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ABSTRACT: A hole theory of polymer glasses is presented, in which the glassy 
state is distinguished from the liquid state by the freezing of holes. The equation of 
state, internal pressure, and cohesive energy density are derived. The results of the 
theory are compared with experimental observations with the use of the molecular 
parameters obtained in the preceding paper. The hole theory can semiquantitatively 
explain the decrease of internal pressure on glass formation. 

The free volume at the glass transition temperature and the correlation of the 
glass transition temperature to cohesive energy density are also discussed. 

KEY WORDS Hole Theory/Polymer Glass/Glass Transition/Equation 
of State/ Internal Pressure/ Free Volume/ Cohesive Energy Density/ 

In a previous paper1 of this series we applied 
the hole theory to polymeric systems along the 
line of the theories of polymer liquids developed 
recently,2· 3 and calculated the partition function 
and the equation of state in the liquid state. 
Here we will discuss the glassy state by the 
same approach. 

The glassy state is, as is well known, a thermo­
dynamically non-equilibrium state and depends 
on the condition of glass formation. Once 
the glass is formed, however, the relaxation 
associated with the microbrownian motion, e.g., 
volume relaxation, is not observed in the usual 
time scale of measurement at temperatures well 
below the glass transition temperature. Thus 
we here deal with the glassy state as a quasi­
equilibrium state, i.e., we regard it as a frozen 
liquid such that polymer chains cannot change 
their conformations and cannot exchange their 
mean positions with each other. In the glassy 
state the segments can only vibrate in the vi­
cinity of their mean positions as in the crystal­
line state whereas the long range order of the 
configuration of molecules in the system as is 
found in the crystalline state does not exist. 
These features of the glassy state are character­
istically manifested in the behavior of the "ex­
cess entropy" which is here defined as the 
entropy in excess of that of the perfect crystal 

at the same temperature. The excess entropy 
decreases with decreasing temperature till the 
glass transition temperature is reached, and re­
mains almost constant below the transition tem­
perature. The same behavior is also found in 
the case of "excess enthalpy". These phenomena 
may imply that the glassy state is very similar 
to the crystalline state in respect to temperature­
and volume-dependences of themodynamic be­
havior. Corresponding to the above facts, the 
discontinuous decreases in internal pressure and 
heat capacity on glass formation are also observed, 
which reflects the change in the state of aggrega­
tion of molecules from the liquid-like state to 
the solid-like one. The excess entropy, how­
ever, is not zero in the glassy state. This may 
indicate that the glass has a configurational 
disorder which is different from the crystal. 

It seems to the author that the theories de­
veloped recently for polymer liquids2 ' 3 are un­
suitable for extension to explain such differences 
of the glass from the liquid and the crystal, 
whereas a hole theory may explain them as the 
freezing of holes as far as the intersegmental 
interactions are concerned. 1 

In this paper we propose a theory of polymer 
glasses based on the above considerations, which 
is an extension of the hole theory for polymer 
liquids. 1 We derive the equation of state, 
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cohesive energy density, and internal pressure 
in the glassay state, and discuss the change in 
internal pressure at the glass transition temper­
ature and the free volume at Tg. 

THEORY 

Partition Function 
We now consider a system in which N/r 

polymer molecules, each consisting of r segments, 
are arranged on a lattice comprising M sites 
(M?:.N), and therefore there remain M-N empty 
sites or holes. According to Prigogine, 2 we 
assume that the external degrees of freedom 
attributable to a segment are reduced to 3c ( c::;; I) 
because of interconnection of segments, and that 
the coordination number z' of a segment be­
comes smaller than that of the lattice z because 
a part of intermolecular contacts is replaced by 
intramolecular ones. z' is related to z by the 
equation z' =(zr-2r+2)/r. Then the partition 
function Z of the system may be written1 

Z=J(T)q'Nvf{ exp(-z' <p(0)N/2kT) 

X ,;;, ( / )'NIV-ll/lV-l+sl L.JY, · Vn Vro 
). 

{ N<p(0)z'(V-1)} ( 1 ) 
xexp 2kT(V-l+s) 

={(z-1)/e} lr-liN/r rN/rvNIV-ll+N/r( V- l)-NIV-11 

vn=v*= V*/N 

Vn =(4ir2112 /3)(1 -2-116(a3N/V*)113 }3 v* /N 
and 

( 2) 

( 3) 

( 4) 

<p(0)=s*{l.0109(a3N/V*)4-2.4090(a3N/V*)2) ( 5) 

where J(T) is the partition function for the in­
trasegmental degrees of freedom, and q'N is the 
kinetic part of the partition function associated 
with the external degrees of freedom. The 
quantity I:;g, represents the number of con-

;, 
figurations of molecules arranged on the lattice 
and we here used the result of Flory's theory4 
for polymer solutions. The free volume vro 
and the intersegmental interaction energy <p(0) 

were evaluated by using the square well potential 
and the Lennard-Jones 12-6 potential respec­
tively, and .* and a are the characteristic pa-
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rameters involved in the latter potential expressed 
as 

u(ri;)=4s* {(a/rii)1 2 -(a/r;;) 6) 

where u(r;;) is the potential energy of interaction 
between molecules (or segments) i and j as a 
function of separation r;;, s* is potential energy 
at a minimum of u(r;;), and a is the separation 
r;; at u(r;;)=0. The volume of a cell is denoted 
by v*, which is defined by v*=V*/N=VfM. 

The quantities V and s are defined as V= 

VfV*=M/N and z'/z, respectively. 
In the liquid state, both the number of holes 

(M-N) [=N(V-1)] and the volume of the cell 
may change with volume and temperature, as 
treated in the previous paper. 1 On the other 
hand, in the glassy state the number of holes 
is considered to be unchangeable because the 
rearrangement of segments on the lattice cannot 
be allowed. Thus we here assume that in the 
glassy state the number of holes (M-N) remains 
constant. In other words, the values of M/N 

( = V) is assumed to be constant and equal to 
Vg = Vg/Vg *, where Vg and Vg * are respectively 
V and V* at the glass transition point. The 
change in volume in the glassy state, therefore, 
comes solely from a change in the cell volume. 
The hindered rotation about chain backbones 
which is related to J(T) may also be frozen-in 
and not be allowed to change in the glassy 
state. 

The external degrees of freedom 3c of a seg­
ment are associated with the cell partition func­
tion and hence the free volume. Thus, since 
the effect of the interconnection of segments on 
the free volume, in other words, on the move­
ment of the segment within the cell, may be 
considered to be the same in both the liquid 
and glassy states, the parameter c in the glassy 
state is assumed here to be identical with that 
in the liquid state. In the present theory, the 
changeability of the chain conformations in the 
liquid state is expressed by the change in the 
configurations or the arrangements of polymer 
chains on the lattice. 

Under this theory, therefore, the freezing of 
the microbrownian motion in the glassy state is 
represented by the freezing of both holes and 
the chain conformations. 

Accordingly, using the partition function of 
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eq 1 with eq 3-5, under the condition V= Vg= 
constant, we can obtain the thermodynamic 
quantities in the glassy state which are associated 
with the intersegmental interactions and hence 
derivable from the volume-dependent part of Z. 
The hole fraction frozen-in in the glassy state, 
hence Vg/Vg *, is the so-called ordering parameter, 
and is a single variable which specifies the 
frozen structure of the glass concerned with the 
intersegmental state, excluding the intrasegmental 
state represented by J(T). Thus the thermo­
dynamic properties of the glass associated with 
the intersegmental interactions generally depend 
on Vg/Vg * in addition to temperature and pres­
sure. For example, the volume in the glassy 
state is not determined by temperature and pres­
sure without specifying the third variable Vg/V/. 

Equation of State, Cohesive Energy Density, and 
Internal Pressure 

The equation of state can be derived from 
the partition function eq 1 with eq 3-5 under 
the condition, V= Vg=constant, in the conven­
tional manner: 

P=kT(a In Z/aV)v,T ( 6 ) 

The result is 

PV'(Vg-1 +s)/s=(Vg-1 +s)/s 
+ v~sz-,16vt-11\i- vtz-'!6j?!-l/3) 

-(2.4o9v/v1-2-2.021sv/v'-4)/t ( 1) 

where F=Pv*/s*z', T=ckT/s*z', and V'=V/(,3N. 
By the use of eq I with eq 3-5 under the 

same condition, V= Vg=constant, as in the case 
of the equation of state, cohesive energy density 
Dg and internal pressure Pig in the glassy state 
are derived from 

Dg=-(kT2/V)(ainZ,/aT)v,v (8) 

and 

Pig=(au;av)r=-[a(DgV)/aVJr.v ( 9) 

where Zv is the volume-dependent part of the 
partition function Z, i.e., Zv=Z/J(T)q"N in eq 
1. Thus we have 

Dg=(r;* z' /a 3)sV/( Vg-1 +s)-1 v-3 

x(2Ao9-1.0109v/v'-2 J12 (IO) 

Pig=(c* z' /a 3 )sV/( Vg-1 +s)-1 v'- 3 

x(2.409-2.021sv/v'- 2) (11) 
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Change in Internal Pressure at Glass Transition 
Temperature 

We will now consider the magnitude of the 
internal pressure difference between the glassy 
and liquid states at glass transition temperature. 
According to the results obtained in the previous 
paper,' internal pressure in the liquid state is 
given by 

Pu =(r;* z' /v*)Ks( V-1 +sr2 

x{l-h-hV(V-l+s)-'(ainK/ain V*)- 1r 1 

(12) 

where 

K = - <p(0)/2s * 
={2.409(a3N/V*)2-1.0109(a 3N/V*)4)/2 (13) 

and 

for the general case in which V* and V are 
both variable with temperature and pressure. 
For the model in which the cell volume is not 
variable, we have the alternative equation re­
presented by' 

Pn=(s*z'/v*)Ks(V-1 +s)- 2 

In the former case, we obtain 

( Pig) 
Pu T=Tg 

(15) 

_2(1-hg)(Vg- l +s){2.409-2.0218(a3N/Vg *)2) 

Vg{2.0409- l .0109(a3N/Vg *)2) 

+hg 

from eq 11 and 12, and 

( Pig) 
pi! T=Tg 
_ 2(Vg- l +s){2.409-2.0218(a3N/Vg *)2} 

Vg(2.409- l .0109(a3N/Vg *)2) 

( 16) 

( 17) 

from eq 11 and 15. These equations represent 
the change in internal pressure at glass transi­
tion temperature Tg. 

We can also estimate the change in internal 
pressure at Tg by another method which was 
used by Allen, et al. 5 Since the configuration 
of chain molecules in the system may be frozen 
at Tg, the decrease in internal pressure at Tg 
may be attributed to the disappearance of the 
pressure effect arising from the entropy Sc as-
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sociated with the combinatory factor, i.e., the 
arrangement of chain molecules on the lattice. 
The decrease in internal pressure, LlPi, is then 
given by eq 2 as 

LlP;=Pi]-P;g=T(oS0 /3V)r=RT(o In Z.:,g,/oV)r , 
={ln (1-Vg-1)-1 - Vg-1 +1/r}Vg 

x{l-o ln V*/o ln V)r)RTg/Vg (18) 

When (o In V* /o In V)r=O, eq 18 becomes the 
equation derived by Allen, et al., 5 where they 
assumed the cell volume was constant, being 
independent of temperature and pressure. 

DISCUSSION AND COMPARISON WITH 
EXPERIMENT AL OBSERVATIONS 

Volume-Temperature Relation at Zero Pressure 
The equation of state represented by eq 7 is 

identical with one of the two equations (eq 21 
in ref 1) which determine the equation of state 
in the liquid state, except that the hole fraction 
(or V) is invariable in eq 7 (see APPENDIX). 
As also pointed out in the previous paper,1 the 
relation of V*c/N-f-P, expressed by eq 7, is 
insensitive to the variations of V and s at pres­
sure in the vicinity of atmospheric pressure. 
Accordingly, (1) the change in cell volume V* 
with temperature and pressure is almost the 
same in both the liquid and glassy states al­
though the hole fraction ( or V) is variable in 
the former state and invariable in the latter 
state; (2) the P-V* -T relation is almost iden­
tical with the P-V-Trelation in Simha's theory6 

which is derived from eq 7 with Vg=l, and the 
volume V estimated from eq 7 is the sum of 
the cell volume showing such behavior and the 
volume of frozen holes; and (3) the P-f­
V* /(/N relation is approximately a universal 
function independent of substances. 

The relations of V/<iN-T and V*/<iN-f at 
P=O calculated from eq 7 are compared with 
some experimental results in Figure 1. The ex­
perimental volume-temperature relations were 
transformed into reduced forms with the mo­
lecular parameters obtained previously. 1 As 
already pointed out, the V/<iN-T relation de­
pends on Vg or Vg/a 3 N. In the calculation of 
V/a3N-T curves for comparison with experi­
mental results we were obliged to use the ob­
served value of glass transition temperature (or 
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Figure 1. Reduced volume and reduced cell 
volume vs. reduced temperature under atmospheric 
pressure: --, calculated; experimental, O, 
poly(vinyl acetate)5; e, polystyrene16 ; L::,., poly 
(methyl methacrylate)19 (cf. Table II). 

volume) to determine Vg, since we could not 
determine the glass transition temperature by 
the theory. 

The calculated curves agree with the observed 
ones fairly well. This is in accordance with the 
well known fact that the lattice theory is valid 
for the solid state rather than for the liquid 
state. 

Cohesive Energy Density and Internal Pressure 
In Figure 2, we show the calculated curves 

for internal pressure and cohesive energy density 
in both the glassy and liquid states, comparing 
them with some experimental results, to indicate 
their characteristic behavior in the two states. 
As can be seen in Figure 2, internal pressure 
decreases sharply or discontinuously at Tg as 
the substance is cooled from the liquid state to 
the glassy state. On the other hand, cohesive 
energy density does not show such change and 
increases continuously, as the volume decreases, 
with somewhat different gradients in the liquid 
and glassy states. Thus in the glassy state in­
ternal pressure is much less than cohesive energy 
density, whereas in the liquid state they are 
nearly equal to each other. Therefore it must 
be noted that in the glassy state internal pres­
sure is no longer a direct measure of cohesive 
energy density. One more characteristic difference 
in internal pressure between the glassy and liquid 
states is that in the glassy state it increases as 
the volume increases, whereas in the liquid state 
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Figure 2. Reduced internal pressure and reduced 
cohesive energy density vs. reduced volume under 
atmospheric pressure in the liquid and glassy 
states: --, ----, -·-and-----, calculated value; 
the solid and dotted lines in the liquid state are 
calculated by eq 15 with r= oo and eq 12 with 
r=oo, respectively. --- indicates reduced internal 
pressure of the closest packing solid (eq 11 with 

Vg=O), which is identical with Simha's theory.6 

Experimental: O, poly(vinyl acetate)5 (cf. Table 
II, s*z'/a3= 178 cal/cc1) and!:::,,, poly(ethyl acrylate)5 

(Vg=0.855 cc/g, Vg/a3 N= 1.058, s*z'/a3= 165 cal/cc1). 

it decreases, as is well known, approximately 
proportional to v-2 • It can be seen from Figure 
2 that the above characteristic behavior of in­
ternal pressure can, at least qualitatively, be 
interpreted by the present hole model. Qualita­
tively speaking with the hole model, because of 
the change in the number of holes, internal 
pressure decreases as the volume increases in 
the liquid state, whereas since only the cell 
volume is changeable in the glassy state, it in­
creases as the volume increases and is smaller 
in magnitude than that in the closest packing 
state (indicated by a chain line in Figure 1) due 
to the presence of frozen holes. 

We now consider the internal pressure of the 
densified glass having a smaller value of V 
which is obtained by glass-formation under 
elevated pressure. The slowly cooled glass has 
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also less hole fraction and shoul<l show the same 
behavior in internal pressure. According to the 
results ( 1) in the preceding section, the P-V* -
T relation of the densified glass should be almost 
identical with that of nondensified glass, i.e., 

V(T, P)/V.(T, P)= Vg/Vgs=d 

(independent of T and P) (19) 

where V and Vs are the volume of the glasses 
formed under elevated and atmospheric pressures, 
respectively. Therefore, the thermal expansion 
coefficient a and compressibility fi, hence in­
ternal pressure Pi (=a/ (3- P), are almost the 
same for any glasses formed under different 
condition. However, it may not hold exactly. 
The ratio of internal pressure of the densified 
glass, Pi, to that of nondensified one, Pis, is 
derived from eq 11 as 

(Pif Pis)T= Vgs(Vg8 -1 +s)/Vg(Vg-1 +s) 

~(Vgs/Vg/=d-2 (20) 

if the variation of V*/a3N with Vg in the ex­
pression of eq 11 is assumed to be negligible. 
The values of the internal pressures Pi and Pis 
compared at the same temperature and atmos­
pheric pressure are very close but not equal. 
On the other hand, the ratio Pi/Pis compared 
at the same volume is expressed, from eq 11, by 

(Pi/Pis)v 

f?/(Vgs-1 +s)(2.409-2.021sv/v'-2) 

P!.( f?g- l +s)(2.409-2.021s P!s v'- 2 ) 

(21) 

Rearranging eq 21, we have 

(Pi/Pis)v 

=d[l +(l-d2)(a3N/V*)2/{l.192-(1iN/V*)2}] 

(22) 

=d{l-0.839(a2N/V*)2d2} /{1-0.839(a3 N/V*)2} 

(22') 

The value of (PdPis)T calculated by eq 20 is 
1.04 for d=0.98 and 1.11 for d=0.95, whereas 
that of (PdPis)v calculated by eq 21 is 1.24 for 
d=0.98 and 1.44 for d=0.95, when V*=a3N. 
The internal pressure compared at the same 
volume should vary more greatly wi.th the 
magnitude of densification d than that compared 
at the same temperature, whereas within a glass 
internal pressure is a function of volume only 
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according to eq 11 and is invariable under 
constant volume. Experimental observations to 
examine eq 20 and 22, however, seem not to 
have been made yet. 

Change in Internal Pressure at T. 
According to eq 16 and 17, if the principle of 

corresponding states holds, the ratio Pig/PH 
should be dependent only on Vg, because the 
values of hg and r/N/Vg * are determined by 
the value of Vg. Since the value of Vg is, as 
will be shown later, almost the same for many 
polymers and furthermore the dependence of 
the above ratio on Vg is mild, the ratio ex­
pressed by eq 16 or 17 may have almost the 
same value for different polymers. (The Vg 
values for PV Ac and PMMA in Figure 2 are 
exceptionally high and low respectively). If we 
take Vg/V0 = 1.181, the average value for some 
polymers listed in Table II, and use the values 
of hg and a3N/Vg * obtained from Figure 1, the 
value of Pig/PH at glass transition temperature 
is evaluated to be 0.707 from eq 16 and 0.451 
from eq 17. The experimental values are cal­
culated from published data to be shown in 
Table I. As already found in the previous 
section, the theoretical predictions for Pig/Pii 
give again satisfactory results semiquantitatively. 

We now evaluate L/Pi with eq 18, taking 
poly(vinyl acetate) (PV Ac) as an example. It 
we put Vg=l.112, r=oo, (o In V*/a In V)T= 
{3g/ {3 1 =0.603 (see eq A-11 in APPENDIX), Vg= 
0.836 x 86/2, cc/mol and Tg=294°K for PV Ac, 5 

taking a half of repeating unit as a rotational 
unit of chain backbones, the value of L/Pi given 
by eq 18 is 10.0 cal/cc. This value is much 
smaller than the observed value5 for PV Ac, 40 
cal/cc. Allen, et al., 5 were led to the similar 

Table I. Change in internal pressure at 
glass transition 

Polymer Pig, PH, p JP 
cal/cc cal/cc ig il 

Polystyrene• 69 102 0.68 
Poly(methyl methacrylate)• 63 102 0.62 

Poly(vinyl chloride)•, b,c 
46 83 0.55 
70 114 0.61 

Poly(vinyl acetate)" 70 Ill 0.63 

• ref 8. b ref 9. c ref 10. d ref 5. 
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conclusion but they obtained a much larger 
value, 22 cal/cc, than ours in spite of taking a 
repeating unit as a rotational unit, because they 
calculated it by assuming that the volume of 
the cell was constant and putting Vg- l =0.025 
which is usually used as the free volume frac­
tion at Tg. 

The former estimation with eq 16 and 17 was 
made by evaluating the change in the volume 
dependence of internal energy associated with 
intersegmental interactions, whereas the latter 
was derived from the volume dependence of 
the entropy associated with the combinatory 
factor.* The disagreement between theoretical 
and experimental results in the latter estimation 
may arise from the difficulty in the evaluation 
of configurational entropy or the "communal 
entropy" of the liquid, which it is hardly pos­
sible to estimate by the usual lattice theory, as 
suggested in the previous paper. 1 

Reduced Volume and Reduced Temperature at Tg 
Recently several investigators11 - 13 have shown 

that glass transition occurs at constant V or f, 
and that the free volume fraction at Tg, (l­
V0/Vg), is 0.16-0.1811 •12 or 0.13, 13 ' 14 which is 
much less than the free volume fraction (about 

* If, in the calculations of eq 16 and 18, all of 
the quantities involved in the equations are evaluated 
with the equation of state derived from the partition 
function eq 1 of the present theory, eq 16 and 18 
must give the same result for the change in internal 
pressure at Tg (though it is expressed by the ratio 
of Pig to Piz in eq 16 whereas by the difference 
&Pi in eq 18), because both of them are based on 
the same partition function of eq 1. In the present 
numerical calculations of eq 16 and 18, however, 
the quantities such ash., v., v., and (a In V*/o In V)r 
were evaluated with the aid of the values and rela­
tions obtained experimentally, and hence eq 16 and 
18 gave different results. The use of the experi­
mental values and relations may imply such correc­
tion for the partition function that the equations 
of state derived reproduces the experimental one. 
In the evaluation of eq 16, the correction is con­
sidered to be that for the configurational entropy 
or the communal entropy, as pointed out in the 
preceding paper, 1 whereas in the calculation of eq 
18 it may be that for the terms of partition func­
tion excluding the combinatory factor, or the con­
figurational entropy. 
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Table II. Some characterictic values concerning glass transition 

Polymer Tg, °K Vg, cc/g Vo+, cc/g Vg/Vo EoVo+/c, Tgc/EoVo, Tg X 102 
kcal/mo! deg mol/kcal 

Polystyrene• 371 0.968 
Poly(a-methyl styrene)b 438 0.952 
Poly(vinyl acetate) 0 294 0.836 
Poly(ethyl acrylate)d, • 251 0.868 
Poly(methyl methacrylate)r 378 0.870 
Poly(ethyl niethacrylate)r 338 0.900 
Poly(n-propyl methacrylate)r 308 O.931s 
Poly(n-butyl methacrylate)f 293 O.947s 

Average 

• ref 16, b ref 17, c ref 5, d ref 7, • ref 18, 

1.2 

1.0 1.0 

'@ 
CJ 
.!c!, 

'•---....... Vg ------=-·-•-
0.9 

>,; 

0 0.2 0.4 0.6 
1/ j5 

Figure 3. Dependences of Vo, Vg and Vg/Vo on 
the degree of polymerization P for polystyrene. 16 

0.025)15 estimated from viscoelastic data with the 
Doolittle equation, where V0 is the volume of 
hypothetical liquid at 0°K. The constancy of 
Vg or Vg/V0 is equivalent to that of Tg accord­
ing the principle of corresponding states. The 
values of Vg/V0 and fg calculated with molecular 
parameters obtained in our analysis1 are tabulated 
in Table II, where V0 represents the cell volume 
at O°K and is equal to 0.916 a3N in the present 
theory. 1 The free volume fraction calculated 
from the average value of Vg/V0 is 0.153, al­
though the constancy of Vg/V0 or Tg is not 
very good. Examining the constancy of Vg/V0 

for polystyrenes of various degrees of polymeriza­
tion Ji with the data of Ueberreiter and Kanig, 16 
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0.808 1.198 12.31 30.0 4.28 
0.830 1.148 17 .82 24.6 3.51 
0.678 1.232 8.77 33.5 4.78 
0.723 1.201 8. 71 29.2 4.11 
0.740 1.176 13.7s 27.4 3.90 
0.772 1.167 12.96 26.0 2.78 
0.797 1.168 11. 74 26.3 3.74 
0.817 1.159 11.40 25.7 3.67 

1.181 (27.8) 3.96 

r ref 19, + ref 1. 

we obtained the results shown in Figure 3. 
Here the values of V0 were estimated by the 
equation V0=(84P+l4)/(1O4P+2) cc1g, where V0 

of 2[H] of the chain ends was evaluated to be 
14 cc/mol, according to the estimate of Miller. 11 

The value of Vg/V0 depends on the degree of 
polymerization and increases up to the value 
of the same magnitude as other polymers with 
increasing Ji. Miller20 also showed a similar 
fact for n-alkanes and polyethylene in their glass 
transitions estimated by viscosity data. Namely 
he showed that the free volume fraction /g at 
Tg decreases with increasing chain length, i.e., 
fg (=l-V0/Vg) varies from 0.093 for (-CH2-)= 
to 0.050 for n-C5H12-

The fact that the constancy of Vg/V0 is not 
well satisfied may be attributed to intrasegmental 
interactions. At the present stage, however, 
this constancy may be considered to be a rough 
measure of the glass transition temperature in 
polymers. 

Provided that the constancy of Vg/V0 , hence 
that of Tg, is a valid assumption, then we 
obtain from the definition of the reduced 
temperature 

Tg=(0. 718R)-1T gEo V0/c=constant-E0 V0/c (23) 

where £ 0=0.718 c*z'N/V0 is the cohesive energy 
density D of hypothetical liquid at O°K (i.e., 
at V = V* = V0). The eq 23 indicates that Tg is 
proportional not to D itself, which is the 
cohesive energy per unit volume, but to DV0/c, 
which is the cohesive energy per molar volume 
of a freely movable segment having three ex-
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Figure 4. Relation of glass transition temperature 
to cohesive energy per freely movable segment: 
-, eq 23 with Tg=0.0396; e, experimentals of 
PaMSt, PMMA, PEMA, P-n-PMA, PY Ac, P-n­
BMA, and PEA from higher Tg (data used are 
listed in Table II). 

ternal degrees of freedom. The values of 
Tg/(E0 V 0/c) of the present analysis are shown in 
Table II. From Eq 23 with Tg=0.0396, the 
average value in Table II, the proportional 
constant of eq 23 is obtained as 27. 8 deg mol/kcal. 
The Tg vs. E 0V0/c relations for the data in Table 
II are shown in Figure 4. This relation re­
presented by eq 23 appears to be satisfied better 
than the linear relation21 between Tg and D. 

From a consideration concerning Tg similar 
to the above, Turnbull and Cohen22 presented 
the relation Tg=0.023 hv/R for simple low­
molecular-weight substances, where hv is heat 
of vaporization. This results means that the 
value of Tg in the present analysis should be 
0.718x0.023=0.0165 from eq 23 with hv=E0 V0 

and c= 1. This value is too much smaller than 
the value of 0.0396 obtained here for polymers. 
This is however consistent with the fact that 
the value of Vg/V0 or the free volume fraction 
at Tg decreases with increasing the chain length 
in polystyrene and n-alkane, as already men­
tioned. It is noteworthy that, being estimated 
by the extrapolation of the V/1/N~f curve in 
the liquid state obtained previous!/ (see Figure 
1), the value of Vg/V0 corresponding to fg= 
0.0165 is 1.04, which is almost equal to the 
values of Vg/V0 for the lowest-molecular-weight 
oligostyrene, the dimer, shown in Figure 3 and 
that for n-C5H 12 , estimated by Miller.2° 
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APPENDIX 

The free energy F of a system is regarded as 
a function of V, V* and T: 

F=F(V, V*, T) (A-1) 

Two of these three variables ( V, V*, and T) are 
independent in the liquid state and the cell 
volume V*, for example, is determined by 

(oF/oV*)v,r=0 (A-2) 

so as to minimize F, just as assumed in the 
previous paper. 1 (A=(oF/oV*)v,r is called the 
"affinity" for V* and is zero in an equilibrium 
state.) From eq A-1, A-2, and a thermodynamic 
equation 

P=-(oF/oV)r (A-3) 

we have 

(oF/aV*)v, r = (oF/aV*)v,r-(oF/o V)V',T V/V* =0 

(A-4) 

and 

P= -(oF/oV)v*r(oV/oV)r-(oF/iJV*)v,r(iJV* /oV)r 

=-(oF/iJV)v•r{l-(oV*/iJV)rV}/V* 

-(iJF/oV*)v,r(iJV*/iJV)r (A-5) 

Combining eq A-4 and A-5, we obtain 

PV +(iJF/iJV*)v,r=0 (A-6) 

and 

The equation of state in the liquid state is given 
by eq A-6 and A-7. On the other hand, the 
equation of state in the glassy state can be 
derived from P=-(oF/iJV)r with the condition 
V= Vg=constant to be expressed by 

PVg+(iJF/iJV*)v,r=0 (A-8) 

Accordingly it can be seen that the equation of 
state in the glassy state, (eq A-8), and eq A-6 
expressed in the same form except that V 
( = V/V*) may or may not be variable. There­
fore if the variation of V (or Vg) does not 
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greatly influence the P-V* -T relation in these 
expressions, as in the case of the model in the 
text, it follows that change in the cell volume 
with temperature and pressure is almost the 
same in both the glassy and liquid states. Thus 
we have 

(o In V*/oT)r1~(o In V*/oT)pg=(o In V/oT)pg 

(A-9) 

and 

(oln V*/oP)r'~(oin V*/oP)rg=(oln V/oP)rg 

(A-10) 

where the superscripts I and g refer to the 
liquid and glassy states, respectively. The quan­
tity (o In V*Ja In V)r at Tg in eq 18 can be ex­
pressed by the ratio f,g/ f, 1 of compressibilities 
in the glassy and liquid states, i.e., 

(o In V* Jo In V)r 

=(a In V*JaP)r'J(a In VJaP)/~f,g/f, 1 (A-11) 

LIST OF SYMBOLS 

c, one third of external degrees of freedom 
of a segment 

D, cohesive energy density 
Dg, cohesive energy density in the glassy state 

d, ratio of reduced volume V of densified 
glass to nondensified glass, Vg/ Vgs 
cohesive energy density of hypothetical 
liquid at 0°K, which is equal to 0.718 
s*z'NJV0 

F, Helmholtz free energy 
free volume fraction at glass transition 
temperature defined by 1- V0/Vg 
number of configurations of molecules 
arranged on lattice 

h, ratio of thermal expansion coefficient of 
cell volume to volume defined by eq 14 
h at glass transition temperature 

J(T), 
heat of vaporization 
partition function for intrasegmental de­
grees of freedom 

K, function defined by eq 13 
k, Boltzmann's constant 

M, total number of lattice sites in the system 
N, total number of segments in the system 
P, pressure 
P, reduced pressure, Pv*Js*z' 
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P, degree of polymerization 
internal pressure, (oU/oV)r 
internal pressure in the glassy state 
internal pressure in the liquid state 
internal pressure of the glass formed 
under atmospheric pressure 
difference in internal pressure at glass 
transition temperature between the liquid 
and glassy states, Pil -P1g at Tg 

q, kinetic part of partition function as-
sociated with external degrees of freedom 

R, gas constant 
r, 

Sc 
number of segments of a polymer chain 
entropy associated with combinatory factor 

s, ratio of coordination number of a seg-
' 

ment to that of a lattice site, z'Jz 
T, absolute temperature 
f, reduced temperature, ckT/s*z' 

Tg, glass transition temperature 
Tg, reduced temperature at glass transition 

temperature 
U, internal energy 
V, volume 

V*, volume of cells occupied by segments, 
v*N 

V, reduced volume defined by V= V/V*= 
M/N 

V', reduced volume defined by V'=V/a 3N 
Vg, volume at glass transition temperature 

Vg *, V* at glass transition temperature 
Vg, reduced volume V at glass transition 

temperature 
Vs, volume of the glass formed under atmos­

pheric pressure 
Vgs, reduced volume V of the glass formed 

under atmospheric pressure 
V0 , volume of hypothetical liquid at 0°K, 

which is equal to V* at 0°K 
v*, volume of a cell 
vn, free volume given by eq 3 
vrn, free volume given by eq 4 
Z, partition function 

Zv, volume-dependent part of partition func­
tion 

z, coordination number of a lattice site 
z', coordination number of a segment 
a, thermal expansion coefficient 
f,, isothermal compressibility 

f,g, isothermal compressibility in the glassy 
state 
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(3 1 , isothermal compressibility m the liquid 

state 
s*, potential energy at minimum of potential 

energy curve of Lennard-Jones 12-6 

potential 
a, distance between segment centers at which 

potential energy 1s zero in Lennard­
Jones 12-6 potential 

~(O), potential energy of intersegmental interac­
tions when the segments are at the centers 

of the cell as given by eq 5. 
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