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ABSTRACT: A new general method was derived for calculating elastic moduli of isolated 
polymer-chains and of polymer-chains in crystals. Equations for elastic moduli were written 
with the B submatrices as used in normal coordinate treatments. The new method was 
applied for calculating the elastic moduli of (poly)oxymethylene chains in trigonal and orthor
hombic crystals. 
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Force fields of chain-polymer crystals are much 
more anisotropic than those molecular of crystals, 
and the intrachain restoring force along the chain 
direction is much stronger than interchain restor
ing forces. Because of this strong anisotropy of 
force fields in chain-polymer crystals, the elastic 
modulus in the direction of the chain axis may be 
reasonably treated with the single-chain approxi
mation. 

Elastic moduli of polymer chains were previously 
calculated by Meyer and Lotmar,1 Lyons2, and 
Treloar3, with the use of bond-stretching and 
bond-angle bending force constants. However, 
general methods for calculating elastic moduli of 
helical polymer chains were derived by Shima
nouchi et al. 4 and by Miyazawa5• 

The repeating regularity of a helical polymer
chain is characterized with the unit translation 
(d) along the helix axis and the unit twist (0) 
about the axis (Figure 1),6- 8 while the intrachain 
potential is usually expressed with bond-stretching 
(Llr ), angle-bending (LI¢) and internal-rotation 
coordinates (LI,). Accordingly, Shimanouchi, 
Asahina and Enomoto4 derived the equations for 
elastic moduli from the relation6 ' 7 between the 
unit translation (d) and intramolecular parameters 
(r, <p, and -r). On the other hand, Miyazawa5 

derived the equations for elastic moduli and elastic 
strains from the relation between intramolecular 
parameters and helical parameters (pi, dii, and 
() ;j). 7 In these previous studies, elastic moduli 
of isolated polymer-chains were calculated without 
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the restriction of Lf() = 0. 
However, if a polymer crystal is subject to a 

homogeneous deformation, translational sym
metries of the three-dimensional crystal lattice 
are reserved and constituent polymer-chains 
are deformed so that the unit translation is changed 
(Lid cf. 0) but the unit twist is kept constant 
(LI() = 0). Accordingly, for calculating elastic 
moduli of polymer-chains in crystals, previous 
methods4 ' 5 can not be applied. 

In the present study, therefore, a new general 
method is derived for calculating elastic moduli 
of isolated polymer-chains (L10 cf. 0) and of 
polymer-chains in crystals (L10 = 0). Equations 
for elastic moduli are written with B submatrices9 

as used for normal-vibration treatments of helical 
polymer chains. 

HOMOGENEOUS DEFORMATION OF 
POLYMER CHAINS 

Elastic deformation of an isolated polymer
chain is assumed to be uniform under a tension 
along the chain axis. A homogeneous deforma
tion of a helical chain may be described with 
changes in unit translation (Lid) and in unit twist 
(L10). Accordingly, the external-strain vector 
[J = [u 1 u2] may be defined as 

U1 = Ud = Lfd/d 

(1) 

where a tilde denotes the transpose of a matrix. 



Elastic Moduli of Polymer Chains 

Figure 1. Helix parameters and intramolecular 

parameters. 

For treating elastic moduli of isolated polymer

chains, u1 and u2 are both used as external strains. 

However, for treating elastic moduli of polymer 

chains in crystals, only u1 is used as the external 

strain and rows and columns associated with U2 

should be dropped in succeeding equations. 

ELASTIC MODULI OF HELICAL 

POLYMER CHAINS 

For describing displacements of chain atoms 

under a homogeneous deformation, right-handed 

Cartesian coordinates x(k) = [x(k) y(k) z(k)] of 

the k-th repeat unit are defined as shown in 
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Figure 1; the z(k) axis rests on the helix axis. The 

Cartesian displacement vector X(k) of the k-th unit 

with p atoms [M1(k) M 2(k) ... Mik)] are given as, 

X(k) = [Llx1(k)Llyi(k)Llz1(k)Llx2(k)Lly2(k)Llz2(k) 

... Llxik)Llyp(k)Llzp(k)] 

(2) 

The displacement vector X(k) of the k-th unit is 

transformed into the vector X(k + 1) of the 

(k + 1)-th unit by the screw operation with the 

unit translation (d) and the unit twist (0). 

For a homogeneous deformation of an isolated 

chain, atomic displacements are related with 

external strains, 

Llx;(k + m) - Llx;(k) = - y;mL10 = - my;u2 

Lly;(k + m) - Lly;(k) = x;mLl() = mx;u2 

Llz;(k + m) - Llz;(k) = mLld = mdu1 (3) 

where X; and Yi are coordinates of the i-th atom. 

Eq. 3 may be rewritten in matrix forms, 

X(k + m) - X(k) = mTU (4) 

where T is given as 

(5) 

t; = 

0 -y;] 
0 X; 

d 0 

(6) 

External strains (u1 and u2) of a homogeneous 

deformation are accompanied with atomic dis

placements of each unit so that the potential 

energy is minimized or, in other words, the internal 

stresses vanish. Defining internal strains (e) as 

X(O), the atomic displacements X(m) of the m-th 

repeat unit may be expressed as 

X(m) = e +mTU (7) 

The potential energy (harmonic terms) of a 

polymer chain per unit volume may be expressed 

in terms of internal coordinates, 

2V= (1/NAd) I: R(k + m)F(k)R(m) (8) 
k,m 

where N is the number of repeat units, A is the 

cross section per molecular chain, R(m) is the 

internal coordinate vector of the m-th repeat unit, 

and F(k) is the potential energy submatrix as

sociated with R(k + m) and R(m), and 
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F(- k) = F(k) (9) 

For a homogeneous deformation, internal coordi
nates of all the units (m) are common R(m) = R. 
Accordingly, the potential energy per unit volume 

(2Ad)V = ffioFoBoe + ifioFoBuU 

+ ifBuFoBoe + UBuFoBuU 

(17) 

may be rewritten as where 

2 V = (l/Ad) I; RF(k)R = (1/Ad)RF0R (10) 
k 

where 

F0 = I; F(k) (11) 
k 

For a helical polymer chain, the internal co
ordinates R(k) and Cartesian displacement co
ordinates X(k) of the k-th repeat unit are trans
formed into R(k + 1) and X(k + 1), respectively, 
of the (k + 1)-th unit by the operation of screw
rotation. Accordingly the B matrix for a helical 
polymer is expressed in terms of the B(m) sub
matrices, 9 

R(k -1) 

R(k) 

R(k + 1) 

... X(k - m) ... X(k - n 

... B(m - 1) ... B(0) 

... B(m) ... B(l) 

... B(m + 1) ... B(2) 

In general, the internal coordinates R(k) are related 
to the Cartesian displacement coordinates X(m) 
as, 

Ft;= B0FoB0 

Fu= BuFoBu 

F:;u = BoFoBu 

(18) 

(19) 

(20) 

Under a given external strain ( U), the internal 
strains (e) are derived from the condition of 
minimizing potential energy ( V) or from the 
condition of null internal stresses (a v;a~ i = 0). 

Fee+ Ft;uU= 0 

e = - Ft;- 1Ft;,uU 

(21) 

(22) 

The singularity of the Ft; matrix will be discussed 

X(k) 

B(- 1) 

B(0) 

B(l) 

X(k + 1). . . X(k + m) ... 

B( - 2) ... B( - m - 1) ... 

B( - 1) ... B( - m) 

B(0) ... B(-m+l) ... 
(12) 

later. The uniform deformations (R) of internal 
coordinates are then derived from Eqs. 14 and 22. 

(23) 
R(k) = I;B(m) X(k - m) 

m 
(13) The potential energy ( V) is now expressed in terms 

of external strains ( U). 
From Eqs. 7 and 13, uniform internal displace
ments (R) may be written with internal (e) and 
external strains ( U), 

R = I; B(m) X( - m) = I; B(m)[e - mTU] 
m m 

where C is the elastic constant matrix as given by 

(25) 

0 4) External stress parameters, Ii ( = av;aui), are 

where 

B0 = I; B(m) 
m 

B., = - [I; mB(m)]T 
m 

(15) 

(16) 

Substituting Eq. 14 into Eq. 10, the potential 
energy (V) is given as 
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related to the external strain parameters as, 

f=CU (26) 

or alternately 

(27) 

where S ( = c-1) is the compliance matrix. 
From Eqs. 22, 23, and 27, the internal strains 
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(e) and the internal coordinate displacements 
(R) under given external stresses (f) are given as, 

e = - F1;- 1F1;uSJ (28) 

R = (Bu - BoF1;- 1F1;u)Sf (29) 

Isolated Polymer Chains 
The elastic modulus (E) along the chain axis 

is defined as, 

(30) 

Under a homogeneous deformation of an isolated 
polymer chain (u2 =I= 0), 

(31) 

and, accordingly the elastic modulus is given as, 

A is the eigenvalue matrix with two null diagonal 
elements. Since the two null eigenvalues are due 
to the overall translation and rotation, the 7J 
coordinate vector is partitioned into two sub
vectors, 7J* and 7J 0

, which are the 7J coordinates 
for the 3p-2 genuine internal motions and for the 
overall translation and rotation, respectively. 
Accordingly, the eigenvector matrix L is also 
partitioned into L * [3p x (3p - 2)] and L 0 

(3p x 2), and the eigenvalue matrix A is factored 
into the A* matrix with 3p-2 nonzero diagonal 
elements and a zero matrix (0). 

[ * ] A = [ Ao* 00 ] 7J= !0 L=[L*L 0
] 

(36) 

E=-l
S11 

For the new matrices L * and A*, the following 
(32) relations are derived: 

Polymer Chains in Crystal 
Under a homogeneous deformation of a polymer 

crystal, the unit translation is changed (u1 =I= 0) 
but the unit twist is kept constant (u2 = 0). 
Then, 

(33) 

and accordingly the elastic modulus of helical 
polymer chains in crystal is given as 

E= C11 (34) 

SINGULARITY OF F1; MATRIX 

The F1;_ matrix of Eq. 18 is the potential energy 
matrix for infinitesimal atomic displacements 
totally symmetric with respect to the operations 
of screw-rotations. Among totally symmetric 
displacements of chain atoms, there are two 
overall displacements, namely the translation along 
the chain axis and the rotation about the chain 
axis. Accordingly, the F1; matrix has two null 
eigenvalues corresponding to the overall transla
tion and rotation. Since the F1; matrix is singular, 
the F1; -l matrix will be defined as follows: 

The F1; matrix is diagonalized by the orthogonal 
transformation. 

(35) 

where L is the eigenvector matrix (L = L-1) and 
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L*F1;L* = A* 

L*A*£* = F1; 

(37) 

(38) 

i * L * = E [(3p- 2) x (3p- 2) unit matrix] (39) 

L°F1;L 0 = 0 (40) 

(41) 

The second term (L 0 7J 0 ) on the right side in Eq. 36 
is due to the overall translation and rotation, and 
is redundant in treating the potential energy 
associated with elastic deformations, 

e =L*7J* (42) 

Eq. 42 is now substituted into Eq. 21, yielding 

(43) 

Multiplication by i * from the left side gives 

A*7J* + L*F1;u U = 0 

7J* = - (A*)- 1L*F1;uU (44) 

From Eqs. 42 and 44, 

= - L*(A*)-1L*F1;uU (45) 

The atomic displacements (~) given by Eq. 45 
are independent of the overall translation and 
rotation (Eqs. 44 and 45 may also be derived from 
the property of the B matrix B0L O = 0). Com
paring Eq. 45 with Eq. 22, the F1; -l matrix may 
now be defined as 

(46) 
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The matrix products Fe - 1F1; and FeF,- 1 are not 
unit matrices. However, the following equations 
are derived from Eqs. 37-39 and 46: 

FE:Fe - 1F1; = F1; 

F1;- 1F1;F1;- 1 = F,-1 

ELASTIC MODULUS OF 
POL Y(OXYMETHYLENE) 

(47) 

(48) 

Poly(oxymethylene) (POM) has been found to 
exist in two crystalline forms, namely trigonal and 
orthorhombic. The molecular chain in the tri
gonal POM crystal takes a 9/5 helix with nine 
repeat units (CH20) and five turns per fiber 
period, while the molecular chain in the orthor
hombic POM crystal takes a 2/1 helix with two 
units and one turn per fiber period. For the 
trigonal POM crystal, the elastic modulus in 
the direction of the chain axis was measured as 
0.053 mdyne/A2 by Sakurada et al. 11 

The elastic moduli of POM chains were cal
culated with the general method of the present 
study. The structure parameters used in calcula
tions are bond lengths of r(C-0) = 1.42A and 
r(C-H) = 1.09A, tetrahedral valence angles, and 
internal-rotation angles T(C-O) = 76°8 1 for the 
9/5 helix and T(C-O) = 60°01 for the 2/1 helix. 
The unit translations are d = 1.866A for the 
9/5 helix and d = 1.640A for the 2/1 helix. The 
cross sections per molecular chain are A = 17.31 
A2 for the 9/5 helix12 and A = 18.25A2 for 2/1 
helix13 • The intrachain potential constants were 
refined previously,14 by the method of least 
squares, with reference to the observed vibrational 
frequencies of the trigonal POM crystal at room 
temperature. 15 ' 16 Calculated results are sum
marized in Table I. 

Under a homogeneous deformation of a polymer 
crystal, constituent polymer chains are deformed 
with the condition of fl(J = 0 and the elastic 
modulus of the 9/5 helical chain in the trigonal 
crystal is calculated as 0.095 mdyne/A2, as com
pared with the experimental value of 0.053 
mdyne/A2• The elastic modulus of the 2/1 helical 
chain in the orthorhombic crystal is calculated as 
0.048 mdyne/A2, although the experimental value 
is not available. 

The 9/5 helical chain of trigonal POM is cal
culated to be much stiffer than the 2/1 helical 
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Table I. Changes in helix parameters (p, d and fJ) 
and intramolecular parameters (r, <f, and r)" 

accompanying the chain-extension of 
POM through 1 % 

Trigonal Orthorhombic 
(9/5 helix) (2/1 helix) 

LlPo -0.57 -0.51 
Llpc -0.32 -0.27 
Lldco 0.93 0.82 
LlfJco 0 0 

Llr(C-O) 0.10 0.03 
Ll<f,(C-O-C) 1.17 0.82 
Ll<f,(O-C-O) 0.83 0.57 
Llr(C-O) 0.89 0.84 

a Llp, Lld, and Llr are given in A/100 and LlfJ, Ll<f,, and 
Llr are given in radian/100. 

chain of orthorhombic POM; the force required 
to stretch a chain through 1 % is calculated as 
0.0170 mdyne for the 9/5 helical chain which is 
twice as strong as the force (0.0088 mdyne) for 
the 2/1 helical chain. This difference in stiffness 
is due to the difference in chain-conformation; 
the internal-rotation angle is 76° for the 9/5 
helical chain and 60° for the 2/1 helical chain. 
Possibly, the elastic modulus in the direction of 
the chain axis is fairly sensitive to chain confor
mations of helical polymers. 

Finally it may be remarked that the calculated 
elastic moduli of isolated POM chains (L10 =I= 0) 
are much smaller than those of POM chains in 
crystals (fl(J = 0); the calculated values of 
E(fl(J =I= 0) are as small as 0.040 mdyne/A2 for the 
9/5 helical chain and as 0.019 mdyne/A2 for the 
2/1 helical chain. However, for trigonal POM 
crystal at room temperature, the X-ray study by 
Sakurada et al. 11 indicates that the helix param
eter (J does not change under stress and within the 
time scale of X-ray measurements. Accordingly, 
except for polymers with planar main chains, 
the elastic moduli of polymer chains previously 
calculated with the condition of fl(J =I= 0 should 
be recalculated with the new condition of Ll(J = 0. 
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