atm, and 
Allen, et al., 25 found that ilH for the densified 
polystyrene glass formed at 1250 atm is negative 
but very small. 

The eq 65 for the annealed glass is quantita
tively satisfied by experiments23 for polystyrene 
and poly( a-methy !styrene). 

As can be seen from eq 28, if we measure the 
difference in enthalpy between the annealed and 
densified glasses which have the same specific vol
ume, i.e., the same Vg, we may obtain the differ
ence in U1 c between different temperatures because 
the glass forming temperature of the densified 
glass is higher than that of the annealed glass, 
then we may evaluate ilC;ntra, and separate 
iJCP into iJCinter and iJC;ntra. It should be 
noticed, however, that this method is essentially 
based on the present model with Assumption 1, 
2, and 3. (Alternatively, we may estimate 
JC;mer from eq 6 as already presented in the 

preceding paper. 8) 

Role of lntrasegmental Interactions in Micro
brownian Motion 

When iJC;ntra=O or when there is no intra-

segmental degrees of freedom, the iso-free volume, 
the iso-SC, and the iso-U 0 are equivaent to each 
other, as seen from eq 9 and 11. Then (aTg/aP) 
=TVila/ilCp=il/3/ila, and a' =/3' =0 for any one 
of the criteria. Densified glass would not there
fore formed. This is also readily seen from eq 
6, 7, 41, 42, 43, 45, 47 and 48 with ilC;ntra=0. 

Accordingly the observed fact TV ila/ ilCP < il/3/ .da 
and the phenomenon of formation of densified 
glass may be closely related to the conformation 
of chain backbone. The satisfaction of iso-Sc 
(or iso-Uc) at Tg suggests that the intrasegmental 
interaction or the flexibility of a chain molecule 
also plays as important a role in the segmental 
motion as the free volume10 and that the seg
mental motion can have the same mobility in 
the less · free volume when the chain is more 
flexible. Thus the glass transition occurs at a 
smaller value of V under elevated pressure, since 
the chain is more flexible at a higher temper
ature. This causes the formation of the densified 
glass having a lesser fraction of frozen holes. 
The importance of molecular flexibility is also 
suggested by the following fact, as pointed out 
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in the previous paper: 9 the free-volume fraction 
(1- V0/Vg) at Tg decreases from about 0.17 for 
high-molecular-weight polymers at about 0.05 
for simple low-molecular-weight substances with 
decreases in the chain length, where V0 is the 
volume of a hypothetical liquid at 0°K and 
Vg is the volume at Tg. 

Acknowlegments. The author wishes to thank 
Prof. T. Hata of the Tokyo Institute of Tech
nology and Dr. S. Ichihara for encouraging 
discussions and much helpful advice. 

APPENDIX 

In order to see the relationship between eq 5 
and Assumption 1, we will evaluate from eq 5 
the change in the cell volume with temperature 
and pressure in the liquid and glassy states, and 
that with frozen-hole fraction of the glass. 

Inserting eq 5 into eq 2 and 4, and differenti
ating both sides of the obtained equations with 
temperature (or pressure) under constant pressure 
(or temperature), we have 

PVix1+[a(~;;:)2 l ai*+ [aaia~:2:* tl.=o 
(A-1) 

PVag+[a(f~!/:)21 ag*+ [a~(a~!~£t l. =O 

(A-2) 

V(I+P/31)-[a(~~F;:)2]/i*=O (A-3) 

[ a2F/' ] * V(l +Pf3g)- o(lnV*)2 Tpg =0 (A-4) 

where a=(o In V/oT)p, /3=-(o In V/oP)r, a* 
=(o In V*/oT)p, and /3*=-(o In V*/oP)r, and the 
subscripts 1 and g refer to the liquid and glassy 
states, respectively. It must be noted here that 
a/=ag and /3/=pg because Vis constant in 
the glassy state. From eq A-1, A-2, A-3, and 
A-4, we obtain 

(A-5) 

and 

(A-6) 

at glass transition. Therefore, under Ppg/(1 + 
Ppg)«I, ai*=a/ and f3i*=/3g*, which are what 
Assumption 1 means. 
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We now consider the cell volume in the two 
different glasses having different frozen-hole 
fractions, 1- V11 and 1- V21 • It follows from 
eq 2 and A-4 that 

(A-7) 
and 

PV2 +(aF/ 1/a ln V*)r[v2• =0 (A-8) 

where the subscripts 1 and 2 refer to two different 
glasses, and the symbol [v;* designates the value 
at V; *. Since 

(aF/'Ja In V*)r[v2• -(aF/'Ja ln V*)r[v1• 

~[a2F/'/a(ln V*)2]r(ln V/-ln V/), 

we can derive from eq A-7, A-8, and A-4, 

(V//V/-l)/(f\JV1-l)~ -Ppg/(1 +Ppg) (A-9) 

Therefore, under Ppg/(l+Ppg)«l, V/=V/, 
which is again what Assumption 1 means. 
Likewise, we can derive from eq A-2 and A-4 

and 

(A-10) 

(A-11) 

LIST OF SYMBOLS 

A, constant in Adam-Gibbs' equation 
(eq 54) 

C, constant in Adam-Gibbs' equation 
(eq 54) 

JCp, difference in heat capacity between the 
liquid and glassy states 

JCp, mean value of difference in heat 
capacity between liquid ahd glassy 
states equal to JC inter+ JC intra 

, p p 

JC;nter, mean value of LIC;nter in the temper-

ature range between Tgo and Tg 0 -

(l -d)/ Lia 
JC;ntra, mean value of LIC;ntra in the temper

ature range between Tg and Tgo 
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d, ratio of reduced volume V of densified 
glass to nondensified glass, Vg/Vgo 

F, Helmholtz free energy 
F/, 

F II 
2 ' 

He , 

part of Helmholtz free energy which 
is a function of V and T ( eq 5) 
part of Helmholtz free energy which 
is a function of V* and T (eq 5) 

configurational enthalpy defined by eq 
14 

LIH, enthalpy difference between two glasses 
when the glass formed at an ordinary 
cooling rate under atmospheric pres
sure is taken as the reference 

inter, superscript for intersegmental interac
tions 

intra, superscript for intrasegmental interac
tions 

M, total number of lattice sites in the 
system 

N, total number of segments in the system 
n, ratio of configurational entropy to the 

difference in heat capacity at Tg, Sg0 / 

LICp 
P, pressure 

P0 , atmospheric pressure at which the 
reference glass is formed 

Pg, pressure at glass transition point 
Pi, internal pressure, (aUJaV)r 

Pn, internal pressure in the liquid state 

Pt, quantity defined by Pt=Pu+LIPiLlpg/ 
Lip (eq 60) 

L1Pi, difference of internal pressure between 
the liquid and glassy states 

S, entropy 
S/, 

s II 
2 , 

S°, 

S/, 

sc g, 

part of entropy which is a function of 
V and T (eq 5) 

part of entropy which is a function of 
V* and T (eq 5) 
configurational entropy defined as a 
part of entropy which is frozen-in in 
the glassy state (eq 9) 
entropy associated with the chain con
formation which is not allowed to 
change in the glassy state 
configurational entropy at glass transi
tion temperature 

T, temperature 
temperature at which enthalpies of 
glasses are compared in the evaluation 
of LIH 

T2 , temperature at which configurational 
entropy would become zero in the 
theory of Adam and Gibbs 

Tgo, temperature at which the reference 
glass in the evaluation of LIH is formed 

LITg, difference in glass transition temper
ature, Tg-Tgo 

U, internal energy 
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U/, part of internal energy which is a 
function of V and T (eq 5) 

U/ 1 , part of internal energy which is a 
function of V* and T ( eq 5) 

U°, configurational energy defined as a 
part of internal energy which is frozen
in in the glassy state ( eq 11) 

U/, internal energy associated with the 
chain conformation which is not allow
ed to change in the glassy state 

V, volume 
V, reduced volume defined as V= V/V*= 

M/N 
V*, volume of cells occupied by segments, 

v*N 
Vg, volume at glass transition temperature 
Vs, volume of the glass measured at the 

same temperature and pressure ( eq 26 
and 27) 

V0 , volume of hypothetical liquid at 0°K, 
equal to V* at 0°K 

Vg, reduced volume V at glass transition 
temperature 

Vo*, volume of cells V* at (T0 , P 0) 

Vgo, reduced volume Vg at Tg of the ref
erence glass in the evaluation of ,:JH 

v*, volume of a cell 

a', quantity defined by eq 24 or 26, which 
represents the decrease in the frozen 
hole fraction with the increase of glass 
transition temperature under elevated 
pressure 

ag, thermal expansion coefficient in the 
glassy state 

a 1, thermal expansion coefficient in the 
liquid state 

,:la, difference in thermal expansion coef
ficient between the liquid and glassy 
states 

fla, mean value of ,:la in the temperature 
range between Tgo and Tg0-(l-d)/fla 

p', quantity defined by eq 25 or 27, which 
represents the decrease in the frozen 
hole fraction with the increase in 
pressure of glass-formation 

pg, isothermal compressibility in the glassy 
state 

,:Jp, difference in isothermal compressibility 
between the liquid and glassy states 
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r-, relaxation time of microbrownian 
motion (eq 54) 

1, as subscript designates the intraseg
mental interactions 

2, as subscript designates the interse
mental interactions 

(ax;ay)g, change of Xg, x at glass transition 
point, with y 

(dx)g, change of X;;, x at glass transition point 
(dx)1, change of x in the liquid state 
O(x), order of magnitude of x 
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