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ABSTRACT: Molar Kerr constants of n-alkanes, polyoxyethylene glycols (POEG), 
and polyoxyethylene dimethyl ethers (POEDE) are calculated on the basis of the bond 
additivity principle for dipole moments and polarizabilities and of the trans, gauche, 
and gauche prime, rotational-isomeric-state models. Theoretical values are compared 
with existing experimental data. It is found that agreement is very good with n­
alkanes, but very poor with POEG. A new formulation of the molar Kerr constant is 
included. 
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We previously developed a general theory of 
Kerr constants of polymer molecules and ap­
plied it to the polyethylene chain of infinite 
length by taking into account realistic structures 
of polymer chains, i.e., fixed bond lengths and 
angles and hindered, interdependent, internal 
rotations. 1 The theory was subsequently extend­
ed by Flory and Jernigan and by one of the 
authors to a chain of an arbitary bond sequence 
of finite length2 - 4 and a stereoregular chain of 
infinite length. 4 

Over the last two decades Le Fevre and col­
laborators have carried out extensive experimental 
and theoretical studies for a number of low- and 
high-molecular weight compounds in solution, 
and have achieved remarkable success in eluci­
dation of conformations of molecules for low­
molecular weight compounds. 5 Unfortunately, 
polymers have been exceptions on account of 
the lack of adequate theories. Having now the 
theories1- 4 in hand, it is tempting to analyse 
experimental data. In this paper we treat n­
alkanes, poly(oxyethylene glycol)s (POEG), and 
poly(oxyethylene dimethyl ether)s (POEDE). 
Relevant experimental data were reported by 
Stuart, Finck, and Kuss6 for the first and by 
Aroney, Levre, and Parkins 7 for the second. 
In the course of this study we derived a new 

expression for the molar Kerr constant, with 
which the programming becomes somewhat easier 
than with previous expressions. 2 - 4 This, together 
with its derivation, is also included here. 

THEORETICAL 

The molar Kerr constant Km for molecules, 
small or large, is expressed1 generally as 

Km=(2rrNAf45k"T 2 )(kTKP+Kd) ( 1 ) 

where NA is the Avogadro number, k and T 
have their usual meanings, and Kd and KP are 
the dipole-moment and static-polarizability terms, 
respectively: 

Kd=3(u?ru>- Tr(u2r)=3(urru) ( 2) 

Kp=3 Tr(rr')-(Tr r)(Tr r'))=3 Tr(rr') ( 3) 

In eq 2 and 3, r and r', respectively, are the 
optical- and static-polarizability tensors of a 
molecule; r is the traceless form of r; u is the 
dipole-monent vector with U= lui; Tr and the 
superscript T, respectively, denote the trace and 
the transpose of a tensor; and the averages < ) 
refer to a molecule in its free state. 

Consider a linear-polymer chain involving n 
skeletal bonds indexed 1, 2, ... , n, successively 
from one end to the other. All bond lengths 
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and angles are assumed to be fixed and chain 
flexibility is therefore effected by rotation about 
skeletal bonds. The polymer chain is regarded 
as composed of n groups of bonds, where group 
i is assumed to involve all bonds except skeletal 
bond i-1, rigidly fixed to the framework de­
termined by skeletal bonds i-1 and i. Each 
bond is referred to by bond iJr: which means the 

bond of group i. Skeletal bonds are dually 
indexed, i.e., skeletal bond i or, say, bond il. 
As usual we assume the bond additivity for r: 

" r= L: r; ( 4) 
i=l 

r;= L; [a1-a2);,f.t;,p[.+a;,2E3] ( 5) 
< 

where r; is the tensor of group i; air.l and air.2 
are the parallel and perpendicular components 
of polarizability of bond (a1 -a2);, =a;,1 -a;,2 

is its anisotropy; p;, is the unit vector along 
the bond, and E3 is the unit matrix of order 
three. In the present treatment we take advan­
tage2'3 of the simplicity achieved by using, as 
implied in eq 2 and 3, the traceless tensor r in 
place of r as previously used. 4 We make r 
traceless by treating the tensor for every bond 
thus: 

,.. n ,. n ,.. 
r= L: f;= L: L: r;. 

i=l i=l £ 

r=z;; (al-a2);.(p;,p[,-+E3) ( 7 ) 

where T; and T;. are the traceless tensors of 
group i and bond iJr:. 

We assume the bond additivity also for the 
dipole moment: 

n " 
U= L; U;= L; L; U;, ( 8 ) 

i=l i=l & 

U; = L; U;, = L; m;,p;, ( 9) 
< < 

where u; and u;, are the dipole-moment vectors 
of group i and bond and m;, =In;. I· 

At this stage we introduce a set of cartesian 
coordinate systems as follows. 3'8 Coordinate 
system i is attached to the plane determined by 
skeletal bonds i -1 and i in the following way. 
The x-axis is in the direction of skeletal bond 
i and the y-axis is in the plane of skeletal bonds 
i-1 and i, its positive direction making an acute 
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angle with skeletal bond i-1. The z-axis is 
chosen so as to complete a right-handed system 
together with the x- and y-axes. The internal­
rotation angle 8; about skeletal bond i is meas­
ured from the trans position toward the direc­
tion of the right-handed twist of the polymer 
chain. Two presentations v 1; 1 and v 1i+ll of 
components of a vector in coordinate systems i 
and i + 1 are correlated by 

(10) 

(}] 

-cos(} ; 

( 11) -a cos(} 

-a sin(} 

where A; is the transformation matrix; the sub­
script ito the bracket is implied to apply to a, (3, 
and (} within the brackets as subscripts; and 
a;=cos w; and {3;=sin w; with w; being the angle 
between skeletal bonds i and i+l, i.e., the sup­
plementary bond angle. 

The expression of a tensor or a vector de­
pends on a coordinate system in which its 
components are measured. Let j-; ljl be the 
presentation of T; in coordinate system j, and 
similarly with vectors. We write r; 1; 1 especially 
as 

and similarly 

ui (i) :::::::mi== ( 13) 
< 

If we define u;j=U; +u;+l +···+ni-l we can 
write urru as 

urru= L: urr;u= L: (uli +u;,,+llT;(ul; +n;,,+l) 
i i 

(14) 

The first sum S1 in the rhs of eq 14 is written 

Sl = L; u{;r ;ll1; = L; (ul ;ui;)c TT ic = L; (u{; X u{;)r ic 
i i i 

(15) 

where the subscript c denotes the column ex­
pression of a tensor, i.e., 

rc=(rn r12 r1a r21 r22 r23 r3l ra2 raa)T (16) 

and x denotes the direct product of two vectors 
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or matrices. The direct product of two matrices 
a={aii) and b={bii} is defined by axb={abiil· 
According to eq 10 we obtain9 

ui; 1r =mf_lAi-1 +mf_2Ai-2Ai-1 + · · · 

+m[A1A2 ···Ai-l 

(26) 

(27) 

=(1 O)A/A/. · · A;_{;J 

A '=[1 mTAJ 
k 0 A k 

( 17) It is easy to confirm that if Llfi.;l in eq 26 is 
decomposed into 2Liai and Lla7,, these 

(18) terms yield S 2 , S3 , and S1 , respectively. Sum­
mation9 over i in eq 26 yields 

Expressing now u{; and Tic in coordinate system 
i we obtain 

S 1 = I; (ui; IT X 1 T)L/aic 
i 

where Llai: is the column expression of a 
matrix: 

(20) 

with 03 , 1 being the null matrix of order 3 x 1. 
Since 
( i) 

ui,n+l=E3m;+Aimi+l + · · · +A;Ai+l · · · An-lmn 

=(E3 (21) 

Ak" 71 (22) 

the second sum S 2 in eq 14 is expressed as 

S2= I; uf,n+lT;Ui,n+l =I; ri: 1r 
i i 

with 

Llact =(Lia 03,1lc (24) 

The third sum S3 in eq 14 is expressed 

S3 =2 I; uiir;ui,n+l 
i 

=2 ,4:: (1 O)A/ A/ . · · A;_1[ OJ 
' E3 

xLia;(E3 (25) 

The three terms S1 , S2 , and S3 can be con­
densed into a single term as follows 

urru=S1 +82 +83 

o{)lcA/xAk'l] 
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Jal (A'' xA''lJ ][ o J 
A" xA" i 1 

(28) 

The size of the matrix in eq 28 is 32 x 32. For 
computational purposes it is obviously desirable 
to decrease the size of matrices as much as pos­
sible. In previous treatments1 ' 4 ' 10 ' 11 this was 
achieved by utilizing the fact that r is a sym­
metric tensor and its independent components 
are only six. Fortunately a similar procedure 
has been found possible in this case. We rewrite 
eq 26 as 

(1 O)U1{Q[U/(Ak'xAk')UI]} 

XU1r LlailV{a [U/(A/' xA/')UI] }u/ [ J 

(29) 

where U1 is an orthogonal matrix: U1U/ =E. 
Proper choice of U1 permits us to separate 
significant elements from zero elements so that 
the latter can be easily deleted. A form of U1 

is found to be 

21/2 
1 

1 
1 

21/2 
1 

1 

1 

21/2 
1 

1 
1 

-1 
-1 

-1 
1 

-1 
-1 

1 
1 

1 
1 

21/2 

-1 

1 
J 

(30) 
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where elements not explicitly shown are zero. 
With this U 1 we find 

OJ -, 
A,2 ' 

and 

(31) 

and (1 O)U1 =(1 0) and 

-, -,, 
where A , A , and Llii. are square matrices of 
order ten. After substitution of these relations 
into eq 29 we see that, of the ensuing matrices, 
all rows and columns exceeding the tenth con­
tribute nothing to urru. Deleting these redundant 
rows and columns we obtain 

=(1 O)D1D2 ••• n{ J (32) 

Di=[:' LlaA"J -, 
A i 

(33) 

The order of Di is 20. 
The polarizability term was derived previously 

by Flory and Jernigan. 2 ' 3 It can be calculated 
by a mean similar to, but simpler than, that 
for the dipole-moment term. The only impor­
tant fact is the following. According to the 
definition of a tensor we have rli-ll = 
A liiAT A b d" . i-lr ,-1· s may e rea Ily confirmed, this 
relation is equivalent to rc I i-ll =(Ai-l xAi-l)rc Iii. 
Applying the method of reduction of sizes of 
matrices to Flory and Jernigan's result, we 
obtain 

(34) 

a/#TB Llac #TB 

B 0 

B 
(35) 
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Here B is obtained from Ax A by using an 
orthogonal matrix U2 : 

The order of B is six. 
to be 

Then, Lla} is given by 

&zc # 

(36) 

A form of U 2 is found 

-1 

(37) 

-1 

=(Llau, 2112 Lla12, 2112 Ll&1s, Lla22, 2112 Lla2s, Lla33f 
(38) 

where Llakl is the k, l element of Lla in eq 12. 
a/#, which refers to the static polarizability, is 
defined analogous to Llac# but from a non-trace­
less form for r/ like eq 5 for ri· The traceless 
form ac'# can equally be used in place of ac', 
as is apparent from eq 3. 

Averaging of uTru and Tr rr' can be perform­
ed as usual with recourse to the rotational­
isomeric-state approximation, according to which 
(}i is assumed to be in either s discrete values, 
or "states", (} 111 , (} 121 , ••• , (} 1' 1, instead of con­
tinuum values. These states may be equal or 
different for different bonds both in number and 
in location. The conformational partition func­
tion of the polymer chain is expressed12 as 

(39) 

where e, is a s-dimensional vector defined by 
e,=(l 0 · · · Of; Pi (i= 1, ... , n-1) is the statisti­
cal-weight matrix for skeletal bonds i and i + 1; 
and Pn=E,. A form of Pi is given12 by 

P; =exp{- [ Ei(8; lkl )+E;(8; 1k1, RT} ( 40) 

where R is the gas constant, and Ei((}i) and 
Ei((}i, (}i+1 ) are the one-bond and two-bond in-
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teraction energies. It is assumed that E1(()1)= 
E1((j1, ()z)=En-1(()n-t> ()n)=O. Actual construc­
tions of P; will be illustrated in the following 
sections. The above formulation12 of Z is 
slightly different from that given previously,4·13 

but is more convenient for construction of P; 
and other matrices which follow. 

We introduce the pseudo-diagonal super­
matrices [[D[[ and [[P[[ whose k-th diagonal 
elements are D(() 1k 1) and P(() 1k 1), respectively. 
We then have 

<urru)=Z-1(e/ O)[TI [[D;[[(E20 XD;)J[ 0 ](41) 
es 

<Tr rr)=Z-1(e/ O)[ir I [P;[[(Eu X P;)][ OJ 
'1.-1 es 

The optical anisotropy defined by 

<(Lir)2)= <Tr T2) 

(42) 

(43) 

is obtained from eq 42 with r' equated to r. It 
can, however, be expressed in terms of matrices 
of lower size by the ensuing symmetry. 3 •4 

Explicit expressions for A' and B were not 
given; they are unnecessary, being constructed 
numerically within a computer according to eq 
31 and 36. In the previous treatment4 the di­
pole-moment and polarizability terms were con­
densed into a single term. This was not possible 
with the present scheme. Separate calculations 
of the two terms are convenient in cases where 
contributions of these terms to Km are needed 
to know, or where programs are used differently, 
i.e., to calculate the stress-optical coefficient and 
the optical anisotropy. It is found that the pre­
sent scheme makes programming easier, as mani­
fested in a shorter main routine, but requires 

more working memories and computing time, 
compared with previous treatments. 2- 4 

n-ALKANES 

We adopt the familiar three-state rotational­
isometric model: trans (() 1T 1=0°), gauche (()iG 1= 
120° ), and gauche prime (() 10n = -120° ). 14 - 16 All 
bond angles are assumed to be tetrahedral, and 
considerable simplification results thereby. The 
GG' and G' G conformations for neighboring 
bonds are eliminated. Putting P1=Pz= · · · = 
Pn-1 =P and Pn=E3 we obtain for the n-alkane 
chain consisting of n C-C bonds 

(44) 

P=[: : 
(J 0 (JJ 

(45) 

with a=exp ( -E0 (RT) where E0 is the energy 
of the G state relative to the T state. Accord­
ing to the definition given by eq 40, all elements 
of p1 are unity, but, p1 was modified, being 
equated to p. It is apparent that this modifi­
cation simplifies Z without error. 

The bond dipole moments m0 •0 and mc.H are 
taken to be zero in view of virtually zero 
observed dipole moments of n-alkanes. 17 Hence 
the polarizability term alone needs to be con­
sidered, and the treatment is very close to that 
of the optical anisotropy .18 With the assumed 
tetrahedral symmetry for bond angles, it can be 
regarded that C-C bonds were to have the ef­
fective anisotropy 

Fc.c=(al-az)c-c-2(al-a2)C-H (46) 

while C-H bonds had no anisotropy. 19·20 Static 
bond polarizabilities are assumed to be greater 
than optical ones by a factor of 1.1, following 

Table I. Effective bond optical anisotropies 

Author Denbigh21 Clement & Le Fevre5 Bunn & Feurche24 LeFevre 
Bothorel22 Daubenyza (modified)& 

Fc-c(A3) 1.44 0. 81' 0.87 0.72 0.29 0.81 
Fc-o(A3) 0.77 0.42 1.0 0.23 

a With the assumptions of tetrahedral symmetry and F' = 1.1F, rnK( =Km/9) for the chair-form paral­
dehyde with all methyl groups in the equatorial conformation is given by rnK=(4rr:NA(405 kT)[l.l 
(Fc-c+2Fc-o)2-4mc-o2(Fc-c+2Fc-o)/kT]. Fc-o=0.23 A.a was obtained from the observed value mK= 
-57x10-12 (C.G.S.)25 by assuming mc-o=l.OD and Fc-c=0.81Aa, based on the above expression. 
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Table II. Calculated values of A (in eq 47) and 
observed molar Kerr constants for n-alkanes 

n 
20°C 

2 2.667 
3 5.540 
4 7.505 
5 10.969 
6 13.556 
7 17.207 
8 20.125 
9 23.814 

10 26.914 
11 30.584 
12 33.793 
13 37.429 
14 40.708 
15 44.310 
16 47.636 
17 51.207 
18 54.568 

A 

50°C 

2.667 
5.385 
7.255 

10.486 
12.894 
16.250 
18.933 
22.292 
25.123 
28.447 
31.367 
34.650 
37.629 
40.875 
43.892 
47.111 
50.157 

80°C 

2.667 
5.253 
7.041 

10.083 
12.345 
15.468 
17.966 
21.069 
23.693 
26.753 
29.452 
32.469 
35.219 
38.201 
40.985 
43.940 
46.749 

Km X 1012 
(C.G.S.)• 

10.089 
15.264 
19.206 
23.931 
27.918 
32.895 

45.297 

56.556 
72.585 

• Converted from data of Stuart, et a/.6 

Le Fevre, 5 and hence r' e-e = l.IT e-e· This 
assumption will be made throughout this paper. 
Some literature values5 '21- 25 for r e-e are given 
in Table I. The polarizability parameters can 
be factored out in the expression for Km, i. e., 

Km=(2nNAf45kT)T e-eF' e-eA ( 47) 

where A is a quantity dependent only on geo­
metrical and statistical-weight parameters. 

Calculated values of A for EG=O.S kcaljmol 
and T=20, 50, and sooc are given in Table II.* 
Values of Km calculated by using these A and 
various r e-e are plotted against n in Figure 1. 

Stuart, Finck, and Kuss 6 carried out Kerr­
effect measurements for n-alkanes as pure liquids 
and in part as solutions with petroleum ether 
as a solvent. Unfortunately, details of experi­
mental conditions were not given. Values of 
Km converted** from their data on pure liquids 

* The validity of the program was checked by 
the reproducibility, on the Kp term, of the optical 
anisotropy of the chair-form cyclohexane, (Llr)2= 
4Te-e)2,26 and, on the Kd term, of asymptotic values 
at the limit of infinite chain length. 27 

** Le Fevre5 defined the molar Kerr constant for 
pure liquids as 
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200 A 

150 
bO 

100 
rl 

X 

50 

n 

Figure 1. Km vs. n for n-alkanes. Curves are cal­
culated at 20°C using EG=0.8 kcal/mol and Te-e= 
1.44 (A), 0.81 (B), 0.72 (C), and 0.29 (D), all in 
As. Circles are experimental data for pure liquid 
n-alkanes by Stuart, et a/.6 

are shown by circles in Figure 1 and included 
in Table II. Necessary data of density, dielectric 
constant, and refractive index were taken from 
Landolt-Bornstein. 28 Some results on longer 
alkanes as solutions were given by Stuart, et al., 6 

but cannot be converted to Km because of the 
lack of pertinent data. 

Good agreement between theory and experi­
ment is achieved if Fe-e=0.81 A is used in pair 
with EG=O.S kcaljmol. The same situation was 
met in the theoretical analysis of related quanti­
ties, the optical anisotropy of n-alkanes in carbon 
tetrachloride solutions18 and the stress-optical 
coefficient of polyethylene networks swollen with 
decalin. 29 Concerning the former quantity, a 
deviation was observed for n-alkanes as pure 
liquids when chain length exceeded some criti­
cal value, n=7 or 8. This result was interpreted 

where B' is the Kerr constant; n is the refractive 
index; ;. is the wave length of the incident beam; 
M is the molecular weight; e is the dielectric con­
stant and d is the density. B' is given by 

B'=(nu-nJ.)/.?.E2 

where nu and n1. are the refractive indices parallel 
and perpendicular to an applied electric field of 
strength E. Hiss and our1 molar Kerr constants 
correlate by mK=Km/9. 

Stuart,· et a/.,6 gave their results in the form of 
B'. 
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as being due to the short-range orientational 
order among n-alkane chains in the condensed 
phase.18 Such a deviation is not apparent in 
the present case. 

POLYOXYETHYLENE GLYCOLS AND 
POLYOXYETHYLENE DIMETHYL 

ETHERS 

The planar trans conformation of these chains 
is shown in Figure 2. It stands for the POEG 
or POEDE chain, depending on R=H or CH3. 

II I-I H .H 

0 \/ \1 
RY "Zc 

;(1 R 
HI! IIH 

Figure 2. Poly(oxyethylene) chain in its trans 
planar conformation. Poly(oxyethylene glycol) or 
poly(oxyethylene dimethyl ether), depending on 
whether R=H or CH3. 

All bond angles are assumed to be tetrahedral 
except for LCOH which is taken to be 108°. 30 

Gauche angles are assumed to occur at ± 120°. 
We follow Mark and Flor/0' 31 in models and 

in notations for conformational energies and 
statistical weights. The partition function can 
be expressed, according to eq 39, as 

Z =e3 T P1P2(PaPbPc)N-1Pn-2Pn-1Pne3 ( 48) 

The statistical-weight matrices for interior bond 
pairs, C-C-0, C-0-C, and 0-C-C, are given by 

1 
I 

(J 

I 
(J(J) 

(49) 

(50) 

(51) 

For terminal bonds we have Pn=E3 and 

(52) 

The remaining matrices depend on R=H or CH3; 
we have for H 

(53) 

(54) 

but for CH3 

P2=P" Pn-2=Pa, and Pn-1 =Pb (55) 

In these equations a' is the statistical weight 
of the G or G' state relative to the T of the 
bond C-C, and a is a similar quantity related 
to C-0. w is the statistical weight related to 
the two-bond interaction in the GG' or G' G 
conformation of the bond pair C-C-0. The 
latter conformations are discarded for the bond 
pair C-0-C for a steric reason, as implied in 
eq 50. 31 We assume the Boltzmann relations 
a= exp (-Ea! RT), etc. Estimations of these pa­
rameters were made by Mark and Flor/0•31 

through analysis of the unperturbed dimension, 
the dipole moment, and their temperature coef­
ficients of poly(oxyethylene) and its oligomers; 
and by Fourche24 through analysis of the optical 
anisotropy of derivatives of oxyethylene; and by 

Table III. Conformational energy estimates from various sources 

Conformational energy, kcal/mol 

1.2-1. 7 
0.9 

1.1±0.15 
1.1 
1.5 

-0.43--0.39 
-0.43 

-0.25±0.25 

0-0.34 
0.34 

0.25±0.3 

------

Experimental method 

Viscosity and rubber elasticity 
Dipole moment 
Optical anisotropy 
Infrared and Raman spectra 
Raman spectra 

Author 

Mark and Florys1 
Mark and Flory3o 
Fourche24 
Wieser, et a/.32 
Kitagawa and Miyazawa33 
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others. 32 'ss These results are summarized in 
Table III. We choose a representative set of 
values of the parameters for later use: a=0.156, 
a'=1.5, and w=0.22 at 25°C, or Ea=l.1kcalf 
mol, Ea' = -0.24 kcalfmol, and Ew=0.9 kcalfmol. 
The values of Ea and Ea' were selected close to 
those given by Fourche/4 and the value of Ew 
was selected to correctly reproduce the experi­
mental characteristic ratio (r2)/nb2 of the unper­
turbed dimension recently reported by Beech 
and Booths4 (4.805 calculateds5 using the above 
values of a, etc., vs. observed 4.8 34). The above 
set of parameters will later be checked with 
dipole moments and optical anisotropies of some 
oligomers of oxyethylene. 

Analogous to the case of n-alkanes, with the 
tetrahedral symmetray of bond angles it can be 
regarded that C-C bonds were to have the ef­
fective anisotropy FC-C while the C-0 bonds 
were to have 

F c-o=(al -a2)c_o-(al -a2)C-H (56) 

Experimental values of F c-o reported by vari­
ous authors are included in Table I. Unfortu­
nately they show considerable scattering, as in 
the case of F 0 . 0 . Fourche24 estimated Fc-o= 
1.0 _As from optical anisotropies of methyl ether 
and dioxane-1, 4. Almost the same value can 

Table IV. Values of re-o so adjusted• as to 
reproduce observed24,ss optical anisotropies 

of CHsO(CH2CH20)NCHs, averaged 
for the members N= 1-4. 

(J a' w re-o, As 

0.223 1.0 0 0.981 
0.223 1.5 0 1.051 
0.223 1.5 0.5 1.077 
0.223 1.5 1.0 1.096 
0.223 2.0 0 1.102 
0.135 1.0 0 0.906 
0.135 1.5 0 0.977 
0.135 1.5 0.5 0.977 
0.135 1.5 1.0 1.012 
0.135 2.0 0 1.027 
0.082 1.0 0 0.853 
0.082 1.5 0 0.927 
0.082 1.5 0.5 0.941 
0.082 1.5 1.0 0.953 
0.082 2.0 0 0.990 

a rc-c=0.81 A3 is assumed. 
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be obtained from data of optical anisotropies of 
POEDE with N=1-4, reported by Fourche. 24 ·ss 
We have calculated values of Fc-o which together 
with Fc-c=0.81 _As reproduce observed values 
for optical anisotropies of these compounds, for 
various combinations of statistical-weight par­
ameters which are thought in totality to encom­
pass real values. Average values of Fc-o for 
the four compounds are given in Table IV. Use 
of 0.87A3 instead of 0.81As for Fc-c yields 
values about 2% less. We see in Table IV that 
F c-o remains almost constant ( 1 As) while statisti­
cal weights vary considerably. On this basis 
the value F c-o= 1 As by Fourche24 is considered 
reliable and will be used in what follows. 

Fourchess assumed (a1-a2)o-H to be equal to 
(a1-a2)c.H=0.22 A3, based on the fact that the 
C-C and C-0 bond anisotropies are close: 1.31 _As 
vs. 1.21 As. We follow this convention on ac­
count of the lack of reliable evidence. Obviously, 
(a1-a2)o-H is significant only for very short 
chains. 

We assume m 0 •0 =mc-H=0. We adopt mc-o=l 
D and mo-H = 1. 7 D, the values determined by 
Mark and Florl0 from dipole moments of di­
ethyl ether and ethanol. 

We now check the values of the parameters 
given above for oligomers of oxyethylene. Use 
of Fc-o=l, Fc-c=0.81, (a1-a2)o-H=0.22 (all in 
A 3), m0 . 0 =l and mo-H=l.7 (in D) and a=l.5, 
yields for the dipole moment and the optical 
anisotropy of ethylene glycol, 2.383 D and 1.444 
A6 , in close agreement with the experimental 
values 2.38 Ds7 and 1.46 A6 •36 Use of a=0.156 
and w=0.22, in addition to those just cited 
above, yields for pentaethylene glycol 3.292 D 
and 11.097 A 6 , in comparison with the experi­
mental values 3.42 Ds7 and 11.35 A_s.ss 

Aroney, Le Fevre, and Parkins7 measured 
molar Kerr constants of a series of POEG with 
N=4.1, 6.4, 18, 34, 78, and 153, in benzene at 
25°C. Their results converted to KmfN are 
plotted by circles against N in Figure 5. 

We wish to refer to the so-called excluded­
volume effect. It is currently arguedss that the 
excluded-volume effect on chain dimensions 
vanishes for short chains on the basis of the 
fact that the exponent a in the Mark-Howink­
Sakurada relation [1J]=KMa tends to 0.5 for 
short chains, a value theoretically predicted for 
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Figure 3. (Km/N)oo vs. -In a for poly(oxyethyl­
ene)s. Parameters used are as follows: A, Fc-c= 
0.81 A3, Fc-o=1 A3, and mc.o=1 D; B, rc.c=l.44 
A a, Tc-o=O. 77 A a, and mc.o= 1 D; others as in­
dicated. 

long unperturbed chains. The excluded-volume 
effect on chain dimensions may therefore be 
considered to become significant for M larger 
than some critical value Me above which the 
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deviation of a from 0.5 becomes perceptible. 
For POEG in benzene at 25°C, or 
22, according to Rossi and Cuniberti. 39 We 
would expect that the excluded volume has less 
effect on the dipole-moment term of Km than 
on dimensions, on the analogy of the case of 
dipole moments, 40 and that it has a comparable 
effect on the polarizability term.* It is found 
that for both POEG and POEDE the dipole­
moment term always plays a more important 
role in Km than the polarizability term. In 
summary the excluded-volume effect does not 
seem very important in the present case, in 
particular for short chains N < 20. Theoretical 
values of Km/N almost converge to limiting 
values for N> 30 irrespective of values of the 
parameters (see Figure 5), whereas the observed 
values for N=34, 78, and 153 are distinctly 
different. 

We first calculated values of (Km/N)oo, that is, 
Km!N for the infinite chain, to examine the 
effect of various statistical-weight parameters on 
(Km/N)ooo Limiting values can be obtained by 
fitting finite-chain values to an asymptotic rela­
tion Km=a+bN. Sufficiently accurate values 
of b were obtained at N=l6-20. Values of 
(Km/N)oo are plotted against -In a for some 
combinations of a' and w and for the two select­
ed sets of effective bond anisotropies, Tc.c=O.Sl 
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Figure 4. ( (u2)j2Nmc.o2)oo vs. -In a for poly­
(oxyethylene)s. 

* The effect of the excluded volume on the dipole 
moment, the optical anisotropy, and the molar Kerr 
constant needs theoretical investigation. 
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200 0 

N 

Figure 5. Km/N vs. N for poly(oxyethylene gly­
col)s. Curves are calculated using the following pa­
rameters: A, Fc-c=0.81 and Fc-o=1; B, Fc-c=l.44 
and Fc-o=0.77; C, Fc-c=0.81 and Fc-o=0.23, all 
in A3• (at-1X2)o-H=0.22A3, mc-o=l D, mo-H=1.7 
D, a=0.156, a'=1.5, and w=0.22. Circles are 
experimental data from Aroney, et a/.7 
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Figure 6. Km/N vs. N for poly(oxyethylene di­
methyl ether)s. Curves are calculated using the 
same values for parameters as in Figure 5. 

and T 0 . 0 =1 in Figure 3A, and Tc-c=l.44 and 
rc-o=0.77 (all in A3 ) in Figure 3B. From these 
figures it may be seen that if the negative sign 
of the observed values of Km!N for N=78 and 
153 is taken as real and indicative of the nega­
tivity of (Km/N)=, this fact imposes a restriction 
on w, i.e., w <0.5 provided -In ac::::2. Similar 
plots for the dipole moment are shown in Figure 
4 for the sake of comparison. 

In Figure 5 we included theoretical curves for 
a set of statistical-weight parameters, mentioned 
earlier, and for three sets of bond-anisotropy 
parameters. The theory correctly explains the 
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general trend of observed values, i.e., a gradual 
decrease in KmfN with increasing N, but agree­
ment is rather poor from the quantitative point 
of view. The discrepancy seems to go far 
beyond any uncertainties in the model and in 
statistical-weight and bond-anisotropy parameters, 
and hence does not permit adequate explanation 
at present. 

Finally we consider POEDE. Theoretical 
values of Km/N for sets of parameters common 
to POEG are shown in Figure 6. They differ 
significantly from those for POEG only for N < 
20. No experimental data are available for this 
series. 
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