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ABSTRACT: Spherulitic growth rate of isotactic polystyrene was measured in a wide 
range of temperature using an original technique involving self-seeding and an accurate tem­
perature control. The data are analysed according to the theoretical treatment of surface 
nucleation put forward by Hoffman et al. The free energy changes during crystallization are 
evaluated using three approximations, whereas the contribution of the mass transport to the 
growth rate was derived on the basis of the free volume, or the configurational free energy 
approach. The critical comparison of the theoretical predictions with the experimental data 
leads to conclusions concerning the practical use, the reliability and limitations of the present 
theroretical concepts. 
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Since isotactic polystyrene (i-PS) can be easily 
undercooled without appreciable crystallization, 
its crystallization kinetics and spherulitic growth 
rate can be conveniently investigated in a wide 
range of temperature, located between its melt­
ing point Tm (-240°C) and its glass transition 
temperature Tg (-90°C). For this reason many 
authors have already studied these phenomena1- 7 

in i-PS, but in most cases the data were analysed 
on the basis of an oversimplified theoretical ex­
pression. This involves a constant activation 
energy for the mass transport across the liquid­
crystal interface and an approximate relationship 
for the temperature dependence of the excess 
free energy ilfv of the liquid with respect to the 
crystal, controlling the nucleation process. 

Recently these approximations were improved 
by Boon et al. 6- 7 by introducing a WLF type 
equation8 for the transport term and two different 
estimations of ilfv, as suggested by Hoffman9' 10• 

Similar improvements have been already used by 
Magill11 and by Magill and Plazek12 to analyse 
the spherulitic growth rate data of various com­
pounds. In this latter work12 an attempt has 
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been made to compare the values of the transport 
parameters to those determined from shear creep 
investigations13 • 

Using a similar approach we report here a new 
set of precise data on spherulitic growth rate of 
i-PS, measured between 112 and 200°C by an 
original technique involving self-seeding14• Our 
data and those reported previously by others1- 3 ' 6 

are compared critically with the theoretical ex­
pressions given by Hoffman9' 10• Two approaches 
for evaluating the transport term were used, com­
bined with three different approximations for 
11/., one of them based on the enthalpy data of 
liquid, glassy and crystalline PS reported by 
Karasz et al.15• 

The optimal values of the different parameters 
involved were determined by a least mean square 
analysis of the data. The results are discussed in 
terms of the fundamental parameters controlling 
the segmental mobility in the liquid and the surface 
nucleation of chain folded crystalline lamellae. 
Further investigations on the same material, 
involving crystallization kinetics and self-seeding 
techniques will be reported in a subsequent 
paper16• 



Spherulic Growth Rate of Isotactic Polystyrene 

EXPERIMENTAL 

Material 
All the experiments were performed on an 

i-PS sample received from the Laboratory of 
Prof. Natta*. This sample was purified by 
dissolution in boiling o-dichlorobenzene and 
filtration under nitrogen pressure. The filtered 
solution was then precipitated at room temperature 
in a large amount of methanol. The collected 
precipitate was dried in vacuo for several days. 

The intrinsic viscosity of this sample in o­
dichlorobenzene, at 25cc, was 3.57 di g-1, which 
corresponds, according to Krigbaum et al. 17, 

to an average molecular weight of 2.2 x 106• 

The dried powder was then compression­
molded (twice) at 260cc in the form of a 1 mm 
thick plate. The slightly yellow color of this 
sample indicated some thermal decomposition 
during the molding process. This has probably 
generated a small amount of low molecular weight 
products, which acted as a plasticizer and thus 
depressed both Tm and Tu. 

This sample has been used without further 
modification in the dilatometric investigations16• 

Its melting temperature, Tm*, as determined from 
self-seeding experiments14, was 236cc and its 
glass transition, related to an experimental time­
scale of 1 min, was T0 (1 min) -91 cc. 

The microscopic observations were performed 
on small chips cut from a film about 40 µ thick, 
molded at 260cc and inserted between two thin 
cover glasses. 
Microscopy 

Four or six specimens sandwiched between 
cover glasses were placed into the slits (-0.5 mm) 
of a water-tight cylindrical aluminium block, which 
could be immersed in liquid thermostats14• After 
suitable thermal treatment to produce a convenient 
concentration of nuclei16, generally by quench­
ing to 100cc the specimens melted at 260cc, 
the block was finally immersed in a silicone oil 
bath maintained at the crystallization temperature 
Tc. The specimens were then successively removed 
from the block after increasing time periods t, 
and quenched to room temperature where the 
growth of spherulites is completely stopped. 

As shown in Figure 1, the thermal treatment in-

* We are indebted to Professor F. Danusso for 
making this sample available to us. 
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Figure 1. Self-seeding spherulites of i-PS grown 
at 175cc, seen between crossed nicols (150 x ). 

volving self-seeding14 ' 16 leads to specimens in 
which most of the spherulites have nearly identical 
diameter. This was measured under a polarizing 
microscope with a calibrated eyepiece micro­
meter. The average value of the radius R was 
determined from 20 to 40 individual measurements 
on the largest spherulites. In this group the 
individual measurements differed generally by 
less than 2 %. 

The radial growth rate G = dR/dt, which de­
pends only on the temperature Tc, can be easily 
determined from the slope of the straifht line 
obtained by plotting the average radius R vs. the 
time of residence t of the specimen at Tc. A 
few examples of such plots are shown in Figure 2. 
The values of G, including duplicate experiments 
at slightly different Tc's, are indicated in Table 1, 
as determined by the least mean square analysis 
of the data. One can see that the reproducibility 
is better than 1 %. 

The advantage of the method used is twofold. 
Firstly, the self-seeding ensures a practically simul­
taneous beginning of growth of the largest spheru­
lites. Secondly, the crystallization temperature 
can be easily maintained constant for a long 
period (e.g. Figure 2, Tc = 112cc), which is very 
convenient for measuring slow growth. 

The temperature of the silicone oil baths was 
maintained constant within± 0.02cc. However, 
for long residence times uncontrolled temperature 
changes of the order of ± 0 .1 cc could be ob­
served overnight. Even so, it is believed that the 
experiments were carried out at much better 
controlled values of T. than the previous ones, 
which involve the use of a hot stage. The tem­
peratures were measured with a calibrated Hewlett-
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Table I. The numerical values of spherulitic 
growth rate, Tc· dSa and dfa at various 

crystallization temperatures 

Tc 
(OC) 

200.52 
200.42 
195.06 
190.03 
184.42 
184.18 
179.92 
179.81 
179.70 
176.55 
172.15 
172.15 
164.91 
159.22 
154.59 
150.26 
141.04 
129.70 
119.62 
116.07 
112.01 

6.596 
6.757 
9.106 

11.49 
13.48 
12.86 
14.18 
14.21 
14.33 
14.44 
13.67 
13.84 
12.00 
9.115 
7.427 
5.458 
2.528 
0.5429 
0.0926 
0.0430 
0.0160 

Tc·dSab 
(joule· g-1) 

73.67 
73.64 
71.90 
70.26 
68.40 
68.31 
66.89 
66.85 
66.82 
65.74 
64.24 

II 

61.75 
59.77 
58.13 
56.60 
53.28 
49.14 
45.41 
44.08 
42.55 

Jfab 
(joule· cm-3) 

7.17 
7.18 
8.08 
8.90 
9.82 
9.87 

10.55 
10.57 
10.59 
11.09 
11. 79 

II 

12.92 
13.79 
14.49 
15.13 
16.47 
18.06 
19.40 
19.86 
20.37 

a As determined from least mean squares (Figure 2). 
b cf. Eqs. 18 and 19 with JH1 = 86.3 joule 

-g-1 (91.100 joule-cm-3). Obviously the deci­
mals are beyond experimental accuracy. This 
precision is needed, however, for the numerical 
analysis of the data. 

50,----,------,----,-------, 

Figure 2. Average radius ii. (inµ) vs. crystallization 
time in hours. 
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Packard quartz thermometer, the accuracy of 
which is better than± 0.02°c. 

The sandwiched specimens could be used after 
several cycles of melting and recrystallization. 
However, when the film was held for several hours 
above 180°C some thermal degradation occurred, 
starting at the edges in contact with the air. It 
has been noted that the growth rate is quite sensi­
tive to degradation which results in an appreciable 
increase of the value of G. In fact, in such 
partially degraded films the spherulites grown 
near the edge may be twice as large as those located 
in the central part of the specimen. Of course 
these specimens were discarded. For the same 
reason we do not report here growth rates above 
200°C; such data should be considered with 
caution. The isothermal increase of G in the 
degraded samples should be attributed to the 
increase of the mass transport rate (i.e. molecular 
mobility) at the liquid-crystal interface, since 
the free energy difference Jfv, remains practi­
cally unchanged. 

Results 

The experimental data are summarized in Figure 
3, which shows the thermal variation of log G 

measured at 17 temperatures, ranging from 112 to 
200°C. Owing to the excellent reproducibility, 
duplicate measurements of the values of G, 
listed in Table I, were averaged in this plot; in 
fact the size of the circles is larger than the ex­
perimental scatter. 

As already reported in earlier works1- 3 ' 6 

G passes through a maximum in the range of 
175-180°C. Figure 3 shows also the values of G 

reported by Boon et a/.6a which are reasonably 
close to our data. Comparison with other 
works1 ' 2 will be illustrated on a further graph 
(Figure 7). 

The solid line represents one of the theoretical 
curves calculated with the optimal values of the 
free volume parameters (Table II), while using the 
first approximation for Jfv (Eq. 3), which will be 
discussed later. This curve does not differ ap­
preciably from those involving better estimations 
of ,:Jfv, but it will be shown that the difference is 
significant if the configurational free energy18 is 
considered rather than free volume19 for evaluat­
ing the transport term. 

Although the theoretical curve involving this 

Polymer J., Vol. 1, No. 1, 1970 
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Figure 3. Spherulitic growth rate G (in cm/hr) vs. 
crystallization temperature Tc (in °C), open circles, 
this work; black points: data of Boon6, 7• Solid 
line: theoretical curve based on the first approxima­
tion of '1J. and on the free volume approach. 
Broken line: theoretical curve proposed by 
Mandelkem et al.4 

latter approach fits quite well the experimental 
values of G, in particular the agreement is much 
better than in any previous work1 ' 4 ' 6, some 
systematic deviations may be noticed on both 
sides of the maximum (Figure 3), the magnitude of 
which ( ~4 %) is about twice as great as the esti­
mated accuracy of the experimental data ( 2 %). 

THEORETICAL 

Surface Nucleation 

The characteristic features of the log G vs. T. 
plot (Figure 3) suggest that the growth of spherulites 
obeys the general scheme of the Turnbull-Fischer20 

nucleation theory, which may be expressed as 

G = Gexp(- J:;) · exp(- (1) 

Here, G0 is a preexponential factor which is general­
ly assumed temperature independent ( or propor­
tional to T). The first exponential factor: 
exp(- JF*/kT), the transport term, is the prob­
ability that in the local transport process a chain 
segment of critical length will reach the surface 
of the crystal. The second exponential factor: 
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exp(-J</J*/kT), the nucleation term, represents the 
probability that the surface nucleus will reach a 
critical size. Accordingly JF* is the free energy 
of activation for the transport process and J</J* 
is the work required to form a stable nucleus of 
critical size, k being the Boltzmann constant. 

For the present purposes it will be assumed that 
the spherulitic growth proceeds through deposi­
tion of consecutive molecular layers of constant 
thickness b0, the magnitude of which is related to 
the lattice spacing normal to the growth face9• 10• 

Then according to the theoretical treatment of 
coherent surface nucleation in chain folded poly­
mers ( of high molecular weight) given by Laurit­
zen and Hoffman21, J</J* may be expressed to a 
good approximation10 by 

J</)* = 4b0a•a6 

Jf. 
(2) 

where a and a, are the work required to create 
1 cm2 of lateral and chain folded surface respec­
tively, and Jf. the Gibbs' free energy difference 
between the supercooled liquid and the crystal 
(at the same T, per cm3 of the crystal). 

Assuming that G0 is temperature-independent, 
one can evaluate the two exponential factors in Eq. 
1 (essentially JF* and Jf.) in different ways. 

First Approximations 
For the transport term the simplest approxima­

tion involves Eyring's rate theory22 according 
to which the activation energy, JF* = E, is tem­
perature-independent. 

For the nucleation term (Eq. 2), Jf. = JH -

TJS, may be approximated by10 ' 

T,,,,_ - T JT 
Jfi. = JHr Tm = JHr T.,,. (3) 

in which JHr is the heat of fusion (per unit 
volume), T,,,,_ the equilibrium melting temperature 
and JT = T,,,. - T the degree of supercooling. 
This first approximation of Jf,. involves implicitly 
that JH and JS are both temperature-independent 
and equal to the heat (JHr) and the entropy of 
fusion (JSr = JHr/Tm) at T.,., where of course 
Jf. = 0. 

One can thus write (Eqs. 1-3) 

E 4b0a·a,T.,. 
In G = In Go - RT - JHr-JT-kT (4) 

where R is the gas constant, and E the molar 
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activation energy. 
According to the different assumptions in­

volved, this expression may be considered as a 
valuable approximation only if the investigations 
are limited to a rather narrow range of T just 
below melting point, which is not the case for 
i-PS. In spite of this several authors1' 4 tried to 
apply Eq. 4 to theexperimentaldata obtained with 
this polymer. The result is shown in Figure 3 by 
the broken line, which was calculated using Eq. 
4 with the following parameters, given by 
Mandelkern et al. 4 

E = 20. 2 kcal/mol } 

K = 4bol1·11e = 263 d 
k'1Ht eg 

T,,. = 527.2°K 

(4a) 

whereas for G0 we adopted the "universal" value 
(~2. 6">< 108 cm/hr) proposed by these authors. 

It is obvious that Eq. 4 does not fit at all the 
experimental data represented in Figure 3. The 
fit is not better with the other data1- 3 even if 
the value of G0 is considered as adjustable rather 
than universal. Since the discrepancy increases 
in the low temperature range where the transport 
term is predominant (cf. Eq. 4), Figure 3 shows 
clearly that an Arrhenius type approximation for 
this term is quite unsatisfactory. It is well known, 
on the other hand, that such an approximation 
also fails to represent the temperature dependence 
of configurational mobility in supercooled liq­
uids8' 23-25 as determined from the thermal 

variations of the viscoelastic parameters above 

Tu. 

Theoretical Expressions of the Segmental Jump Rate 

Since the WLF equation8 leads to an accurate 
fit of the temperature dependence of the viscoleastic 

parameters between T0 and Tu+ 100, it seems 
reasonable to adopt a similar expression for 
evaluating the transport term in Eq. 1. This 
was first pointed out by Hoffman et al. 26 ' 27 and 
applied successfully by several authors 7' 11 ' 12 

for representing the temperature dependence of 
spherulitic growth rate. 

In their original treatment Hoffman et al.10·27 

expressed '1F* by 

(5) 
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in which C1 and C2 are constants, respectively 
equal to 4.12 kcal/mol** and 51. 6 deg, which 

were derived from the "universal" WLF con­
stants8. However, in practice the authors 
use this relationship with adjustable param­
eters 7' 11' 12. 

The WLF equation was related by its authors8 

to an empirical free volume concept of Doolittle28 

which was further justified theoretically by Cohen 

and Turnbull19, and reinterpreted more recently 
by Adam and Gibbs18 on the basis of configura­
tional free energy changes rather than free volume. 
It seems more convenient to introduce here these 
two theoretical approaches for evaluating the 
transport term in Eq. 1, since both lead directly 
to the probability, P, of the configurational 
changes in supercooled liquids involved in the 
expression of the Turnbull-Fischer nucleation 
theory20 (Eq. 1). 

(a) According to Cohen and Turnbull19 in the 
self-diffusion process, the transition probability 
of a molecule (or a molecular segment) is deter­
mined essentially by the chance of finding an 
adjacent local free volume greater than v*, to 
jump into. This may then be expressed as 

( - rv*) (- b) P(v*) = exp Vt = exp I (6) 

where Vt is the average free volume associated 
with the jumping unit and f an overlap factor, 
lying between 0.5 and 1. Thus the ratio 

Vt V - Vo V - Vo f 

rv* rv* bvo b 
(7) 

is proportional to the fractional free volume f 

of the liquid, since the average size of v* should be 
comparable to the "occupied" volume Vo of the 
flow unit, b = fv* /v0, being a numerical factor 
of the order of 1. 

Since the reciprocal of P(v*) is proportional to 
the retardation time -r for configurational changes 
(or to the relaxation time of stress, or to the 
viscosity 1J of the liquid), Eqs. 6 and 7 are 
equivalent to the popular Doolittle equation28, 
which can be written for 1: (or r;) as 

b 
ln-r(oq) = a +1 (8) 

** This energy should not be confused with the 
apparent activation energy derived from the WLF 
equation which is strongly temperature-dependent8, 23. 

Polymer J., Vol. 1, No. 1, 1970 



Spherulitic Growth Rate of Isotactic Polystyrene 

the constant a being the limiting value of In -r 

(or In r;) when f approaches infinity. 
(b) Similarly, but from a completely different 

molecular kinetic treatment, Adam and Gibbs18 

derive for the average transition probability of 
configurational rearrangements the following 
expression 

difference of heat capacity of the supercooled 
liquid and the crystal) is temperature-independent. 

Accordingly, one can write 

£1H2 = \r JCp·dT = £1Cp(T- T/) 
Jr2' 

= JH T- T/ 
1 Tm - T/ 

(10) 

P(T) = A exp ( --;S~) (9) since 

in which A is a temperature-insensitive factor, 
C an energy related to the potential barrier for 
hindered rotation of the monomer unit, and s. 
the configurational entropy of the equilibrium 
liquid (stable or metastable). According to the 
authors the latter may be expressed by the integral 

Sc(T) = \T £1CpT-1•dT 
J T2 

(9a) 

where T2 is a limiting temperature below which 
configurational changes can no longer occur, and 
JCP the difference of heat capacity of the (equi­
librium) liquid and the glass (at the same T). 
Note that, according to Eq. 9a, Sc(T) includes 
the excess entropy due to the excess volume of 
the liquid with respect to the crystal. It can be 
shown18 that Eq. 9 leads, as a first approximation, 
to the Doolittle (or WLF) equation if JCP is 
assumed temperature-independent. 

· In the following we will substitute successively 
these two expressions (Eqs. 6 and 9) of the 
transition probability in Eq. 1, and compare the 
results with the experimental data(Figure 3). Before 
doing this, it is worthwhile to introduce other 
estimations of the excess free energy Jf., which 
are more realistic than the first approximation 
used in Eqs. 3 and 4. 

HIGHER ORDER APPROXIMATIONS OF THE 
EXCESS FREE ENERGY 

In fact the discrepancy between the data and 
Eq. 4 (cf. Figure 3) may not be due to the inac­
curacy of the transport term alone, but also to 
rather crude first approximation used for eval­
uating the thermal variation of Jf. (Eq. 3). 

Second Approximation: JCP = Constant 

Instead of assuming JH = £1H1 as in Eq. 
3, it seems more reasonable to suppose, as 
already proposed by Hoffmann9, that JCP (the 

Polymer J., Vol. 1, No. 1, 1970 
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where T/, as in Eq. 9, is the lower limiting tem­
perature where £1H2 vanishes. 

Consequently the excess entro1~Y of the liquid 
with respect to the crystal may be expressed by 

A \T (,:JCP) Tm 
1.JS2 = Jra T dT= £1S1 - JCplnT (11) 

where T2 is the limiting temperature below which 
£1S2 is negative. 

Eq. 11 can be rearranged as 

since 

(12a) 

One can thus write for Jf. = £1H2 - T£1S2: 

_ £1Hi Tm Tin T - T2 JT [ 
Tm I l 

,:1f2 - Tm Tm - T.' (1 3) 

Approximating In (T.JT) by 2£1T/(Tm + T), 
neglecting higher order terms, one has 

[ T ( JT )( T T/ )] 
X Tm + Tm + T Tm - Tm - T.' 

(13a) 

The second term between the brackets may be 
neglected because the first factor, JT/(Tm + T) 
is small near Tm and the second vanishes at 

T= TmT/ 
Tm-Ts' 

(14) 

a temperature usually close to T.9. Thus one 
obtains finally 
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T 
Jfa JHrJT Tm 2 

(15) 

which differs only by the factor (T/Tm) from the 
first approximation (Eq. 3). This expression 
of Jf., when substituted in Eq. 2, may be con­
sidered as leading to a better approximation of 
the nucleation term, since it was derived from a 
more plausible assumption (JCp = constant) than 

the first approximation (JH1 = JH1), 

Third Approximation: d(JCp)/dT = Constant 

The basic assumption involved in the second 
approximation (JCP = constant) is contradicted 
by the experimental data of Cp reported by Karasz 
et al. 15 These authors measured accurately 
the heat capacity of amorphours and semicrystal­
line i-PS in a wide range of temperature (from 
200 to 520°K) and compared the values of Cp 

to those obtained with an atactic PS sample. 
Their main results, which will be used here for the 
third estimation of Jf,,, may be summarized as 
follows: 

(1) Above Tu, for the amorphous samples, both 

isotactic or atactic, Cp is a linear function of T, 
(dCp/dT)1iq being 3.275 x 10-3 joule·g-1,deg-2 *. 

(2) Below Tu, the Cp values of the atactic and 
isotactic samples are practically equal (at the 

same T) irrespective of the crystallinity of the 
latter. This means that Cp (glass) Cp (crystal), 
and consequently that JS = Sc (cf. Eq. 9a). 

(3) The temperature coefficient of Cp below Tu 

is constant between 250 and 345°K, but it has a 
greater value than above Tu, since (dCp/dT) (glass, 
or crystal) = 4.408 x 10-3 joule· g-1 , deg-2 **. 

Hence JCP decreases when T increases, and one 
has in the temperature range of interest (T9 < T< 
Tm) 

JCp = JC/ + rT; T?. T9 (16) 

where JC/=0.7021 joule·g-1-deg-1 is the 
difference between the heat capacities of the 
supercooled liquid and the glass ( or the crystal) 

* Slope determined by least mean squares from 8 
values of Cp (393::;;T::;;475°K) of the atactic sample, 
and 6 values of Cp of the molten isotactic sample 
(T2512°K). 

** As determined by least mean squares from 10 
values of Cp of the atactic sample (250 < T < 345°K) 
and from 5 values of the isotactic sample (304 < T < 
340°K). 
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at 0°K, as determined from the linear extrapola­
tion of Cp (liq) and Cp (glass), and r is the difference 
between the temperature coefficients of these two 
heat capacities, its value being equal to - 1.132 x 
10-3 joule·g-1-deg-2• 

Then, according to the previous procedure 
(Eqs. 10 and 11) we have 

JHa = JH1 - cm (JC/ + rT)dT 

= JH1 - JC/JT- ; JT(Tm + T) (17) 

and consequently 

JS = JH1 - JC o In Tm - JT 
3 T. P T r 

m 

Combining Eq. 17 and 18, Jf. can be 
pressed by 

Jfa = JH;~JT - Jr( JC/ + r ·:T) 

0 Tm + JCp TlnT 

(18) 

ex-

(19) 

if Eq. 16 holds. The parameters involved in 
these last three equations may be determined from 
direct measurements of the thermal properties of 
the polymer without invoking any extra assump­
tion. 

Eqs. 17 and 18 permit the calculation 
of the limiting temperatures T2 and T/ (cf. Eqs. 
9-11) where JH and JS respectively vanish. 
Adopting for JH1, 86.3 joule,g-1, reported by 

Danusso and Moraglio29, and with the above 
values of JC/, r and T.., = 515.2 K, this calcula­
tion leads to 

T2 = 276°K = 2.8°C } (20) 

Ta' = 216.4°K = -56.8°C 

As already pointed out by Karasz et al. 15 T2 and 
Ta' have quite different values***. It is interesting 

to note, however, that following the suggestion of 
Hoffman9 one should have (Eq. 14) 

T ... T/ 
Tu~ Tm - T/ (21) 

*** The values given here (Eq. 20) are slightly 
different from those reported by Karasz et al.15 which 
are respectively equal to 280 and 237°K. This is 
due to a different estimation procedure of JH used by 
these authors. 
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This leads, with Tu= 364°K16, to T/ = 213°K, 
which is close to the value given above (Eq. 20). 
According to Eq. 10a this limiting temperature 
is compatible with a value of LICP = LIHt/(Tm -
T/) = 0. 2856 joule· g-1 • deg- 1 which is equal to 
that calculated from Eq. 16 at T = 94. 7°C, a 
temperature only slightly higher than T/ 6 • Con­
versely, by calculating LICP at Tv from Eq. 16, 
(~0.309 joule·g-1 -deg- 1), the corresponding 
value of T/, derived from Eq. 10a, is 236°K and 
virtually coincides* with that given by Karasz 
et al. 15• 

In order to compare the different estimations 
of LIH, and Llfv, we have plotted them in Figures 4 
and 5, related to the unit volume of the crystalline 
phase, while adopting for the specific volume of 
the crystal: Vc=0.900+2.lxl0- 4 (T-293) 
in cm3 -g-1 6 ' 16• Therefore, 

LIH1 = LIHJ = 91. l joule· cm-3 represents the 
first approximation (Eq. 3). 

LIH2 corresponds to the second approximation 
(Eq. 10) with LICp = constant, while adopting 
for T/ = 213°K, derived from Eq. 21, and indicat­
ed as T0 in Figure 4. 

LIH3 was calculated from Eq. 17, using the 
values of LIC/, r, LIHJ and Tm given above, deter­
mined directly from the experimental data15 ' 29• 

Figure 4 shows that this evaluation is intermediate 
between LIH1 and LIH2• 

Similar plots may be obtained for the excess 
entropy LIS by using Eqs. 3, 12 and 18. Figure 4 
shows only the product TLIS3 (determined from 
Eq. 18, using the same values of Tm and LIHJ as 
above), which may be identified in the case of 
i-PS with the configurational free energy TSc 
(Eq. 9), the fundamental rate controlling param­
eter in the Adam-Gibbs18 treatment. 

Although the differences between the three 
LIH (or LIS) functions are quite important, the 
thermal variations of the excess free energy 
Llfv = LIH - TLIS is much less sensitive to the 
particular assumption used for estimating LIH, 
as shown in Figure 5. In fact, the third estimation 
of Llfv (Eq. 19) leads to an expression in which 
the principal term is precisely the first approxi­
mation (Eq. 3). Therefore, in the temperature 
range of interest, Ll/3 (listed in Table I) is nearer 
to Ll/1 than to Ll/2 (Figure 5). Nevertheless, the 

* See footnote on page 88. 
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Figure 4. Temperature dependence of the excess 
enthalpy ilH of the liquid with respect to the 
crystalline phase, according to three different approxi­
mations. 
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Figure S. Temperature dependence of the excess 
free energy ilfv of the liquid with respect to the 
crystalline phase, according to three different approxi­
mations. 

ratio Llf2/Llf1 = T/Tm (Eqs. 3 and 15) is only 
slightly smaller than 1. 

One can so expect that by substituting these 
three Llf. functions in Eq. 2, the final result will 
be also rather insensitive to the particular assump­
tion involved. In a certain way this justifies­
a posteriori-the popular first approximation 
(Eq. 3) used by most of the authors for represent­
ing the temperature dependence of spherulitic 
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growth rate in polymers, even if the investigations 
were extended far below Tm. Thus the major 
part of the discrepancy shown in Figure 3 (broken 
line) should be attributed to the failure of the 
Arrhenius type approximation for the transport 
term (Eq. 4). In the following this latter will 
be estimated according to the two theoretical 
approaches given above (Eqs. 6 and 9). 

THE FREE VOLUME APPROACH 

The theory will be tested first by using the 
free volume approach for the transport term as­
sociated with the three different estimations of 
£1f,, (Figure 5). For doing this it is convenient to 
transform the expressions of the transition prob­
ability (Eq. 6) given by Cohen and Turnbull19 

in the following way. 
Since the temperature dependence of P(v*) is 

related to that of the actual volume v of the liquid 
(Eq. 7) one can reasonably assume that the 
fractional free volume/, is a linear function of T, 
provided v varies linearly with T. Accordingly, 
adopting Tu as a reference temperature, one has 

(22) 

in whichfu is the value of/at Tu and af = df/dT 
the temperature coefficient of the fractional free 
volume which is equal to the difference of the 
thermal expansion a of the liquid and that of Vo, 

i.e. (1/v0)dv0/dT = ao. This latter should be 
equal to (or less than) the thermal expansion au 

of the glass or ac of the crystal23 ' 25 which are 
practically identical in the case of i-PS16• 

On the other hand, Eq. 22 shows that below a 
critical temperature 

(23) 

where f = 0, the transition probability is zero 
(Eq. 6) and consequently the viscosity and the 
retardation times for configurational changes 
(Eq. 8) reach an infinite value, provided that Eq. 
22 holds in the whole temperature range where 
f ::C: 0, i.e. that v is a linear function of T. How­
ever, since a is rapidly decreasing below the glass 
transition, in practice Eq. 22 can be applied only 
above Tu, which is the case envisaged here. Thus 
the values of f < fu are related to the linearly 
extrapolated values of v below Tu, i.e. to the equi­
librium glass. 
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Consequently, the physical significance of the 
temperature Too (Eq. 23) is similar to that of 
T2 or T/. At these critical temperatures the 
(extrapolated) thermodynamic parameters of the 
supercooled liquid reach a minimum value which 
characterize a fundamental stage (comparable to 
the crystal) in which configurational changes can 
no longer occur. 

In practice, however, such a state cannot be 
obtained, since below the glass transition range the 
time required for reaching the configurational 
equilibrium becomes much longer than the usual 
experimental time scale23 • 25• 

On the other hand, since T2, T/ and Too have 
different values, the actual problem is to decide 
which of these three temperatures is really the 
critical one, i.e. which of the thermodynamic 
excess parameters £JS, £1H or Vf controls effec­
tively the molecular mobility in liquids25 ' 30, 

although the theories based on free volume19 or 
on configurational free energy18 lead formally 
to similar results above Tu. 

By eliminating Tu and fu in Eq. 22, i.e. by 
referring to Too (eq. 23), one can cast the expres­
sion of the reduced fractional free volume (f/b) 
in a more convenient form, since 

b b B 
f af(T - Too) T - Too 

(24) 

where B = b/af is a temperature-independent 
constant provided that f varies linearly with T, 
i.e. above Tu. 

This expression of b/f transforms the Doolittle 
equation (Eq. 8) into a form given by Vogel31 

which was widely used for representing the tem­
perature dependence of the viscosity of supercooled 
liquids (above Tu), Furthermore the ratios of 
viscosities or relaxation times at T and Tu may be 
then expressed by the popular WLF equation8• 

Finally, by identifying the transition probabili­
ty P(v*), given by Eq. 6, with exp. (- ilF*/kT) 
in Eq. 1, one has ilF*/kT = B(T- T=)- 1• 

If this is compared to Eq. 5, one obtains 

B=-5_=_1}_ 
R af l (25) 

These relationships permit the conversion of the 
free volume parameters Uu, af) into the Vogel 
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(B, T=) or the WLF (Ci, C2) parameters and 
vice versa. 

Test of the Free Volume Theory 
By substituting B(T - T=)- 1 for ilF*/kT in 

Eq. 1 one can write for the spherulitic growth 
rate 

B )-1 log G = log G0 - 2_303 (T - T= 

- 2_~3 ilH1(ilf.Tr 1 (26) 

where the factor K, expressed by (cf. Eq. 2) 

(J•(Je 

K= 4bo k-ilH1 (27) 

contains all the parameters controlling the surface 
nucleation which are supposed to be temperature­
independent, provided that ilH1 as ilf., is estimated 
per unit volume of the crystal. 

By substituting successively the three different 
estimations of ilf. (Eqs. 3, 15, and 19), one can 
compute the optimal values of the four adjustable 
parameters G0 , K, B, and T= which minimize the 
differences between the calculated and the experi­
mentally measured values of G (Table I, Figure 3). 

Consequently the three expressions to be com­
pared to the experimental data may be written as 
follows 

(1) 
Bi/2.303 

log G = log Go,1 - T _ T=,i 

(K1/2.303)Tm 
T-ilT 

(28) 

is the first approximation, already used by several 
authors11 ' 12 for analysing growth rate data. 

According to the second approximation9 one 
should have (Eq. 15) 

(2) 
B2/2.303 

log G = log Go,2 - T _ T, 
=,2 

(K2/2.303) Tm 2 

T2-ilT 
(29) 

Finally, by using the values of ilia, listed in 
Table I, which were calculated from Eq. 19 
using the numerical values of ilH1, Tm, iJC/ and r 
(Eq. 16) given above, the third approximation 
may be written as 

(3) 
Ba/2.303 

log G = log Go,a - T _ T, 
=,3 
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(K3/2.303)ilH1 
T-ilfa 

(30) 

In all these three equations K is defined by Eq. 
27, but it has different values, according to the 
approximation used for ilf •. 

The optimal values of the four adjustable para­
meters (G0 , B, Too and K) figuring in Eqs. 28-
30 were determined from a least mean square 
analysis of the experimental data, while using all 
the 21 values of G listed in Table I. 

In each case, after selecting a reasonable value 
of B, successive values of T= (located in the 
expected range of T, and differing by 0.l-0.5°C) 
were substituted into the above equations in order 
to calculate G0 and K and the standard error* 
a (K). This error had generally a rather sharp 
minimum for an optimal value of Too (which 
could be specified within a tenth of a degree) as­
sociated with the selected value of B. (Two such 
particular curves of a(K1)/K1 are shown in Figure 6 
by dotted lines). The same procedure is then 
repeated for other values of B, selected in order 
to decrease the minimum of a(K), associated with 
the corresponding optimal values of Too. Al­
ternatively, since B and T= contribute sym­
metrically to the transport term, one can also 
select first a value of T= and look for the optimal 
value of B which minimizes a(K). 

It has been found that the trial values of B and 
the associated optimal values of Too (or vice 
versa) minimizing a(K) are related almost linearly, 
as shown in Figure 6, the slope (dB/dToo)opt (~25) 
being practically independent on the approxima­
tion used for estimating ilf., at least in the tem­
perature range of interest. 

Consequently one can plot the minimum values 
of a(K)/K against the corresponding optimal 
values of Too, which are associated with those of 
B according to the almost linear relationship 
mentioned above (Figure 6). These minima of 
a(K)/ K represented in Figure 6 for each of the three 
approximations of ilf., pass through a rather flat 
minimum, which corresponds to the best couple 
of optimal values of Too and B. Consequently, 
they define the "best" values of the two other 
parameters, G0 and K, for the most accurate fit 
of the experimental data by Eqs. 28-30. These 
calculations were performed by an IBM 1130 

* See the Appendix. 
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computer using a Fortran program. 
As expected, Figure 6 shows that the best couple 

of values of T= and B do not depend critically on 
the approximation used for Jfv- The same holds 
also for the two other parameters, G0 and K, 
listed in Table II, in which the free volume param­
eters corresponding to the best couple of B and 
T= (Eq. 25) are also indicated. These values 
are related to a melting temperaure Tm = 515 .2°K. 
In fact, the best values of the four parameters 
involved in Eqs. 28-30 are quite sensitive to 
Tm, since by increasing the melting point by 3 
degrees, the variations of the best G0 , B, T= and 
K are more important than those related to the 
different estimations of Jfv (Eqs. 28-30). This 
is shown in Table II, while using the first approxi­
mation of Jfv (Eq. 28) associated with a melting 
point Tm= 518.2°K. However, even in this 
case, the variations of the characteristic parameters 
are quite small, since the upper limit of the tem­
perature range investigated is still more than 40°C 
below Tm. 

Furthermore, Figure 6 shows also that the Ar­
rhenius type approximation for the transport 
term (cf. Eq. 4) is quite unsatisfactory. In fact, 
this approximation is a limiting case of the Vogel 
equation (Eq. 24) if T= is equal to 0°K. Figure 
6 shows clearly that this value of T= should lead 

to a quite large error a(K), since the best values 
are all located in the vicinity of 330°K (cf. Table 
II). 

Finally, Figure 6 shows somewhat paradoxically 
that the first approximation of Jfv (Eq. 28) leads 

350 
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Figure 6. Variations of the optimal values of the 
Vogel parameter B associated with that of T=. 
Variations of the minimum relative error a(K)/K 
involved as a function of the optimal values of 
T=. 

Table II. Transport and nucleation parameters of growth rate of i-PS 

Tm Eq. log Go B/2.303 T= K/2.303 Ty Ty-T= l03aJ/b 102/y/b bai/f.2 
(OK) (cm-hr-1) (deg) (OK) (deg) (OC) (OC) (deg-1) (deg-1) 

515.2 28 I. 8876 345.2 333.5 100.3 91.0 30.7 1.26 3.86 0.846 
29 2.0336 327.6 334.5 101.2 II 29.7 1.32 3.94 0.851 
30 1.8889 333.6 334.2 100.7 II 30.0 1.30 3.90 0.855 
31 6.856 (462.4)a (276.0)b 143.4 II 88.2 

518.2 28 2.1733 363.7 332.0 114.2 II 32.2 1.19 3.84 0.807 

513.0 28C 4.74 904 283 121.1 85 75.0 0.48 3.60 0.37 
29d 6.66 904 312 204.6 II 51. 6 0.48 2.48 0.78 

527.2 4e 8.41 441.4 0 114.2 100 373.2 0.10 3.73 (0.072) 

rf 8 320 342.6 97.0 27.6 1.36 3.75 0.96 
1)g II 837 312.3 100.0 60.9 0.52 3. 16 0.52 

a C/2.303, (cf. Eqs. 9 and 31) injoule·g-1• 

b Limiting Temperature T2, cf. Eq. 20. 
c Data in ref. 7a. 
ct Data in ref. 6b. 
e Data reported by Mandelkern et al.4, with T = = O; B = E/R and ba1/f0 2 = E/ R Tu2, (Figure 3, broken lines) 
f Data of Plazek39, atactic PS, Mw = 46900. 
g Unpublished data of R. Suzuki and Kovacs35, a tactic PS fractions, M w > 40000. 
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to a better fit than !l/3 determined directly from 
the experimentally measured heat capacity data 15, 

whereas the second approximation (Eq. 29) 
leads to the less accurate fit. This again justifies 
a posteriori the use of the first approximation 
associated with the Vogel equation, for fitting 
growth rate data11 ' 12• 

However, since the average minimum errors 
a(K) are small and quite close (Figure 6) one cannot 
assert that the first approximation is significantly 
better than the others. Moreover, the difference 
between the experimental and calculated values 
of G varies systematically with T but independently 
of the approximation used for !lf, (cf. Figure 8). 
This rather frustrating conclusion should be at­
tributed to the small differences between the three 
estimations of !lf,, (Figure 5) and to the fact that in 
the temperature range investigated the contribu­
tion of the nucleation term is generally smaller than 
that of the transport term. Thus the small system­
atic deviations, as shown in Figures 2 and 8 
should be attributed to the inaccurate evaluation 
of the latter. 

In Figure 7, we have plotted log G+B(T-Too)- 1 

vs. Tm/T·ilT, with B = B1 = 345.2°K, Too= 
Too, 1 = 333.5°K, and Tm= 515.2°K, correspond­
ing to the first approximation (Table II). This 
graph also includes some growth rate data obtained 

:;t-o.s 
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"' + 
t.? 

~-1.0 

160 180 190 

Ta,= 333.5 °K 
Tm=S15.2°K 

200 Tc ,l°C). 210 

o this work 
• Boon 1966 
,,,. K. & P. 1964 

" e K. G. W.1959 

Figure 7. Plots of log G + B1 (T- T oo)-1 vs. 
T m/T(T m - T), derived fromthe experimental data 
reported by different authors1, 2,6, with B1 = 
345.2°K and Tm= 515.2°K. 
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with i-PS by other authors1 ' 2 ' 7, It can be 
seen that with the exception of a few points all 
these data are reasonably well represented by 
Eq. 28 while using the best values of the transport 
parameters derived from the data reported in 
this work. However, owing to the vertical shift 
to superimpose different parallel straightlines, 
the values of G0 are quite different. This may 
be attributed to the difference in molecular weight 
and tacticity of the samples. Similar features 
were already reported with other polymers14 • 

The nucleation parameters, derived from the 
best values of K (Eq. 27) listed in Table II, will 
be discussed later. 

THE CONFIGURATIONAL FREE ENERGY 
APPROACH 

Instead of the Vogel equation related to the free 
volume concept, one can also introduce for the 
transport term (cf. Eq. 1) the transition probability 
given by Adam and Gibbs18• Since for i-PS the 
isothermal entropy difference between the glass 
and the crystal may be neglected15 , i.e. !JS= Sc, 
this leads, similarly to Eqs. 26, (cf. Eqs. 1, 2, and 
9) to 

Io G = lo G, _ C/2.303 _ (K 1/2.303)ilH1 
g g O T!lS T(!lH - TilS) 

(31) 

K' being defined by Eq. 27. The main difference 
between this equation and Eq. 26 derived from the 
free volume approach is that it contains only three 
adjustable constants (C, K', and G0) instead of 
four, since the parameter T!lS controlling the 
transport process appears also in the nucleation 
term. 

This permits, of course, a much simpler numeri­
cal analysis of the experimental data, since one 
can minimize the standard error a(K') using one set 
of reasonable values of C. 

One can again substitute for ill,, the three 
approximations already used in the free volume 
approach. However, in contrast to the previous 
calculations, the final result will be quite sensitive 
to the approximation used, since the choice of 
!lf. necessarily involves the estimation of T!lS 
which appears alone in the transport term of Eq. 
31. Consequently, the first approximation of 
ill,, (Eq. 3) involving ilS = Sc = constant, should 
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be rejected a priori, since it reduces the Adam­
Gibbs transition probability (Eq. 9) to an Ar­
rhenius type equation (cf. Eq. 4 with E/R = C/Sc 
= constant), which leads to a rather poor fit of 
the experimental data (cf. dotted lines in Figure 3). 

The second approximation which involves 
,:JCP = constant may be used. However, owing 
to the ambiguity of its derivation (Eqs. 13-
15, only the third estimation of ,:lf. based on ex­
perimental data15 will be considered here, since 
it does not involve any extra assumption. 

Since in the original work of Adam and Gibbs19 

TSc was related to the unit mass of the material 
instead of unit volume, the calculation of the 
transport term was performed here by evaluating 
T,:lS3 in joule·g-1 from Eq. 18, while ,:J/3 was 
estimated as previously in joule· cm-3 ( cf. Table I). 
It was confirmed that the values of C and K' 
(Eq. 31) do not change appreciably if T-,:lS3 is 
related to the unit volume. 

The least mean square analysis of the data ac­
cording to Eq. 31, and the third evaluation of 
,:JS and ,:lfv, as mentioned, lead to the following 
best values of the parameters involved 
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a(K')min/ K' = 0.0247 
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Figure 8. Thermal variation of the difference between 
the calculated and measured values of log G, obtained 
by estimating the transport term from the free 
volume (black points) and the configurational free 

energy (open circles) approaches. 
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while assuming, as previously, ,:JH1 = 91.1 joule· 
cm-3 and Tm= 515.2°K. The value of C may 
be transformed into 26. 5 kcal/mo! of monomer 
units, the magnitude of which is comparable to 
the activation energy E reported by Mandelkern 
et al. 4 (cf. Eq. 4a) and Kenyon et al. 1 This 
value seems, however, too large to be associated 
with the flex energy barrier of C-C bonds, as 
originally suggested by Adam and Gibbs18 ' 24. 

Furthermore, the values of the other parameters 
(Eq. 32) are much larger than those obtained 
from the free volume approach (Table II); in par­
ticular G0 is greater by more than 4 orders of 
magnitude, and a(K')/K' is more than twice as 
great as for the free volume approach. This 
leads of course to a much poorer fit than Eqs. 
28-30. 

In Figure 8 we have plotted vs. T0 the difference 
between the calculated and the measured values 
of log G, which is about half of the value of 
(Gcalc - Gm,s)/Gmes = ,:JG/G*. 

It can be seen that in both cases there is a sys­
tematic variation of the deviation from the ex­
perimental data, although the free volume ap­
proach leads to a much closer fit than the Adam­
Gibbs theory. As already mentioned, however, 
the former involves an additional parameter. 
Since in the low temperature range (T< 145°C) the 
deviations are of opposite sign it is obvious that 
the two evaluations of the transport term cannot 
be reconciled although T-,:JS3 (Figure 4), likef(Eq. 
22), varies almost linearly with T. The major 
difference between the two approaches arises from 
the difference between the limiting temperatures 
T2 and T= (cf. Eq. 20 and Table II) which is 
about 60°C. In fact at T= r:::! 330°K (Figure 6), 
below which according to the free volume approach 
configurational changes can no longer occur, the 
Adam-Gibbs theory provides considerable mobil­
ity, since the value of T· ,:1S3 is still a large fraction 
of the one obtained at 175°C, where the growth 
rate has its maximum ( cf. Figure 4). Consequently, 
the only manner to force the Adam-Gibbs theory 
for a better fit of the data, is to introduce a higher 
limiting temperature for T ,:JS (comparable to 

* The vertical scale of this graph is too small to 
show any significant difference between the three sets 
of the calculated values of log G based on the free 
volume approach (Eqs. 28-30). 
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T=) than the one derived from the extrapolation 

of thermal properties of the material. In this 

case of course the two approaches become equiva­

lent, with a small difference related to the slightly 

non-linear temperature dependence of T-L1Sa 

(Figure 4). 

DISCUSSION 

Transport Parameters 

It is interesting to compare the magnitude of 

the transport parameters derived from the above 

calculations to those obtained from the temperature 

dependence of the viscoelastic properties (viscosity 

YJ, or retardation times'<'). These latter values are 

listed in Table II, as derived from creep investiga­

tions on atactic PS samples of high molecular 

weight (Mw >Mc~ 40000) while using the 

Doolittle or the Vogel equation (Eqs. 8 and 24). 

This table also shows the transport parameters 

used by Boon et a[.6b, 7a for interpreting their 

growth rate data, which were converted into the 

free volume parameters according to Eq. 25. 

Since these authors analysed their data on the 

basis of the WLF equation (Eq. 5) while using the 

"universal" values of the parameters6b, or by 

changing one of them (C2 = Tu - T=ya in 

order to obtain an acceptable fit, it is not sur­

prising that their values are rather far from those 

obtained in this work, where both of the free 

volume parameters are assumed adjustable. Table 

2 includes also the parameters proposed by Mandel­

kern et al. 4 which were already discussed 

(Eq. 4a; Figure 3). 
By comparing the best transport parameters 

derived from the free volume approach to those 

obtained from the temperature dependence of 

YJ or T, one can see that the values of T= are in 

rather good agreement, whereas those of B/2. 303 

(or a1/b; cf. Eq. 25) are quite close to the value 

deduced from the recoverable creep (r) 

investigations131 (Table II). The discrepancy be­

tween the values of B (or a1/b) derived from the 

temperature dependence of YJ and T may be at­

tributed to the entanglement coupling of the 

chains which contributes differently to the re­

coverable creep than to the flow32• The relative 

agreement between the values of the transport 

parameters derived from G and T (Table II) may 

thus indicate that the "reeling in" of molecules 
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during the crystal growth is comparable to their 

movement in a creep process. 
However, the 1 to 2 ratio of the parameter B, 

or a1/b, obtained from G and YJ, may be interpreted 

also on the basis of a more specific model directly 

related to the temperature dependence of the local 

free volume near the growing face. In fact, the 

latter may be about twice as large as in a volume 

element of the pure liquid phase, because the 

crystallization involves a volume shrinkage L1v = 
(v1 - v0) per g, the temperature coefficient of which 

(a - a 0) is the same order of magnitude as L1a = 
a - au, i.e. a1 , according to the free volume con­

cept (a, a 0 , and au being the thermal expansion 

of the liquid, the crystal and the glass, respectively). 

In other words it may be conceived that the volume 

shrinkage contributes as much to the local free 

volume near the growing face of the crystal as the 

brownian motion in the pure liquid phase, the 

temperature coefficients of both processes being 

of the order of L1a. 

Similar conclusions may be drawn from the 

data reported by Magill and Plazek12 ' 13 on 

growth rate, viscosity and creep of Tri-a-naph­

tylbenzene, analysed on the basis of the Vogel 

equations (Eqs. 24 and 28). Their results show 

that a1/b (as determined from the reciprocal of 

the values of B, cf. Eq. 25) is more than twice as 

large when derived from the temperature depend­

ence of the growth rate than from that of YJ 

(or'<'). For this material, however, the value of 

T= determined from G was about 100°C higher 

than that obtained from 7J (or T)12 ' 13 ' 33, whereas 

in the present case the difference of T = is only of 

the order of ± l0°C (cf. Table II). 
In the last column of Table II we have listed the 

ratios ba1/f/, derived from the free volume 

approach which measure the temperature coef­

ficients din P(v*)/dT, (Eqs. 6 and 22), i.e. of molec­

ular mobility at the reference temperature T0 • 

This ratio may also be obtained from the shift 

factor aT for superimposing the volume contrac­

tion isotherms23 ' 34 of the quenched glass along 

the log time axis. Such data reported in a sub­

sequent paper16 lead, for the same i-PS, to 

ba1/f,/ = 0.81 deg-1, which is in gratifying agree­

ment with the values obtained here from growth 

rate data and confirms the self-consistence of the 

free volume approach. 
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Nucleation Parameters 
(a) It should be pointed out, that the values 

of the main nucleation parameter K (Eq. 27), 
given in Table II, are independent of the adopted 
values of 11H/9, provided that the first, or the 
second approximation (Eq. 28 or 29) is used for 
estimating 11/.. For the third approximation 
(Eq. 30 or 31), however, the value of K3 or K' 
depends slightly on the particular value of 11H1, 
which enters as a factor only the principal term 
of 11/2 (Eq. 19). Consequently the ratio 11H1/ 
11/2 appearing in the nucleation term of Eqs. 
30 and 31 will not be modified much by chang­
ing 11H1, since such a change will affect only the 
contribution of the corrective terms of 11/2. If the 
data are analysed as above, i.e. leaving the trans­
port and the nucleation parameters adjustable, 
a slight change of K results in a small change of the 
"best" values of the transport parameters. If 
the Adam-Gibbs approach is used (Eq. 31) 
the modification of the value of C is more impor­
tant, since T-11S3 (Eq. 18) depends also on the 
value of ilH1 . In particular the limiting tem­
perature T2 (cf. Figure 4) where 11S3 vanishes, will 
change with 11H1. 

Table II shows that the magnitude of K (or 
aae) does not depend critically either on the type 
of approach used for the evaluation of the trans­
port term (Eqs. 4, 28-31), or on the values 
of the parameters involved, which vary in a wide 
range. Interestingly enough, even Eq. 4, as 
used by Mandelkern et al. 4, leads to an acceptable 
value of K. 

On the other hand, the growth rate data of i-PS 
reported by others1- 3'7 lead to similar values 
of K, as shown in Figure 7, where the slope of the 
parallel straight lines is equal to - Ki/2. 303. 
Moreover, the value of K seems almost independent 
of the chemical composition of the polymer. In 
fact for the two polymers, polyethylene (PE) 
and polychlorotrifluoroethylene (PCTFE), whose 
growth rate data were the most thoroughly ana­
lyzed10'36, thevalue of K (respectively equal to 
230 and 280 deg) is quite close to those reported 
here (230 < K < 260; cf. Table II) for i-PS. 
Similar analysis of growth rate data of isotactic 
Polybutene-I (PB-1; forme II), derived from two 
sets of independent measurements on different 
samples, Jead to K = 29037 and 305 deg14 ' 38. 
The K values reported by Magill11b for Nylon 
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6 and 66, respectively equal to 295 and 205 deg, 
are also located in the same range. 

This conclusion is similar to the one proposed 
recently by Mandelkern et al.4, although these 
authors analysed the available growth rate data 
on the basis of Eq. 4, while assuming Tm and E 
to be adjustable and Kand G0 to be "universal". 

It should be pointed out however, that the nu­
cleation parameter K enters the above equations 
as an exponent. Therefore a small variation of 
its magnitude provokes a large change of the 
value of G, as portrayed in Figure 3, in which the 
two theoretical curves were calculated using two 
values of K differing by less than 15 percent (cf. 
Table II). Consequently the thumbrule of the 
universality of the main nucleation parameter, as 
proposed by Mandelkern et al. 4 should be handled 
with caution. It may just show that the work 
required for chain folding10. 

(33) 

where A 0 is the cross-section of the chain, does not 
depend critically on the chemical composition27. 
In fact, by assuming like Hoffman et al.10 ' 27 

that 

(34) 

where /3 is a numerical factor of the order 0.1 for 
chain like molecules, one can write approximately 
(Eq. 27) 

4boa·ae 4(3b/·ae 2(3q 
K= k11H1 k ~k (35) 

since b0 2 and Ao are of comparable magnitude. 
(b) The values of K given in Table II lead directly 

to the product a·ae of the surface free-energies 
(cf. Eq. 27) if 11H1 and b0 are known from in­
dependent measurements. According to the 
rhombohedral unit cell dimensions given by Natta 
et al. 40 (a= b = 21.9 A, C = 6.65 A, r = 2rc/3; 
at 2O°C) the average cross section Ao of the i-PS 
chain in the crystal amounts, at 16O°C, to 70.5 X 

10-16 cm2. Thus b0 may be approximated as 
above by7a. 

b0 A/12 8.4 X 10-s cm (36) 

A more realistic estimation of b0 may be obtained 
from the distance between adjacent molecular 
layers in the (110) direction which is parallel to 
the growth faces of the hexagonal single crystals 
of i-PS41 ' 42• According to the unit cell given 
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Table III. Surface free energies and work for chain folding 

Poly-
mer Ref. 

i-PS 

PE 
PCTFE 
PB-lb 

POEC 
II 

this 
work 

II 

7a 
10,36 
27,36 

37 
38 
II 

14 
II 

Tm 
(OK) 

515.2 
II 

II 

513.0 
416.2 
494.2 
403.2 

II 

II 

343.2 
II 

Eq. 
i1H1 ho 

(joule/ 
(A) cm3) 

30 91.1 8.4 
II II 5.5 
II II II 

28 86.0 8.4 
23a 280 4.11 
23a 91.1 5.6 
23a 96.2 7.45 
II II II 

II II II 

23a 230d 4.65 
II II II 

Ao K CJ• Oe (J (Je q 

(A2) (deg) 
(erg2/ p (erg/ (erg/ (kcal/ 
cm4) cm2) cm2) mo!. fold) 

70.5 232 87 0.083 6.35 13. 7 2.9 
II II 133 0.083 4.16 32.0 6.5 
II II II 0.1 5.0 26.6 5.4 
II 279 96 0.1 7.2 13.3 2.8 

18.3 230 540 0.083 9.6 56.0 2.9 
36.4 280 156 0.083 4.2 37.0 3.9 
55.5 290 128 0.1 7.2 17.8 2.8 

II 305 135 II II 18.7 3.0 
II II II 0.083 5.9 22.7 3.6 

21. 7 110 188 0.1 10.7 17.6 1.1 
II II II 0.083 8.9 21.1 1.3 

a With universal WLF constants: B = 2082 deg, Tu - T= = 51.6°C 
b Form II 
c Mw 8.105 

ct In ref. 14, i1H1 was assumed 280 joule-cnr3• 

by Natta et al. 40 the repeat distance of the (110) 
lattice planes is 11.0 A units at 160°C. This 
distance corresponds to the separation of every 
second molecular layer, since the i-PS chains 
have alternatively left and right handed confor­
mation in the consecutive layers parallel to the 
(110) direction40• Thus, the average separation 
of two adjacent layers normal to the growth faces 
may be evaluated as half of the repeat distance 
between the (110) planes, i.e. 

h0 = 5. 5 X 10-s cm (37) 

The alternation of left and right handed helices 
in the consecutive layers may result in a rather 
severe segregation process near the growing face 
which should decrease appreciably the rate of 
growth. 

In Table III we have listed the values of a·a. 
derived from the best values of K, obtained from 
the third estimation of ilfv, associated with the 
Vogel equation, (Eq. 30)*, while assuming for 
ho the two values given above (Eqs. 36 and 37). 
Table III in ludesalso the best estimation of Boon 
et a/.7a based on slightly different input data 
(cf. ref. 43 and Table II). 

By assuming two extreme values of /3 (Eq. 34) 
equal to 0.083 or 0.1, obtained by Hoffman 
et al.10 ' 36 for PE and PCTFE, one can also 

* As shown in Table II, Eq. 28 leads practically to 
the same value of K as Eq. 30. 
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evaluate the magnitude of the two surface free 
energies involved and the work for chain folding 
(Eq. 33). One can see that for i-PS the values 
of a. and q are rather sensitive to the magnitude 
of h0 (Eqs. 36 and 37). This is due to the 
relatively large separation of the chains in the fold 
planes (parallel to the (110) direction) as compared 
to the distance h0 (Eq. 37) between consecutive 
growth layers. 

For comparative purposes Table III also shows 
the values of the nucleation parameters and the 
input data for some other polymers. In many 
respects (Tm, ilH1, h0, K, thus a and a.), i-PS has 
rather similar characteristics to that of PCTFE. 
In fact their spherulites grow more slowly than 
those of the other polymers listed, although at 
the same supercooling PCTFE grows27 about 
100 times faster than i-PS. This may be related 
to the different cross section of these two chains, 
which results in a substantially larger value of q 
for i-PS than for PCTFE. 

On the other hand PE and polyoxyethylene 
(PEO) have similar values of 11H1, h0 and A 0, 

thus of a. However, the K value of PEO seems 
abnormally low as compared to the other systems, 
which results in rather small values of a. and q. 

Although the overall growth rate at the same 
relative supercooling is controlled essentially by 
the value of G0 (Eq. 1), the ease by which polymer 
chains build up their crystalline phase near their 

97 



T. SUZUKI and A. J. KOVACS 

melting point seems to be correlated also to the 
work for chain folding, the values of which are 
increasing from PEO to i-PS. In this respect the 
theoretical treatment of surface nucleation of 
chain folded polymers leads to self-consistent 
results. However, the values of the nucleation 
parameters listed in Table III should be further 
substantiated by other independent investigations. 

(c) In contrast to K, the second nucleation 
parameter G0 varies in a rather large range depend­
ing both on the type of approach used for the 
evaluation of the transport term and on the 
magnitude of the parameters involved as shown 
in Table II. Its "best" value (2.1 x 10-2 cm -sec-1) 

obtained from Eq. 30, is much smaller than the 
theoretical limit10 : b0kT*/h ((5--8)xl05 cm 
sec-1), T* being the temperature at which G 
reaches its maximum (Figure 3) andh the Planck con­
stant. This means that the growth rate is limited 
rather critically by specific effects, such as chain 
conformation and stereoregularity, which were 
not taken into account in the theoretical treatment 
(Eqs. 1 and 2). The rather large variations of 
G0 from one sample to another as shown in Figure 7 
for i-PS (or in Figure 4 in ref. 38 for PB-1), while 
using the same transport parameters, illustrate 
these effects directly. They are particularly 
important for blends2 or "copolymers" built up 
by juxtaposing isotactic and atactic chain segments 
of the same monomer unit. 

Consequently the comparison of the magnitude 
of G0 for different polymeric systems seems some­
what hazardous, even by using the same type of 
approach for evaluating the transport term. 
Therefore, the "universality" of the value of G0 

as reported by Mandelkern et al. 4 can hardly 
be accepted. Since G0 remains the most poorly 
defined parameter in the actual theories, clearly 
further work is needed to relate it explicitly 
to the molecular parameters, such as chain length, 
conformation tacticity etc . .. , which may effect 
drastically the nucleation rate. 

CONCLUSIONS 

From the above analysis of spherulitic growth 
rate of i-PS, the following conclusions may be 
drawn: 

(a) If the experimental data cover a wide range 
of temperature, the theoretical expression of 
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surface nucleation as modified by Hoffman et al. 
for polymeric systems may be successfully applied 
provided that the transport term is estimated ac­
cording to the free volume concept (or a mathe­
matically equivalent WLF or Vogel equation). 

(b) The Adam-Gibbs theory leads to a much 
poorer fit of the data, except if the limiting tem­
perature T2 is considered as adjustable rather 
than being determined from direct investigations 
of the thermal properties of the material. In 
the former case the free volume and the configura­
tional free energy approaches are practically 
equivalent, both involving two adjustable param­
eters for the transport term. 

(c) The values of these are of reasonable magni­
tude in terms of the free volume concept and may 
be compared to those derived from the temperature 
dependence of the viscoelastic parameters or from 
other processes involving configurational mobility. 
More particularly, the limiting temperature T= 
at which the mobility approaches to zero seems to 
be almost independent of the type of investigation, 
provided that the data are analysed consistently. 

However, for the growth process one has to 
account for the volume shrinkage due to the 
crystallization which contributes to the temperature 
coefficient of the local free volume near the growing 
face about as much as the brownian motion in 
the liquid phase. 

(d) On the other hand, the magnitude of the free 
volume parameters is rather insensitive to the 
accuracy of the estimation of the free energy 
difference ilfv between the supercooled liquid and 
the crystal. However, by using the Adam-Gibbs 
approach for the evaluation of the transport term, 
the different approximations of ilfv may affect 
considerably this latter, since the transport and 
the nucleation terms are related through the ex­
cess configurational free energy, T· S 0 , of the liquid 
phase. In particular, the contribution of the 
transpot term depends critically on the limiting 
temperature T2 where S 0 vanishes, the value of 
which is determined by the approximation used 
for estimating ilfv. 

(e) The nucleation parameter K related to the 
free energy of the lateral and the fold surface and 
to the heat of fusion does not depend critically 
either on the approach used for the transport term 
or on the approximation of ilfv. This conclusion 
is valid not only in the low temperature range 
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where the transport process is the main rate con­
trolling factor, but also near the melting point 
at which the different evaluations of .:lfv merge. 
(However, if the investigations are limited in a 
narrow temperature interval just below the melt­
ing point, the value of T., affects the magnitude of 
the nucleation parameters rather critically). 

(f) The value of the nucleation parameter K 
appears to be a characteristic constant of the 
material although its magnitude which may be 
related to the work for chain folding seems rather 
insensitive to the chemical composition of the 
polymer. Closer inspection shows however, that 
this work, related to the packing density and the 
stiffness of the chains, affects also the growth 
rate. 

(g) Finally, the value of preexponential factor 
G0 depends critically in the type of approximation 
used for estimating the transport term, and on the 
magnitude of the parameters involved. Un­
doubtedly this factor is affected by both processes 
controlling the growth rate and its magnitude seems 
to be the most specific for polymeric systems, 
related not only to their chemical composition, 
but also to their molecular conformation and 
stereospecificity. 

Further progress, both theoretical and experi­
mental, is needed to specify the contributions of 
these molecular parameters to the growth process 
of chain folded polymer crystals. 
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APPENDIX 

One can write Eq. 26 as 

Y = logG + (B/2.303)(T- T=)-1 =PX+ Q (Al) 

with 

P = K/2.303 } (A2) 
Q = log Go 

and 

.:lH1 
X= ~---~ = F(T) (A3) 

.:lfv · T 

in which .:lfv may be substituted by one of its 

Polymer J., Vol. 1, No. 1, 1970 

approximate expressions (Eqs. 3, 15, and 19). 
The standard error on K (or on Log G0) may 
then be defined by 

(N) 1
/

2 

a(K) = a .:1 (A4) 

where 

u = [I;(Yi - PX; - Q)2]1;2 
N - 2 (AS) 

and 

.:1 =NI:, X/ - (I; X;)2 (A6) 

N being the number of experimental points, and 
Xi and Y; the values calculated from Eqs. A 1 
and A 3 by substituting the measured values of 
G and T, and the trial values of B, (or T=) let­
ting T= (or B) vary. 
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