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ABSTRACT: Strain energy of various types of defects caused by chain ends in the 
polymer crystal is theoretically estimated by using interchain and intrachain potentials 
of polyethylene. It is concluded that screw dislocations running through chain ends 
have minimum energy when chain ends are not so close to the crystal surface. For the 
end close to the surface, on the other hand, a vacancy row from the end to the surface 
is proved to be the most stable and the minimum distance of the end from the surface 
for screw dislocation formation is ca. 30A for linear polyethylene of usual molecular 
weight. The crystal is expected to have a mosaic structure owing to screw dislocations 
and vacancy rows. 

Transformation of orthorhombic crystal to monoclinic and {110} twinning, both 
observed in the early stage of plastic deformation of polyethylene, are interpreted in 
terms of the vacancy rows and screw dislocations described above. The r-relaxation of 
as-grown polyethylene crystals is explained by thermal motion of screw dislocations 
over the Peierls potential and a satisfactory agreement with experiment is attained by 
the two-state model theory for both relaxation strength and activation energy, by use of 
reasonable estimates for parameters in the theory. 
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As-grown polymer crystals include numerous 
defects of various types. The defects form be
cause the crystal grows through successive at
tachment of folded chain molecules with which 
disorders in chemical structure, i.e., branches, 
disorders in tacticity, chain ends, and others, 
are introduced into the crystal. Some of them 
might be outside the crystal and constitute the 
noncrystalline phase on the surface of crystals. 
However, crystals with defects have lower energy 
than the noncrystalline phase and consequently 
a considerable number of disorders may be 
present within the crystal. 

suggested by Predecki and Statton. 2 According 
to them, screw dislocations and edge dislocations 
are expected to run through chain ends perpen
dicularly and in parallel with the chain axis, 
respectively. 

In the first part of this paper, results of calcu
lations will be presented for the strain energy 
of possible types of defects caused by chain 
ends, and the most stable types will be suggested. 

In the second part, mechanisms of phase trans
formation and twinning which are observed in 
the early stage of plastic deformation of poly
ethylene single crystals3 are interpreted in terms 
of defects predicted in the first part of this 
paper. 

According to Keller and Priest, 11 about one
tenth of the chain ends in polyethylene single 
crystals are located within the crystal so that 
the ends are highly resistant to oxidation. Various 
types of defects caused by chain ends have been 

* Present address: Teijin Ltd., Matsuyama Plant, 
Matsuyama, Japan. 
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Finally, a dislocation theory will be presented 
for the r-relaxation of polyethylene and other 
highly crystalline polymers. The r-relaxation of 
polyethylene consists at least of two peaks. 4 ' 5 

The low temperature peak, designated r 1 in this 
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paper, has been ascribed by various authors4 ' 5 

to defects in the crystal. In the present study, 
the peak height and activation energy of the 
rl-peak will be predicted in terms of thermal 
motion of screw dislocations caused by chain 
ends. 

INTERCHAIN POTENTIAL 

In this study, mainly polyethylene crystals 
are treated as a typical example of polymer crys
tals. In the orthorhombic polyethylene crystal, 
a chain is surrounded by six neighbors. In the 
following, an equal chain separation is assumed 
in each direction for simplicity, i.e., the crystal 
is approximated by hexagonal symmetry. The 
chain separation l* is taken as 4.60A at the 
average. 

In determining the intermolecular interaction, 
chains of polyethylene are assumed to be a linear 
arrangement of units (CH2-groups) with equal 
distance of cj2. The intermolecular potential 
is taken as the sum of the pair-wise potential 
between units, which is expressed by the 
Leonard-Jones 6-12 potential, 

* )s (r* 12 
u(r)=-2sCr +s --;:-) (I) 

where s and r* are constants and r is the distance 
between units. 

Then the potential energy between a unit and 
a neighbor chain is (Figure Ia), 

r= 3 ( *6 21 *12) 
w(l)= J_=up dz=-: pc s5-64 7u (2) 

where l is the distance of the chain from the 

(a) (b) 

Figure 1. Models of chains for calculating in
terchain potential: (a), a unit and a neighboring 
regular chain; (b), a unit and a neighboring curved 
chain. 
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unit, and p the linear number density of units 
in the chain (p=2fc). By minimizing w with 
respect to l, expressions of equilibrium values 
of l and w are obtained. By equaling these 
expressions to experimental lattice constant and 
two-sixths of lattice energy, l*=4.60A and 
[w* [ =(2/6) x 1.84 kcaljmol unit, 6 parameters r* 
and s are determined as 4.86A and 6.62 x 10-15 erg, 
respectively. 

For distorted chains in the vicinity of defects, 
lis not necessarily l* and chains may be locally 
curved. In this case, the potential energy w(l) 
between a unit and a curved neighbor chain is 
assumed to be a function of l, which expresses 
the perpendicular distance between the unit and 
the chain (Figure lb). This approximation may 
be acceptable because of the short-range nature 
of the interchain potential and the low curvature 
of the curved chain. 

INTRACHAIN POTENTIAL 

In determining the increase in intrachain po
tential on account of chain bending, the planar 
zigzag conformation of polyethylene molecules 
is taken into account because a strong anisotropy 
is expected for the bending. 

Three types of bending as shown in Figure 2 
are considered: type a bending perpendicular to 
zigzag plane, type b parallel to the plane, and 
type c oblique to the plane. The first two occur 
successively in the {110} plane and the last in 
the {200} plane. Type a bending results from 
torsion of C-C bonds and the force constant 
is the smallest. Type b bending is brought about 

Figure 2. Three types of bending (a, b, and c) of 
planar zigzag chains towards a vacancy from three 
directions in the orthorhombic polyethylene crystal. 
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Figure 3.. Models chains calculating intrachain potential of three types of bending: 
(a), bendmg perpendicular to zigzag plane; (b), parallel to zigzag plane; (c), oblique to zigzag 
plane. 

by a bond-angle change with a large force 
constant. Type c bending is a composite of the 
two, having an intermediate force constant. 

The increase in intrachain potential by bending, 
LJU;ntra• depends on the shape of curved chain. 
Here we assume that the length of the curved 
part of a chain along the z-axis (chain-axis) is 
X and the perpendicular shift in the bend plane 
(yz-plane) is d, and further the bend is expressed 
by a cubic equation between z=O and X, 

2d3 3d2 
y=- x3z + x2z 

For type a bending (Figure 3a), 

(3) 

Au.a - k " ( 2 "' mtra-2 -7' Yi+3-yi+2-yi+l +y;) (4) 

where y; is the ordinate of the i-th unit and k 
the force constant for the torsion of the C-C 
bond. The value of k can be obtained from 
the potential of hindered rotation of the C-C 
bond as k=4.11 x 103 dynjcm. 7 By approximating 
the chain as a one-dimensional elastic continuum 
with low curvature « cf2), eq 4 is reduced 
to 

_a 24kd2 

L1Umtra-a -d 2 dz= - 3- 3 
p 0 z p X 

(5) 

In the case of type b bending (Figure 3b), 
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-1 ( -c)2 

(6) 

where the force constant K 1is due to bond-angle 
variation. The value of K is calculated by use 
of the Urey-Bradley potential from force con
stants of C-C-C bond-angle variation and dis
tance variation between unbonded carbons as 
1.17 x 105 dynjcm. 8 In the continuum approxi
mation, 

b _ K \x(dy)4 _ K (6d)4 

LJUintra- 2p Jo dz dz- 2p 630X3 (7) 

For type c bending which is a composite of 
the above two (Figure 3c), the energy is simply 
additive because deformations of types a and b 
belong to different normal modes of vibrations 
in the polymethylene chain. The result is given 
for the bending to 45° to the zigzag plane by 

LJU;"ntra=+ LJUfntra + 

(8) 

The three quantities, LJU;""ntra• and 
LJUfntra• are all proportional to x-3 and numerical 
evaluation of the proportional constants with 
d=l* f2 (shift by one-half of chain distance) 
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leads to the following approximate equations 

(9) 

The average intrachain potential LlUintra ford= 
I* /2 may be taken therefore as 

( 10) 

It must be emphasized that the bending of a 
chain has been hitherto assumed to be caused 
by a small elastic deformation around the trans
conformation and not by trans-gauche trans
formation. The latter will be discussed in detail 
later in this paper. 

CHAIN BENDING AROUND CHAIN END 

In this section, a crystal of infinite lamella 
thickness is considered. When a chain has an 
end in the crystal, a vacancy row forms from 
the end to the lamella surface if chains sur
rounding the chain with the end remain linear. 
However, the increase in interchain energy by 
the vacancy row makes a neighbor chain or 
chains bend to fill up the vacancy. 

There are in principle several ways in which 
such a bend may form but the following two 
extremes may be immediately eliminated because 
they possess higher strain energy than the original 
vacancy. (1) Six neighbor chains approach the 
vacancy isotropically. In this case, the strong 
repulsion potential between chains, or the van 
der Waals radius of chains, makes such deforma
tion . impossible. (2) A single neighbor chain 
bends to fill up the vacancy (Figure 4a). In 
this case, the vacancy moves to a neighboring 
position and the total potential increases by the 
intramolecular contribution due to bending. 
The case whereby chains successively bend till 
the crystal edge or another chain end of opposite 
sense is reached may be possible only when 
these are very close to the original chain end 
(Figures 4b and c). In this instance, dipole 
screw dislocations with opposite Burgers vectors 
(Burgers vector, Z*) run between the end and the 
crystal edge, or between two ends. The bend 
shift of chains is d=l* (not Z* /2) and hence the 
increase in intramolecular potential which is 
proportional to d 2 or d 4 (see eq 5 and 7) may 
be high except in the case where the screw 
dislocations are sufficiently short. 
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(a) 

l J J L,., 
( ( 
(b) 

(c) 

Figure 4. Chain bending with the shift d=l*: 
(a), bending of a neighboring chain; (b), successive 
bending to the crystal edge; (c), successive bending 
to a neighboring end of opposite sign. 

-[" .... 

Figure 5. Chain bending with the shift of d=l*/2 
in the plane with a chain end. Chains in two 
neighboring planes are slightly displaced. Dashed 
and solid circles represent chains above and below 
chain end, respectively. 

Apart from the special cases mentioned above, 
therefore, neighboring chains on both sides of 
the chain end will bend with the shift by d=l*/2 
to fill up the vacancy row. In this case, if the 
bend occurs only in the plane with the end and 
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chains in neighboring planes remain linear, the 
crystal is transformed from hexagonal symmetry 
into tetragonal as illustrated in Figure 5, result
ing in a marked increase in interchain potential. 
Consequently, chains in neighboring planes will 
bend also by [* /2, making a pair of screw dislo
cations through the chain end. 2 Two cases are 
then possible. When the shift of neighboring 
planes is in the opposite direction as illustrated 
in Figure 6, the screw dislocations have a Burgers 
vector of the same sign. On the other hand, 

Figure 6. Jogged screw dislocations caused by 
chain bending around the vacancy row. Top rep
resents view from [110]-axis, bottom from c-axis. 
Dashed and solid circles represent chains above 
and below chain end, respectively. 

l 

Figure 7. Coupled screw dislocation caused by 
chain bending around the vacancy row. Expres
sions are the same as in Figure 6. 
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when the shift is in the same direction as shown 
in Figure 7, the screw dislocations have a 
Burgers vector of the opposite sign. In the 
following, the former will be called jogged screw 
dislocations and the latter coupled screw dislo
cations. 

Simple calculations on the basis of intermo
lecular and intramolecular potentials support the 
above conclusion that a pair of screw disloca
tions are the most st:ible defects caused by a 
chain end except in special instances. Edge 
dislocations proposed by Predecki and Statton2 

as one of the possible dislocations caused by 
chain ends are concluded to have a higher energy 
than the original vacancy row for a hexagonal 
crystal. For nylon crystals, however, approxi
mated by a tetragonal lattice, the above con
clusion should be modified. 

STRAIN ENERGY OF SCREW DISLOCATION 

As has been described in the preceding section, 
the increase in intramolecular potential depends 
on the length of bending, X. First we consider 
the energy of a subsystem consisting of seven 
chains which constitute a hexagonal unit after 
screw dislocation has occured (Figure 8). 

For calculating the interchain potential, two 
chains I and 7 are assumed to bend by d=l* 
relatively to other chains. The curved parts of 
chains I and 7 are expressed therefore from 
eq 3 by 

/u=_}!'__2 3+ } 
x.3 X/ " ' 

e e 

I 
I 

J--t
(a) 

I 
I 

I 
I 

(11) 

--+Y 

(b) 
Figure 8. Subsystem of seven chains around a 
vacancy row: (a), before; (b), after bending by 
d=l*/2, respectively. 
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where and the suffix e refers to the 
value in the vicinity of the chain end. 

The increase in interchain potential may be 
the sum of two terms, between chain 1 
and other chains and L1 between chain 7 
and other chains. The increase in interchain 
potential between chain 1 and chains 2 to 7 is 
given from eq 2 as 

.t \x'[- 3"P_!_(<6 r*;;)J p dz Jo 4 11; 64 11; 

- .t [- r:::) px,J 
4 lli 64 lli 

( 12) 

where I;; represents the distance between chain 
i and chain j after bending and l;*; that before 
bending, 

ti2=ti3=[Z*c2e-3CH z* J + ( _i;--z* )" 

li4=ti5=[z*c2e-3CH J+( .v23 t* )" 
(13) 

ti6=U"'c2e -3n +2l*J2 
117=1* 

li;=l* (i=2, 3, ... , 7) 

The increase in interchain potential between 
chain 7 and chains 1 to 6 is safely approximated 
by that between 7 and 1 to 3 and is expressed 
in terms similar to eq 12 as 

( 14) 
where 

ln=l* i 
t*)" 

ln =172=173 =1 

( 15) 

The increase in intrachain potential of seven 
chains is given under the approximation of 
average force constant of bending (eq 10), 

84kl*2 

L} Uintra = 3--3 
p X, 
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( 16) 

The total increase in potential energy is thus 
obtained as 

X, can be determined by the condition 
minimum with respect to X, as 

( 
2 l* k ) 114 1 X,= 1.58x 10 -- --

P e p 

(17) 

LlU= 

(18) 

The numerical value of X, for polyethylene is 
14.7A. which corresponds to 11.6 CH2 units. 

When the screw dislocation forms, the intersect 
of chains in two adjacent planes is aligned along 
the dislocation line (Figures 6 and 7). The 
length of bend X; in this region is calculated in 
a way similar to the above. X; iJ proportional 
to (l*kfps) 114 jp in the same way as X, but pro
portional constants differ from X, and also be
tween the jogged and coupled forms. X;=24.4A 
for the former and 20.5A for the latter. This 
difference comes from the different arrangement 
of chains in the two types of dislocations. In 
the case of coupled form, a chain between a 
pair of dislocations has an intersect with chains 
on both sides (Figure 7) but in the case of the 
jogged form, on the other hand, the chain near 
the dislocation has an intersect with a chain 
on one side (Figure 6). 

The length of bend X, therefore, is equal to 
X, at the immediate vicinity of chain ends, and 
increases gradually towards X; with increasing 
distance from the end. 

The above estimation of X and corresponding 
potential energy leads to the expression of the 
total energy increase due to a screw dislocation, 
LJU(screw), as 

L1 U( screw)= L1 Uin ter( screw)+ L1 Ui n tra (screw)) 

LJUinter(screw)= 1. 73n/sl* X, +0.060nmp2si* X; 

12nkl* 2 ) LJUintra(screw)=- 3--3-
p X; 

(19) 

where n is the number of the bent chains per 
chain end or, in macroscopic terms, the number 
of chains in the strained range around a screw 
dislocation, and m is the number of chain in
tersects along a screw dislocation. The average 
value of n in a crystal c:1n be estimated from 
chain end density but m depends on the distri
bution of chain ends and screw dislocations in 
the crystal. Since the Burgers vector is smallest 
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for partial dislocations in the (110) direction 
in polyethylene, the screw dislocation may run 
mostly on {110} planes and the dislocation from 
one chain end may run to another chain end 
which is positioned in the vicinity of the line 
drawn from the former end in (110) directions. 
The value of m depends on the effective range 
of interaction around this line. Screw disloca
tions by two chain ends may be coupled through 
a jog (a short edge dislocation) when the ends 
lie within the range but may not be coupled 
outside the range. In the following treatment, 
the range is assumed to be five planes and m is 
taken as nj5 as a reasonable estimate. 

In an orthorhombic crystal of polyethylene in 
which [* corresponds to the displacement of 
(aj2, bj2, 0), the screw dislocation in the {110} 
planes is partial and the stacking fault forms 
with the dislocation. In the present treatment 
in which a chain is approximated by a linear 
arrangement of units for interchain potential, 
the estimation of energy due to the stacking 
fault is not taken into account. 

As can be readily seen from eq 18, the length 
of the bend measured by the number of units, 
pX, is proportional to (l*k/pe/14• Since the 
Young's modulus E 11 parallel to the chain axis 
is proportional to Kjp/* 2 and the modulus El. 
perpendicular to the axis is proportional to 
/e/1*, pX is proportional to (pl*/12 x(E11fES14 • 

In other words, the strain field in the polymer 
crystal due to a chain end or an intersect has a 
larger extension along the chain axis than along 
the perpendicular axis, the ratio being propor
tional to (E11 jEl./14• This conclusion may be also 
predicted from the continuum theory of elasticity. 

In the dislocation theory, it is often convenient 
to divide the strain energy into two parts: core 
energy and the elastic energy of the long-range 
strain field. In the present treatment, however, 
the energy was calculated at a molecular level 
and hence this differentiation was not necessary. 
The strain field was assumed to be limited within 
the layer of thickness X, along the chain axis 
and to extend to the nearest neighboring dislo
cations in the plane perpendicular to the chain 
axis. Xi was found to be smaller for the coupled 
screw dislocation than for the jogged one. This 
indicates the strain field is less extended in the 
coupled form. 
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CRITERION OF FORMATION OF SCREW 
DISLOCATION 

In the preceding sections, the crystal was 
assumed to have an infinite thickness and the 
effect of lamella surface was not considered. 
In the real crystal with a finite thickness, however, 
a vacancy row from the chain end to the lamella 
surface has a finite length and hence increase in 
interchain potential due to the vacancy row, 
LIU(vac), is also finite. The screw dislocation 
may form only under the condition 

LIU(vac) > LIU(screw) (20) 

LIU(vac) is proportional to the distance Z of 
the chain end from the lamella surface, 

LIU(vac)= 10.7 p2el* Z (21) 

The critical value of Z for screw dislocation 
formation is calculated for polyethylene from 
eq 19 and 21 to be Zc=30A for n=100. This 
n value is derived under the assumptions that 
the number-average degree of polymerization is 
2 x 104 , one-tenth of the whole chain ends are 
effective to screw dislocation formation and the 
lamella thickness is 100A. When Z is smaller 
than Z 0 , the vacancy row is the most stable 
defect caused by a chain end, which is equivalent 
to a pair of edge dislocations with Burgers 
vectors of opposite sign (Figure 9). 

In the case of polyoxymethylene in which the 
packing of molecules is exactly hexagonal (I*= 
4.46A)9 and E 11 is lower but El. is higher than 

1 
{a) 

{b) 

Figure 9. Vacancy row or a pair of edge disloca
tions caused by a chain end. Top represents view 
from [110]-axis and bottom from c-axis. 
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polyethylene, 10 the value of X may be smaller 
than polyethylene and consequently Zc may be 
also smaller. 

Calculations for poly(oxymethylene) are carried 
out in a nanner essentially similar to polyethylene. 
For intrachain potential, however, molecules are 
assumed to be a circular rod form with the same 
second moment of cross section as polyethylene. 
This assumption is reasonable because [* is almost 
the same in the two polymers. It is further 
assumed that, for polyethylene, the bending of 
the rod is equivalent to type b bending because 
E 11 is related to the bond-angle variation. Under 
these assumptions, the calculation for polyethylene 
can be reduced to that for poly(oxymethylene) 
by use of E 11 and E1. as parameters. The cal
culated values for poly(oxymethylene) are X.= 
lOA, X;=l5A (jogged type) and Zc=20A for 
the same chain-end density and the same lamella 
thickness as polyethylene. 

CHAIN BENDING ACCOMPANYING TRANS
GAUCHE TRANSFORMATION 

Chain bending of polyethylene which has so 
far been discussed has been limited to elastic 
deformation of chains around trans-conformation. 
In this section, bending accompanying trans
gauche transformation will be discussed. 

In Figure 10, an example with the least gauche 
bonds is illustrated, in which the shift perpen
dicular to the chain axis is almost equal to Z* 
along the b-axis. Such a form of bending might 
occur for filling up a vacancy row by the bending 
of a single neighboring chain and hence, as 
described in the previous section, the bending 
only increases the intrachain potential. The 
increase in intrachain energy in Figure 10 is 
obtained as 11.2 X 10-14 erg on the simple as
sumption that one gauche conformation has 
excess energy of 5.6x10-14 erg. The Boltzmann 
factor for this bending is exp ( -ilUintra/kT)= 
0.067 (T=300°K) when the interchain energy is 
ignored. Such a form of bending, therefore, 
may be thermally excited at an appreciable 
frequency. Hoffman, Williams, and Passaglia11 

have attempted to interpret the dielectric r-relax
ation of poly(trifluorochloroethylene) in terms 
of this type of motion. 

Figure 11 illustrates two examples of bending 
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(1) (2) 

Figure 10. Chain bending of polyethylene chain 
with trans-gauche transformation with the shift 
de:::.!*. Two gauche bonds are included: (1) view 
from c-axis (dashed figure represents regular posi
tion); (2) view from a-axis. 

(a-2) 

(b-1) (b-2) 

Figure 11. Two types of chain bending (a and b) 
with trans-gauche transformation with the shift 
dc:::.l*/2: (a-1) and (b-1), view from c-axis; (a-2), 
view from [IlO]; (b-2), from a-axis. (a) and (b) 
include four and two gauche bonds, respectively. 
Shift by bending along c-axis is approximately c 
and cj2 for (a) and (b), respectively. 

accompanying trans-gauche transformation with 
the shift d approximately equal to l* j2. As has 
been described in the previous section, this type 
of bending might be effective for screw disloca
tion formation if the energy is lower than elastic 
bending. Calculations reveal, however, this is 
not the case and hence trans-gauche transfor-
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mation may not be expected in the screw 
dislocation. 

The bending in Figure 11 b was first proposed 
by Pechhold and called "kinked chain" .12 

Pechhold calculated the increase in intrachain 
energy alone but the addition of the increase in 
interchain potential may make the energy ap
preciably higher and the probability of thermal 
excitation of kinked chains may be lower than 
Pechhold estimated. 

INTERACTION AMONG CHAIN ENDS 

As has been described in the previous section, 
a chain end in the crystal generates screw dis
locations or a vacancy row. When the screw 
dislocation forms, defects caused by another 
chain end are strongly affected by the strain field 
of the dislocation. In the following, defects by 
two chain ends are discussed two-dimensionally 
in the plane, including the dislocation. Two 
cases are then possible. 

In the first case, the two chain ends are well 
fitted so that two screw dislocations from each 
end join together (Figure 12). As has been 
already pointed out by Predecki and Statton, 2 

if two chain ends have opposite sign, in other 
words, one from the top and the other from the 
bottom, a dipole screw dislocation with opposite 
Burgers vectors forms. On the other hand, if 
two chain ends have the same sign, both from 
the top or both from the bottom, screw dislo-

A 

(1a) 

-y--------------------7'-· 

(1 b) 

cations of the same Burgers vectors run through 
the ends with jogs (or short edge dislocations) 
at the chain ends. 

In the second case where two chain ends are 
not well fitted, a vacancy row is created with 
screw dislocations. Figure 13 represents three 
possible cases: (a) a chain end located on coupled 
screw dislocations which is caused by another 
chain end beyond the figure, (b) a chain end 
located on a jogged screw dislocation, and (c) a 
chain end located apart from the dislocation 
which is not depicted in the figure. Among 
three possible cases in Figure 13, case a (coupled 
screw dislocations with a vacancy row) is proved 
unstable because the activation energy for vacancy 
motion from (a) to (a') is small and the state (a) 
goes thermally to the state in Figure 12 1a. 
Cases b (jogged screw dislocations with a vacancy 
row) and c (a vacancy row only) are, on the 
other hand, metastable because the activation 
energy for vacancy motion is very high. 

We now consider a three-dimensional crystal. 
If the vacancy row formed as in Figures 13b 
and c has sufficient length to the crystal surface, 
chains on a molecular plane other than the 
original dislocation plane bend to fill up the 
vacancy. If the initial screw dislocation is on 
the (110) plane, the new dislocation may be on 
(1 lO) plane or vice versa. As a consequence, a 
dislocation network is extended within the crystal 
and the crystal has a mosaic structure. 13 

Various physical properties of polymer crystals 

(2a) 

(2b) 

Figure 12. Screw dislocations by two chain ends positioned in the same or adjacent 
planes: (Ia) and (!b), coupled or dipole screw dislocations; (2a) and (2b), jogged 
screw dislocations. 
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(a) (b) (c) 

M\% MMM IIHU 
(!j) (c) 

Figure 13. Three possible cases of defects by two chain ends which are not well 
fitted with each other: (a), coupled screw dislocations with a vacancy row; (b), jogged 
screw dislocations with a vacancy row; (c), a vacancy row alone. One end generating 
screw dislocations is beyond the figure. (a'), (b'), and (c'), rllpresent the case the 
vacancy row moves to an adjacent position. 

may be attributable to defects caused by chain 
ends. A lower density of polyethylene single 
crystals than expected from unit cell dimensions14 

may be partly ascribed to vacctncy rows. In the 
following, plastic deform1tion and anelastic be
havior of polyethylene crystals will be interpreted 
in terms ot vacancy rows and screw dislocations. 

INTERPRETATION OF PHASE TRANSFOR
MATION AND TWINNING IN TERMS 

OF VACANCY ROWS AND SCREW 
DISLOCATIONS 

According to Kiho, et al., 3 who studied plastic 
deformation of single crystals on 
the substrate, two mechanisms take place at an 
,early stage of deformation: phase transformation 
from orthorhombic lattice to monoclinic and 
{110) twinning. When the crystal is deformed 
along the b-axis, only the transform1tion is 
observed. When the crystal stretches along the 
a-axis, on the other hand, the twinning is 
predominant. For deformation perpendicular 
to the growth surface {110) or parallel to it, both 
mechanisms coexist. These mechanisms will be 
interpreted in terms of vacancy rows and screw 
dislocations, which have been proved in the 
previous sections to be the _most stable defects 
generated by chain ends in as-grown crystals. 

Now we consider a (110) plane including a 
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v"tcancy row. the stress is applied and 
increases the interchain potential, the vacancy 
row will become less stable and neighboring 
chains on both sides of the vacancy will bend 
to fill it up. In this case, chains are forced to 
bend with a smaller X than usual. One set of 
chains having a zigzag plane almost perpendicular 
to the {110) plane can produce type a bending 
but the other set of chains with a zigzag plane 
almost parallel to the {110) plane might produce 
type b bending which requires high energy 
(Figure 2). If the latter set of chains produces 
bending accompanying 90° rotation around the 
chain axis (twist-bending) instead of type b 
bending, in the former of which the force con
stant is relevant to the internal rotation of 

bond, the molecular arrangement 
around the vacancy row will form a monoclinic 
lattice. For formation of the monoclinic phase, 
a chain adjacent to the vacancy must shift along 
the c-axis by cj2, which is required for good 
fitting among chains. Occurrence of such trans
formation at various places in the crystal is 
expected because of the existence of many vacancy 
rows in the crystal, resulting in phase trans
formation. 

Possibility of twist-bending for small X is 
proved in the following. The intramolecular 
potential for twist-bending is the sum of type a 
bending and twist. The intramolecular potential 
for twist by 90° is written as 
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(a) (b) 
Figure 14. Transformation of (a) orthorhombic phase to (b) monoclinic caused by 
type a and twist bending around a vacancy row in polyethylene. 

(22) 

where ¢; is the angular displacement of_the i-th 
carbon atom from the zigzag plane around the 
chain axis, k' the torsional force constant (k' = 
ka2 ), a the distance of the carbon . atoms from 
the chain axis and X the length of the twisted 
part of a chain taken as being equal to the 
length of the bending (Figure 15). As shown 
in Figure 16, twist-bending has a higher energy 
than type b bending for large X but becomes 
more probable than type b bending for small 
X ( < 13A). Increase in the intermolecular po
tential by the applied stress makes the length of 
the bending X short and twist-bending is expected 
to occur more easily. 

This mechanism can interpret the partial phase 
recovery from the monoclinic to the orthorhombic 
lattice when the applied stress is removed. 

As has been described in the previous section, 
chains' in two successive { 110} planes intersect 
each other along the screw dislocation line, 
forming a stacking fault. When shear stress is 
applied in the {110} <liO) direction, a slip by 
(a, b, 0) occurs between the {110} planes including 

(a) (b) 

Figure 15. Twist of a planar zigzag chain around 
the chain axis. 
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LENGTH OF CURVED PART, X(A) 

Figure 16. Intramolecular potential for various 
types of bending with the shift of l*/2 plotted 
against length of curved part: e, type a bending; 
Q, type b bending; .-, twist-bending (twist by 
n:/2). Broken line represents twist without bending 
(twist by n:/2). 

(a) (b) 
Figure 17. Inversion of intersect along a screw 
dislocation by applied shear stress: (a), original 
intersect; (b), after inversion. 

a screw dislocation, making the sign of intersec
tion of chains opposite (Figure 17). In this 
process, the original partial dislocation with the 
Burgers vector I* changes its Burgers vector to 
-1* and, in addition, two partial dislocations 
with the Burgers vector I* are created in parallel 
on both sides of the original one. Layers of 
stacking faults are thus piled up, resulting in 
the { 110} twin against the original lattice 
(Figure 18). 
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(a) (b) 
Figure 18. [110] Twinning of polyethylene caused by cooperative slips making op
posite the sign of intersects along the screw dislocations: (a), original lattice, (b), 
lattice after cooperative slips on each plane above the plane AB accompanied with 
shift along c-axis by c/2 of alternate chains. 

A DISLOCATION THEORY FOR THE 
r-RELAXATION 

A highly crystalline polymer, polyethylene for 
example, generally exhibits r-relaxation in dy
namic mechanical measurements at low temper
atures. In the case of polyethylene (PE), the r
relaxation appears around -120°C at 100 Hz. 15 

The r-relaxation is observed also in dielectric 
measurements for polar polymers. 

According to Arai, Yano, and Wada, 4 who 
compared the r-relaxations among as-grown PE 
single crystals, annealed, and HN03-treated ones, 
the r-relaxation is composed of two peaks, the 
low-temperature peak (r1 ) and the high-temper
ature peak (r 2). Since the r 2-peak vanishes with 
HN03-treatment but the r 1 does not, the former 
is attributed to defects on the surface of lamellae 
and the latter to defects inside the lamellae. In 
the case of polycrystalline samples, the r 2-peak 
may be assigned to interlamella defects or amor
phous phase. A similar conclusion has been 
reached from the effects of irradiation and swell
ing on the r-peak of polyethylene5 and that of 
crystallinity on the r-peak. 11 ' 16 

Low temperature relaxations in simple, non 
polymeric crystals, lOOoK peak (10kHz) in 
aluminum for example, have been attributed to 
motion of dislocation and called Bordoni-peak.17 

A mechanism similar to the Bordoni-peak will 
be proposed here for the rl-peak in polymers. 

The calculation of strain energy of defects in 
the previous section indicated that, for crystals 
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including chain ends, scr(ew dislocations are the 
most stable among various possible types of 
defects except the case where chain ends are very 
close to the lamella surface. A dislocation line 
runs from one chain end to another and a 
dislocation network forms in the crystal. Figure 
19 illustrates schematially the dislocations, in . 
which points A and B represent a chain end, 
respectively. In what follows, directions of the 
chain axis and the dislocation line are tentatively 
called c- and a' -axes, respectively. 

In thermal equilibrium, the pinned dislocation 

-[----. 

I I 
B B 

STATE 1 (a) STATE 2 

(b) 

Figure 19. Schematic represention of motion of 
screw dislocations between two states. 
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POSITION OF DISLOCATION 

Figure 20. Energy map for motion of dislocation. 

fluctuates among minimum energy positions over 
the Peierls potential, with a distribution deter
mined by the free energy difference at each 
position. Points A and B serve as pinning points 
which are immobile during the motion of dislo
cation. When the dislocation moves downwards 
or upwards by a unit cell dimension c, a vacant 
site or an interstitial site forms at both A and 
B, respectively. When the shear stress of a'
direction in the a' c-plane is suddenly applied to 
the crystal, the distribution should change with 
time accompanying the stress relaxation, but 
this requires a relaxation time. 

We assume for simplicity (1) only two energy 
minima exist (two-state model in Figure 20), (2) 
the reaction is isothermal and only the strain 
changes with the reaction (volume relaxation). 
The relaxation strength may then be written, 
following the general theory of volume relaxation 
of the two-state model/8 as 

r = _G('--=__-)_-_G-'-( 0--') 
G( co) 

G(O)N(ilv)2. fK _ 
kT (1 +K)2 

(23) 

where G( co) and G(O) are instantaneous and 
equilibrium elastic moduli, respectively, N the 
number of dislocations per unit volume, k the 
Boltzm:mn constant, and T the absolute temper
ature. ilv represents deformation of the crystal 
when one dislocation moves from 1 to 2, f the 
dimensionless constant due to the orientation of 
dislocation with respect to the applied stress, 
and K the equilibrium constant between the two 
states. ilv=hcl and N=1flLd where b is the 
Burgers vector, l the dislocation length, c the 
unit cell length along the chain direction, L the 

146 

lamellae thickness, and d the thickness of the 
range of interaction between a dislocation and 
a chain end which has been assumed to be five 
planes in estimating min eq 19. The equilibrium 
constant K is .expressed by K= exp ( -iJG0jRT) 
where iJG0 is the free energy difference between 
the two-states. 

The dynamic mechanical data for a single 
crystal mat of polyethylene15 clearly indicates 
r-relaxation. The r 1-peak which is attributed 
here to motion of dislocation is the one observed 
for an as-grown crystal before annealing. Ac
cording to Sinnott's data15 for PE, the observed 
value of r for 71-peak is 0.15. 

In calculating r from eq 23, we must estimate 
the fraction of effective chain ends. Some of 
the chain ends are excluded from lamellae, and 
some others are included in the lamella but 
positioned close to lamella surface and hence 
make vacancy rows running from chain end to 
lamella surface. In the present case, we assume 
the fraction of chain ends which contribute to 
screw dislocation is one-tenth of all the ends. This 
leads to the dislocation length l=40A for poly
ethylene of number-average molecular weight= 
105 and lamella thickness= 100A. The number
average and weight-average molecular weights 
of linear PE used by Sinnott15 were 1.1 x 104 

and 2.3 x 105 , respectively. Taking into account 
the fractionation in the crystallization process, 
we assume a major fraction of crystallites has 
a number-average molecular weight of 105• 

Using values G(0)=2 X 1010 dynjcm2 , T= 150°K, 
b=5A, and c=2.5A, and assuming f=1J3 for 
isotropic orientation of dislocations in the poly
crystalline specimen and K=0.15, we obtain 
from eq 23 r=0.15, which agrees closely with 
the experimental value. This K value corresponds 
to iJG0 =0. 7 kcaljmol which is reasonable as 
compared with the activation energy (Figure 20). 
iJG0 might be estimated experimentally from the 
temperature dependence of r. 

According to the present model, the activation 
energy iJH of rcrelaxation is equal to the Perierls 
potential for the dislocation. The estimation of 
Peierls potential from a microscopic point of 
view is quite difficult even for a simple crystal. 
Here we use an approximate equation, 

(24) 
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where r-p is the Peierls stress and is approximated 
by the yield stress extrapolated to 0°K. Using 
the value of r-p=5 x 108 dynjcm2 , JH is calculated 
from eq 24 as 10 kcalfmol, which agrees closely 
with the observed value. 

Some of the values used in the above calcula
tion are rather tentative, but it must be em
phasized that both the relaxation strength and 
the activation energy are predicted from the 
same numerical values which would seem to be 
reasonable for the real system. 
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