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ABSTRACT: The flexural rigidity s of double-stranded DNA has been calculated to 
be s = 1.2 x 10-19 dyne cm-2 from a study of the results of electron-microscopic measure­
ments. A re-examination of the theoretical background of the analysis of the electron 
micrographs of DNA taken by the protein-monolayer technique is done on the basis of 
a stiff-chain model. An appropriate interpretation of the results is given in terms of 
two parameters: one is the flexural rigidity of the DNA molecule and the other is the 
"excluded area" which allows for the interaction between the DNA molecules and a 
surface-denatured protein monolayer. Employing the "diffusion method" introduced by 
Lang, et al., the contour length and the end-to-end distance were measured from mi­
crographs of DNA molecules. The materials studied were DNA of the ,1-phage on a 
cytochrome-C monolayer. For this case, the "excluded area" {Ju has a numerical value 
of 0.016 µ 2• 
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A considerable amount of information about 
the conformation of linear macromolecules in 
solution can be obtained by means of physico­
chemical measurements of such quantities as 
viscosity, sedimentation constant, light scatter­
ing, and flow dichroism. To analyze the results 
of these measurements, it is necessary to use an 
appropriate model so as to link certain attributes 
of the individual molecules with the macroscopic 
quantities measured as ensemble averages. 1 

Recent advances in electron microscopy enables 
us to make direct observations of the individual 
shapes of certain macromolecules. These new 
techniques enable direct measurements of molec­
ular quantities to be made. 2 For double­
stranded DNA, such quantities as the contour 
length of a molecular chain and the molecular 
weight have been determined, using the reason­
able assumption that DNA has the B-form 
helical structure in both fibres at high humidity3 
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and in solution. 4 

Difficulties arise in any attempt to measure a 
quantity relating to the three-dimensional mo­
lecular conformation from the two-dimensional 
molecular image of DNA obtained by means of 
electron microscopy. One of the most important 
quantities to obtain is a quantitative estimate 
of the changes in molecular conformation pro­
duced by a reduction of entropy (degree of 
freedom in the conformational space) or by 
disturbances raised by the flow and surface­
tension of water during the preparation of a 
sample. 

Lang, et al., 5 •6 who developed the "diffusion 
method" for preparing DNA samples as a 
revision of the protein-monolayer technique for 
DNA sampling, minimized the disturbances by 
means of a diffusion-absorption process of DNA 
on to a plane of protein layer. Although this 
device has successfully removed one difficulty 
mentioned above, the effect of the reduction of 
entropy still remained to be considered by 
means of an appropriate theoretical framework. 
In regard to this problem they assumed that 

( 1 ) the molecules in solution exist as random 
coils of equal contour length, and 
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( 2) the end-to-end distance of the average 
coil is parallel-projected on to the plane. 

Their data were expressed by the relationship 
derived from a theory of Katchalsky and 
Lifson, 7 

where ii,2 is the mean square end-to-end distance 
in solution, A is the Kuhn statistical element 
(the length of a unit segment), L is the contour 
length of a molecule and b is a quantity which 
allows for the electrostatic repulsion between 
the parts of an unbranched polyelectrolyte. 
According to Lang, et al., by using the as­
sumptions given above, the mean square end­
to-end distance in the two-dimensional plane, 
ti was expressed as 

(122 )112 = (2-ii2J3)112 

The values of the parameters thus obtained 
were6 

A= l.85 X l0-5 cm 

and 

b = l.68 x 10-s cm 

The parameter A, which is the Kuhn statistical 
length, is about three times larger than the 
value of 717 A, obtained by Hearst and Stock­
meyer8 from a theoretical analysis of the sedi­
mentation constant within the same range of 
ionic strength (at I= 0.2) on the assumption 
that long-range interaction was negligible. Since 
the electrostatic repulsion increases the end-to­
end distance, the mean square end-to-end dis­
tance given by the above equation is more than 
three times as large as that suggested by Hearst 
and Stockmeyer. 

Recently, Hays, Magar, and Zimm9a re-evaluat­
ed the persistence length (just half of the Kuhn 
statistical length) from light scattering measure­
ments and from hydrodynamic data. The 
former method has given a value of persistence 
length of 900 ± 200 A and the latter 600 ± 100 A. 
On the other hand, Eisenberg9b has also pointed 
out that the persistence length appears to be 
1500-1900 A which is three to four times higher 
than those ever accepted. 

The present authors have re-examined the 
diffusion method, especially from its theoretical 
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analytical side, and have obtained information 
about the stiffness or flexural rigidity of double­
stranded DNA molecules. The present treat­
ment possesses a certain validity in describing 
the conformations from the two-dimensional 
electron microscopic picture for various cases 
of flexible molecules. 

THEORY 

This section presents an attempt to improve 
the existing theoretical methods devised for the 
interpretation of the two-dimensional molecular 
images of double-stranded DNA molecules ob­
served by electron microscopy. 

Gaussian Chain and Stiff Chain Models 
Let the chain consist of segments of an ef­

fective number n and of statistical length b. 
Here the segment does not mean the nucleotide 
unit. Then the total length of the chain is 

L=nb ( 1 ) 

and the end-to-end vector R of the chain is 

R = I; uib 
i 

( 2) 

where ui is the unit vector which is parallel to 
the longitudinal axis of the i-th segment. 

The distribution function of the end-to-end 
vector is 

W(R) dR = · · · e-U/kT d(a,) ( 3) 

where U is the potential energy of the chain 
and the integration is carried over all conforma­
tional space a, in fixing the end-to-end vector at 
R. The potential energy is written as 

U = I; Ui + I; Uij 
i i<j 

( 4) 

where ui is the internal potential energy of the 
i-th segment, and u;1 denotes the interaction 
between i-th and j-th segments. 

If n tends to infinity and if only short-range 
interaction is taken into consideration, the dis­
tribution function W(R) is approximated by 
means of the central limit theorem as a form 
of Gaussian function. 10 Thus we can write 
two- and three-dimensional spreads of the vector 
R using constants n and b as follows: 
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W(Rn) oc exp (-Rh/nub~1) (5a) 

W(Rm) oc exp (-3Rm/2nmb~n) (5b) 

where suffices II and III indicate two- and three­
dimensional cases, respectively. 

While the Gaussian-chain model is obtained 
by replacing the potential energies by their 
averages, the stiff-chain model is obtained when 
each of them is taken to be the elastic energy .11- 13 

By neglecting the tensile and compressive 
energies of the chain, the potential energy is 
written as 

Using eq 12, the mean square end-to-end 
distance is given by 

<mn> = (e- 2DL - 1 + 2DL)/2D2 (13a) 

and the mean square curvature14 is calculated 
to be 

(14a) 

which is substituted for the integrand of eq 7. 
The mean potential energy is thus expressed as 

(Um)=kTDL (15a) 

By employing a similar procedure, the above 
( 6 ) mentioned quantities can be derived by means 

of the two-dimensional Green's function, 
where s and K are the flexural rigidity and the 
curvature vector of the i-th segment, respectively, 
and the former is assumed to be constant for 
all of the segments. If n tends to infinity 
while L remains constant (at the limit of in­
finitesimal segment-length) the summation can 
be replaced by an integration. The energy is 
thus written as 

U=_!___sfLK2 ds (7) 
2 Jo 

where s is the contour co-ordinate fixed along 
the chain. 

The relationships between the position vector 
r, the tangential vector u, and the curvature 
vector K are, 

u = or/os and K = ou/os = llr/os2 ( 8) 

The partition function is thus rewritten as 

( 9) 

By means of the calculus of variation, Saito, 
et al., 12 derived the partial differential equation, 

_§_Q = DtluQ as (10) 

where D = kT/2s, Liu is the Laplacian operator 
in u-space, and we have the restriction 

u2 = I (11) 

The Green's function of eq 10 in the three­
dimensional case is, 

G(s, 0, rp Io, o, O) 

= I; I; e-nln+!JD•y,,,m(0, rp)Y,,,m(0, 0) (12) 
"m 
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n(s, 0 , ) = - - + I; e cos n0 ( a G IO O 1 ( 1 = -n2Ds ) 12 ) 
'If: 2 n=l 

and expressed as 

2 2 -DL L (Rn)= D2 (e - 1 + D ) (13b) 

(K~r) = D 2 (14b) 

(Un)= kT DL 
2 2 

(15b) 

Eq 4, 15a, and 15b all indicate that the mean 
potential energy (U) is proportional to the 
total length of the chain, L, at a large n. By 
equating the coefficients of these equations we 
obtain 

(un) _ kT D 
bu 2 2 

(um)= kTD 
bru 

(16a) 

(16b) 

Equating the mean potential energy of a 
segment (u) with the elastic potential energy, 
we obtain the following relationships in the 
two- and three-dimensional cases by using the 
equipartition of energy theorem 

kT 
(uu)= 2 (17a) 

(um)= kT (17b) 

2 
(18a) bu=-

D 

1 
bur= D (18b) 
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These relationships are also confirmed by the 
correspondence of the mean square end-to-end 
distances of the two models. If the number 
of segments n and the non-dimensional length 
DL are larger, eq 5a, 5b and 13a, 13b indicate 
that 

(Rfr) = nwbh = bnL:::::: },____ L (19a) 
D 

(R~n) = nm· b~n = bmL :::::: L (19b) 

Thus we obtain the important relationships 
between the segment length and the numbers 
of the segments in the two- and three-dimen­
sional cases, 

2 
bu= 2bnr::::: -

D 

Excluded Area Effect 

(20) 

(21) 

In the preceding discussion we have used 
only the first summation on the right-hand side 
of eq 4, which expresses the potential energies 
of short-range interactions of among the adjacent 
parts located within the same segment. Let us 
consider now the effect of the long-range inter­
actions between the remote parts of the chain 
(expressed in terms of a contour co-ordinate s 

upon the mean square end-to-end distance). 
Using the Gaussian approximation, eq 4 is 

written as 

U = n(u) + I: uii 
i>j 

If the potential uij is approximated as 

U;j = f,kTo(lrul) 

(22) 

(23) 

the increment of the mean end-to-end distance 
is estimated, as shown by Fixman, 15 who derived 
the equation for the three-dimensional case, to 
be 

( <mu>)! - 1 2r.i n½ (-3-)! 
(R;n)o - + J"III III 2irb~n 

where f,rn is the excluded volume and 

<mn)o = nrnb~n 

(24) 

(25) 

Following his derivation, we obtain a similar 
expression for the two-dimensional case, namely, 
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(24a) 

(25a) 

where f,u is interpreted as the "excluded area" 
and the relationships expressed by eq 20 and 
21 should be noted thereby. If we translate 
eq 24a into the stiff-chain model, we obtain 
the approximation for DL « I, that 

(R~r) = 2L(l + KDL)112 
D 

(26) 

where K is a non-dimensional parameter ex­
pressing the excluded area effect and given by 

1 2 
K=-Df,n 

Sir 
(27) 

Eq 24a or 26 shows that the mean square end­
to-end distance in the two-dimensional case is 
proportional to the 3/2's power of the chain 
length L in the limit as n tends to infinity: 
while in the three-dimensional case, it is propor­
tional to the 4/3's power. 

MATERIALS AND METHODS 

DNA 
DNA was extracted with phenol from the l 

cl phage. The preparation of the phage and 
the extraction of DNA were performed as de­
scribed previously. 16 DNA samples which are 
cut mildly by passing the solution through a 
pipet were also prepared, since data on DNA 
molecules having a shorter length than that of 
the whole molecule were also needed for the 
analysis. The DNA was dialysed against 0.2 M­
ammonium acetate and stored at -20°C. To 
exclude the effect of the cohesive ends of the 
l-DNA, the solution was heated for five minutes 
at 70°C and cooled quickly just before use. 

Electron Microscopy 
Samples for electron microscopy were prepared 

by the diffusion method introduced by Lang, 
et al.,6 with only minor changes. Barriers and 
troughs (10 x 10 x 1 cm) were coated with 
paraffin. Cytochrome-c was purchased from 
Wako Jun-Yaku Co. Ltd. Tokyo, Japan. The 
samples measured in the present analysis were 
obtained from a layer of cytochrome-c which 
sat for 30 minutes on a solution having a DNA 
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concentration of 2 x 10-7 g/m/ in 0.2 M-am­
monium acetate (pH 7.05) at 23°C. 

The electron microscope used was a JEOL 
Model JEM 7 A, by which a series of 24 micro­
graphs can be easily taken. All micrographs 
were taken at an instrumental magnification of 
4000; they were projected and traced at a final 
magnification of 33300. Length and distances 
were determined from the tracing using a map 
measure (Sakurai Co. Ltd., Tokyo). 

RESULTS AND DISCUSSION 

Errors Involved in Determining the Lengths and 
the End-To-End Distances of DNA 

The magnification was determined by the use 
of polystyrene latex spheres of 0.557 ± 0.0108 µ 
diameter (Dow Chemical Co. Inc., Midland, 
Michigan). The measurement of the lengths 
and the end-to-end distances rested on three 
sets of 24 micrographs. Each set contained four 
fields of spheres. The molecular images were 
traced under such conditions that the diameters 
of four spheres, which were randomly selected, 
fell in the range of 18.0-19.0 mm. 

The estimated experimental errors were 1.2% 
(from the standard deviation of the diameters 
of the spheres), 2. 7 % (in determining the final 
magnification), 2% (in determining the lengths 
and distances), and 2% (in tracing). The total 
error, which is given by the geometrical mean 
of the above mentioned errors, was less than 

5%. 

Diffusion-Adsorption Process of DNA Molecules 
As shown in Table I and Figure 1 , the mean 

square end-to-end distance was found to be 
proportional to the 3/2's power of the chain 
length of the range of the present experiment. 
The distributions of end-to-end distances ob­
tained for various values of chain length are 
shown in Figures 2a-g. 

In these measurements, we tried to find a 
flexible point and/or an inherent distribution of 
the different degrees of flexibility along the 
DNA strand, if any, because the DNA used is 
known to have a non-uniform but unique dis­
tribution of GC-content. However, we could 
not find such a characteristic within the precision 
of our experiment. 

Polymer J., Vol. 1, No. 4, 1970 

Table I. 
--------··-------

Contour length N (no. of 
L ± SL(µ)" molecules) 

~--··--

0.25 ± 0.04 98 
0.50 ± 0.05 56 
1.00 ± 0.10 111 
2.00 ± 0.20 112 
4.00 ± 0.40 88 
8.00 ± 0.80 71 

16.0 ± 1.6 47 

Mean square end­
to-end distance 
(Rir) ± SR(µ2) 

0.0358 ± 0.0017 
0.0853 ± 0.0071 
0.243 ± 0.015 
0.588 ± 0.054 
1.66 ± 0.14 
5.92 ± 0.48 
12.7 ± 1.6 

a SL and SR are the standard deviation of contour 
length and mean square end-to-end distance, 
respectively. 

10 

01 

oobi ' ,o 
L (/LI 

Figure 1. Mean square end-to-end distances of 
DNA molecules. 

These results are numerically the same as 
those obtained by Lang, et al. 5 But in the 
present study the relationship, (Ri1) cc L312, is 
obtained with more certainty, since the standard 
deviations of both mean values are much 
smaller. The equation of Lang, et al., given 
in the introductory section, seems less probable 
since it presents a relationship, (R2) oc L2, for 
the case of L » b. 

Another difficulty with the previous theoretical 
treatments is the interpretation of the process 
of absorption of DNA on to a protein layer. 
If it is caused by the interaction of positively 
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Figure 2. Distribution of end-to-end distances. N, number of DNA molecules measured. 

charged protein and negatively charged DNA, 
as assumed previously, the second assumption 
quoted in the introduction seems improbable, 
because it assumes a parallel projection of the 
end-to-end distance. A DNA molecule ap­
proaches through the adjacent region, which 
has higher concentrations of anions, and then 
fixes on to the positively charged layer in order 
to neutralize the charges on both sides to 
compensate for the reduction of entropy. As 
expressed in eq 20 and 21, if a linear molecule 
is fixed on a plane as a parallel projection, the 
free energy will increase. Since Cytochrome-c 
film allows a measurement of its surface pres­
sure by conventional methods of surface chem­
istry, 17 it seems unreasonable to assume that 
the film has enough rigidity to resist the two­
dimensional Brownian motion of the DNA 
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molecules, which, otherwise, takes place in order 
to maintain ( or restore) thermal equilibrium. 

If the Brownian motion in a plane is assumed 
to be a dominant process in determining the 
conformation of a DNA molecule in the elec­
tronmicrograph, then the observ,ed relationship, 
<Rir) = L"12, is appropriately interpreted as an 
"excluded area effect", which in turn suggests 
the above mentioned interaction between the 
protein film and the DNA. 

Estimation of Parameters in Terms of a Stiff­
Chain and Excluded-Area Scheme 

The relationship between the apparent non­
dimensional chain length D' L and the counter 
length L is given by eq 13b and plotted in 
Figure 3. As shown in Figure 4, D' L (obtained 
by the relation given in the Figure 3 and by 
using <Ri1) observed) is approximately propor-
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"U 

t\1~0.1 
a: 
V 

DL 

Figure 3. Relation between "Apparent non-dimen­
sional chain length" D'L (= 2L2/Ri1) and DL. 

tional to the square root of L. This suggests 
that the long-range interaction is a repulsive 
one. In Figure 4, the value L corresponding 
to D' L = 2 in ordinate where energy per one 
degree of freedom becomes kT/2 (see eq 16a), 
gives a real value of D (as D = D' at L = 2/D'), 
because at that length, the interactions between 
the remote parts in the DNA chain apparently 
vanish in the present model. Thus we obtain 
D = 15.4 µ- 1 or 1/D = 0.065 µ. 

Using this value for D, the parameter K in 
eq 26 is found to have the numerical value 
0.154 for the best fit of the theoretical equation 
with the empirical result 

<Rir) = 0.13,vl + 2~47.£ 

The excluded area thus obtained is, f3u = 0.016µ2, 
which is about 10 times larger than that of a 
segment of the B-form structure given by a 
parallel-projection on to a plane parallel to the 

main axis. This suggests that cytochrome-c is 
a "good solvent" for DNA, and supports the 
assumption that DNA and cytochrome-c interact 
in order to compensate for the reduction of 
entropy. 

While K is a highly solvent-dependent pa­
rameter, D is thought to be structure-dependent 
and not highly affected by the solvent provided 
the chain has the B-form structure. In fact, 
the value, 1/D = 650 A, shows a good agree­
ment with ..:1 (=1/D) = 717 A given by Hearst 
and Stockmeyer8 when the excluded volume was 
assumed to be zero (i.e., at theta temperature). 
Thus, in solution, the excluded-volume effect 
seems to be negligibly small. 

By substituting in eq 10 the values, D = 
15.4 µ- 1 , T = 296°K, and k = 1.38 X 10- 16 erg/deg, 
the flexural rigidity of DNA is calculated to be 
c = 1.2 x 10-19 dyn cm-2 , which possesses a 
certain validity in describing the conformation 
of DNA solution. Cohen and Eisenberg18 first 
estimated the c to be 2.5 x 10- 19 dyn cm- 2 

which is almost twice that obtained by us. 
Also the value of the statistical lengths given 
above is much shorter than those from light 
scattering and hydrodynamic data. These dis­
crepancies might come from the reduction of 
electrostatic charges on the DNA strand at the 
protein surface, or it might show a difference 
of flexural rigidity between that in solution and 
on the protein membrane. 

It is also of interest to determine the folding 
energy of DNA into a phage particle or phage 
head from the viewpoint of flexural rigidity. 19 

The mechanical energy required to fold a DNA 

100.------~---------------~ 

0 

0 

L=0.13 

QI I 10 100 
L1,.1 

Figure 4. Experimentally obtained relation between D' L and L. 
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molecule of a length L into a curvature K is 
shown in eq 7. By using the flexural rigidity 
of T2-phage DNA as calculated above, the 
energy of rounding up into an 800 A diameter 
solenoid (which is the geometry of the head 
of T2-phage) is calculated to be 2 cal/mol­
nucleotide pair. On the other hand, according 
to Kilkson and Maestee,2° the DNA in a phage 
head has a super helical form of 80 A diameter. 
For this case, if we use 40 A as the smallest 
radius of curvature, this gives 200 cal as the 
flexural energy of folding per mol of nucleotide 
pairs. This agrees well with other measure­
ment.19 In either of the cases mentioned above 
it can be said that, as far as flexural rigidity 
is concerned, the folding energy of DNA into 
a phage particle or head can be compensated by 
the interaction (electrostatic is seemed to be 
major source) between DNA and coat proteins, 
because the interaction between nucleotide units 
and basic protein is of the order of kT ( =600 
cal at room temperature). 
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