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ABSTRACT: The square-root method of treating light-scattering data on narrow
distribution polymers in dilute solution ceases to be effective for samples of very high 
molecular weight in good solvent unless the experimental data are obtained down to a 
fairly small scattering angle (of the order of 10°). This communication reports the 
development of a new method which is expected to be particularly useful for such 
polymer-solvent systems, on the basis of recent experimental evidence that the particle 
scattering factor P(O) is little affected by the long-range interference between chain 
segments and follows quite closely the Debye equation for Gaussian chains. The 
potentiality of the method is demonstrated with data on polyisobutylene in cyclohexane 
and those on poly(a-methylstyrene) in benzene. 
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The availability of nearly monodisperse or 
very narrow-distribution samples of polymer in 
recent years has stimulated experimentalists to 
undertake precise measurements which purported 
to make unambiguous tests of a variety of 
theories so far presented on dilute polymer 
solutions. Thus light-scattering measurements1 

with such samples have revealed in the plots 
of Kc/R(0) at c = 0 against sin2 (0/2) an upward 
curvature which had been expected from the 
theory of Gaussian coils2 but had not been 
detected clearly by measurements of previous 
workers who dealt with broad-distribution samples 
·of polymer. Here c is the polymer concentration, 
R(0) is the excess Rayleigh ratio of the solution, 
and K is the familiar light-scattering factor. 
The appearance of such a curvature gives rise 
to the difficulty of extrapolating the plot for the 
purpose of determining the molecular weight M 
and the mean-square radius of gyration <S2) of 
the dissolved solute from its ordinate intercept 
and initial slope. 

Berry3 showed that this difficulty is largely 
circumvented if the square root of Kc/R(0) is 
plotted against sin2 (0/2) and applied this method 
to his data on samples of anionically polymerized 
polystyrene. Norisuye, et al.,4 enjoyed its merit 

in a study with sharply fractionated samples of 
polychloroprene. It appears that the square-root 
method of Berry is now becoming a standard 
procedure of treating light-scattering data on 
narrow-distribution samples of polymers. How
ever, in his recent measurements with anionically 
polymerized poly(a-methylstyrene) Utiyama5 has 
shown that the square-root method is of limited 
value for a sample of as high an M as a few 
million in good solvent, provided that the 
measurement of R(0) cannot be extended down 
to 0 below 35°, as is the case with most of the 
commercially available light-scattering photome
ters. This fact is illustrated in Figure 1, where 
his data6 on a sample having an M of about 
seven million in benzene are plotted in accordance 
with the square-root method. It is seen that 
the availability of data points for 0 below 30° 
is almost imperative in order to evaluate the 
correct intercept and initial slope of the plot 
and hence of Mand <S2) of this system. 

In recent years, there has been considerable 
interest in designing a light-scattering photometer 
by which one may extend the measurement of 
R(0) down to 0 much smaller than 35°, and 
several kinds of "low-angle" photometer have 
been reported. 1 •5- 9 Even with such achievements 

537 



H. FUJITA 

20 

8 /.5 
X 

('\j 

,--, 
«) /.0 
ii:: 
' u 
:.::: 
'--'05 

-90° 

025 050 0-75 
sin2(e12) 

Figure 1. Utiyama's data, plotted in accordance 
with the square-root method, for a sample of 
anionically prepared poly(a-methylstyrene) in ben
zene at 30°C (note that the measurements were 
made down to 0 = 9°). 

in the instrumentation, however, one must keep 
in mind that light-scattering measurements at 
low scattering angles are still a task of consider
able difficulty, being liable to be affected by 
various disturbing factors. 

Summarizing the present situation, one may 
wish to devise a new procedure which permits 
one to determine M and <S2) correctly even 
under the condition where the square-root method 
ceases to be effective unless data are obtainable 
with precision down to a very low scattering 
angle. This paper is concerned with proposing 
a method relevant to this aim. 

THEORY 

To begin with, one defines the quantities x 

and y by 

_ (4ir ) 2<S2) . 2 8 X- - Slll -
A 2 

(1) 

y = lim R(B)_ 
c-o Kc 

(2) 

where A is the wavelength of light in the solvent 
medium considered. The quantity y is related 
to the particle scattering factor P(8) by 

y = MP(8) (3) 

The theoretical range of {} is from O to 180°, 

but the data for y are usually obtainable for (} 
between 35 and 150°. 
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Monodisperse Polymer 
First, one considers a perfectly monodisperse 

polymer dissolved in a theta (or ideal) solvent. 
For this system the function P({}) is represented 
by the Debye equation,2 and this fact gives 

yx2 = 2M(e-x - 1 + x) (4) 

Integrating from x = 0 to x = x leads to 

~>X2 dx = 2M( 1 - e-x - x + ~2
) (5) 

Combining these two equations yields 

- =- + - 2 yx dx 1 1 1 ~" 2 

y M Myx o 

This may be rewritten as follows: 

_l_ = _1_ + bZ(u) 
y(u) M 

where 

and 

32ir 2 <S2) b=------
3A2 M 

Z(u) = [y(u)u413f 1 ~>(u)u du 

with u defined by 

• 3 {} 
U = Sln ---

2 

(6) 

(7) 

(8) 

(9) 

(10) 

With y given experimentally for a series of 
(} and hence of u, one may calculate Z as a 
function of u; the integration involved may be 
effected by a suitable graphical or numerical 
method. In order for this integration to be 
made accurately, it is preferable that the data 
for y are given down to as low a scattering 
angle as possible. However, as illustrated below, 
in practice, the data down to (} = 35 ° are 
sufficient; no significant error is introduced if 
the integrand y(u)u for u below {} = 35° is ex
trapolated rather arbitrarily from the data for 
higher scattering angles. 

Now, with the numerical values obtained for 
Z(u), one can plot 1/y(u) against Z(u) correspond
ing to the same u. According to eq 7, the 
resulting plots should follow a straight line 
whose intercept and slope are equal to 1/M and 
b, respectively. The quantity b is related to 
<S2) by eq 8. Thus the problem of evaluating 
Mand <S2) of a monodisperse polymer in an 
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ideal solvent is reduced to drawing a straight 
line through 1/y(u) plotted against Z(u). 

For a monodisperse sample of polymer dissolved 
in a nonideal solvent one may also plot 1/y(u) 
against Z(u), but one can no longer expect the 
resulting plots to follow a straight line, since 
the function P(0) for this case should deviate 
from the Debye equation 4 due to the presence of 
long-range interactions between chain segments. 
In fact, it appears to have been long conceived 
implicitly that such interactions should consider
ably affect the form of P(0). Importantly, it 
has been demonstrated quite recently by several 
investigators1 •10 - 13 that this concept must be 
altered. Thus it was shown that observed values 
of P(0) for narrow-distribution samples of typical 
polymers in good solvents followed the Debye 
equation to a surprisingly close degree except 
in the region of fairly large values of x. If 
this is generally the case, one can expect that 
the plot of 1/y(u) vs., Z(u) for a narrow-distribu
tion polymer may show no appreciable curvature 
even when the solvent is markedly nonideal 
and there will be no essential difficulty in 
extrapolating it to Z = 0. 

It is well known from the general theory of 
light scattering that 1/y for a monodisperse 
polymer in a single solvent (either ideal or 
nonideal) can be expanded in powers of sin2 (0/2) 
to give 

1 1 I 61r 2 s2 . 2 e - = - + --( ) sm - + ... 
y M 3J.2M 2 

( 11) 

Substituting this into eq 9 followed by integration 
leads to 

Z(u) = -1 sin2 _()__ + · .. 
2 2 

(12) 

From eq 11 and 12 it follows that 

_!__ = _1_ + bZ(u) + higher terms in Z(u) (13) 
y(u) M 

where eq 8 has been used. From eq 13 one 
finds that the values of M and (S2) for a 
monodisperse sample of polymer in a given 
solvent, either ideal or nonideal, can be deter
mined from the intercept and initial slope of 
1/y(u) plotted against Z(u). Eq 7 valid for ideal 
solvents is a special case of eq 13, in which 
the plot becomes linear over the entire range 
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of Z. It is encouraging for this method of 
determining Jla and (S2) that for the reason 
mentioned above the plot may be extrapolated 
to Z = 0 with no essential difficulty even when 
the data are obtained with nonideal solvents. 

Polydisperse Polymer 
For a polydisperse sample of polymer dissolved 

in a single solvent it can be shown that, in 
place of eq 13, the following expansion holds. 
irrespective of the nonideality of the solvent 

1 
y(u) 

- l_ + bzwZ(u) + higher terms in Z (14) 
Mw 

Here Mw denotes the weight-average molecular 
weight of the sample, and bzw is defined by 

b - l_~ir~ ( S2?z 
zw - 3;,2 Mw (15), 

with (S2)z being the z-average mean-square radius. 
of gyration. By the same argument as above 
one can conclude from eq 14 that Mw and (S2)z 
of a polydisperse sample of polymer may be 
evaluated from the intercept and initial slope 
of 1/y(u) plotted against Z(u). However, in this 
case, nothing general can be argued in advance 
about the curvature of the plot. The molecular
weight distribution of the sample may sensitively 
manifest itself to the extent of a deviation of 
the plot from linearity. Thus it depends on the 
degree of polydispersity whether the necessary 
intercept and initial slope can be extrapolated 
with precision when this method is applied to 
a polydisperse sample. 

APPLICATIONS 

Polyisobutylene in Cyclohexane 
Matsumoto14 prepared a series of very narrow

distribution samples (Mw/Mn 1.1) of poly
isobutylene by repeated fractionations including 
those by a theta column, and performed careful 
light-scattering measurements on them in various 
solvents by making use of a Type PG-21 Shimazu 
photometer. His data on a sample having M of 
about three million in cyclohexane at 25°C are 
chosen here for illustration of the method 
presented above. 

Figure 2 shows experimental values of y(u)u 
plotted against u. The solid line that fits the 
plotted points has been drawn for graphical 
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Figure 2. Plots of y(u)u against u prepared from 
Matsumoto's data for a narrow-distribution sample 
of polyisobutylene in cyclohexane at 25°C. 
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Figure 3. Tests of the present method (open 
circles) and the square-root method (closed circles) 
with Matsumoto's data on polyisobutylene quoted 
in Figure 2 (see eq 9 for the definition of Z). 

evaluation of the integral involved in Z(u). 
With the photometer used the smallest scattering 
angle down to which reliable measurements 
could be made was 35°. The left-most open 
circle in Figure 2 corresponds to this angle. 
One can see that y(u)u for u below this point 
can be extrapolated rather uniquely from the 
data points for the higher angles. A small error 
in this extrapolation is immaterial, making no 
significant contribution to Z(u). This feature is 
one of the merits of the present method. 

Figure 3 shows the data plotted in accordance 
with the present method (open circles) and with 
the square-root method of Berry (closed circles). 
Note that the ordinate scale for the closed 
circles is taken twice as large as that for the 
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open circles. The advantage of the present 
method over the square-root method is obvious 
from the graph. The line followed by the open 
circles has a curvature much smaller than that 
followed by the closed circles, and can be ex
trapolated to Z = 0 with no uncertainty. The 
dashed line indicated may be taken as the correct 
initial tangent to this line, giving for the polymer
solvent system considered 

Mw = 3.33 X 106 , <S2), = 0.966 x 10-10 cm2 

However, in this case, the situation with the 
square-root plot is not too bad, where one can 
see that the first four points in the region of 
small 8 arrange themselves well on a straight 
line and enable one to determine the desired 
intercept and initial slope of the plot with fair 
confidence. The chain line in the figure has 
been drawn in such a manner that one may 
obtain the above-indicated values of Mw and 
<S2), from the square-root plot. 

The curvature of the line fitting the open 
circles in the region of high scattering angles, 
though small, is unmistakable. It may be due 
both to the strong nonideality of the system 
(cyclohexane is known to be a very good solvent 
for polyisobutylene) and to a polydispersity of 
the sample. At present, nothing can be argued 
about which of these effects is mainly responsible 
for the phenomenon. 

Poly(a-Methylstyrene) in Benzene 
The data of Utiyama6 on a sample of anionic

ally polymerized poly(a-methylstyrene) in ben
zene at 30°C, shown in Figure 1 for an illustration 
of the problematic point of the square-root 
method, may be taken as a good example for 
a test of the present method. 

The open and closed circles in Figure 4 show 
Utiyama's data plotted in accordance with the 
present method and the square-root method, 
respectively. Actually, the closed circles are the 
reproduction of Figure 1. In Figure 5 is the 
magnified behavior of these plots in the region 
of relatively small scattering angles. 

The situation here clearly favors the present 
method over the square-root method. The line 
fitting the open circles is accurately linear over 
a range up to 8 = 70° at least, yielding with 
precision the following values for Mw and <S2), 
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Figure 4. Utiyama's data on poly(a-methylstyrene) 
(as in Figure 1) plotted in accordance with the 
present method (open circles) and the square-root 
method (closed circles). 
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Figure 5. Showing the plots of Figure 4 with the 
abscissa magnified by a factor 2.5. 

of this polymer-solvent system: 

Mw = 6.98 X 106 , 

It should be noted that, with the present method, 

these results could be obtained even if the actual 

data were available only for () above 30°. The 

square-root plots, here being available down to 

a very small scattering angle, can also be ex

trapolated to zero scattering angle with no 

ambiguity, yielding 

if the initial tangent is drawn as shown by the 

dashed line in Figure 5. However, the point 

of importance here is that the line fitting the 

closed circles exhibits a marked curvature for () 
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above 35° so that one could not reach these 

numerical results if the measurements were 

confined to such () only. 

The two examples discussed above would suffice 

to demonstrate the potentiality of the present 

method for treating light-scattering data on 

narrow-distribution samples of polymer of very 

high molecular weight in good solvents. The 

difficulty of extrapolation which often troubles 

one in dealing with such data in terms of the 

square-root method is here largely removed. 

The only disadvantage of the present method is 

that the evaluation of the integral involved in 
Z is somewhat time-consuming. 
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